MATH 8307: ALGEBRAIC TOPOLOGY
PROBLEM SET 5, DUE FRIDAY, APRIL 15, 2005

SASHA VORONOV

From Hatcher’s textbook:
Section 4.1: 18
Section 4.2 (from Hatcher’s textbook): 15 (In fact, prove a more general statement that a closed connected simply-connected \(n \)-dimensional manifold whose homology is the same as that of \(S^n \) is homotopy equivalent to \(S^n \).) [Hint: use the Hurewicz theorem.]

Problem 1. Show that \(\pi_7(S^4) \) contains a \(\mathbb{Z} \) summand.

Problem 2. Compute all the homotopy groups of \(\mathbb{R}P^\infty = \bigcup_{n \geq 1} \mathbb{R}P^n \), using the computation of the homotopy groups of \(\mathbb{R}P^n \) through the homotopy groups of spheres \(S^n \).

Problem 3. Regarding a singular cochain \(\phi \in C^1(X; G) \) as a function from paths in \(X \) to \(G \), show that if \(\phi \) is a cocycle, that is, \(\delta \phi = 0 \), then

1. \(\phi(f \cdot g) = \phi(f) + \phi(g) \),
2. \(\phi \) takes the value 0 on constant paths,
3. \(\phi(f) = \phi(g) \) if \(f \sim g \) via a homotopy fixing the endpoints,
4. \(\phi \) is a coboundary (that is, \(\phi = \delta \psi \) for some \(\psi \in C^0(X; G) \)) iff \(\phi(f) \) depends only on the endpoints of \(f \), for all \(f \).

[In particular, 1 and 4 give a homomorphism \(H^1(X; G) \to \text{Hom}(\pi_1(X), G) \), which is a version of Hurewicz isomorphism if \(X \) is path connected.]

Problem 4. Show that, if \(n \geq 2 \), then \(\pi_n(X \vee Y) \) is isomorphic to

\[\pi_n(X) \oplus \pi_n(Y) \oplus \pi_{n+1}(X \times Y, X \vee Y). \]

Problem 5. Compute \(\pi_n(\mathbb{R}P^n, \mathbb{R}P^{n-1}) \) for \(n \geq 2 \). Deduce that the quotient map

\[(\mathbb{R}P^n, \mathbb{R}P^{n-1}) \to (\mathbb{R}P^n / \mathbb{R}P^{n-1}, *) \]

does not induce an isomorphism of homotopy groups.

Problem 6. Assume given maps \(f : X \to Y \) and \(g : Y \to X \) such that \(g \circ f \simeq \text{id}_X \). Suppose that \(Y \) is a CW complex. Show that \(X \) has the homotopy type of a CW complex, i.e., is homotopy equivalent to a CW complex.

Problem 7. Let \(n \geq 1 \) and \(\pi \) be an abelian group. Construct a connected CW complex \(X \) such that \(\tilde{H}_n(X; \mathbb{Z}) = \pi \) and \(\tilde{H}_q(X; \mathbb{Z}) = 0 \) for \(q \neq n \). Such space \(X \) is denoted \(M(\pi, n) \) and called a Moore space. [Hint: construct \(M(\pi, n) \) as the cofiber of a map between wedges of spheres.]

Date: March 31, 2005.
Problem 8. Let $n \geq 1$ and π be an abelian group. Construct a connected CW complex X such that $\pi_n(X) = \pi$ and $\pi_q(X) = 0$ for $q \neq n$. Such space X is denoted $K(\pi, n)$ and called an Eilenberg-Mac Lane space. [Hint: start with $M(\pi, n)$, use the Hurewicz theorem, and kill the higher homotopy groups.]