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0.1 G-sets

We introduce a part of the theory of G-sets, suitable for understanding the approach
GAP uses to compute with permutation groups, using stabilizer chains. Rotman’s
book describes other results about G-sets, such as the Cauchy-Frobenius lemma, often
known as ‘Burnside’s Lemma’.

Let G be a group. A G-set is a set Ω with an action of G by permutations. There
are right and left G-sets and by an action of G on Ω from the right we mean a mapping
Ω×G→ Ω so that ω(gh) = (ωg)h and ω · 1 = ω hold for all ω ∈ Ω and g, h ∈ G. With
the convention that functions are applied from the right, the specification of a right
G-set is equivalent to the specification of a homomorphism G → SΩ, the symmetric
group on Ω. Similarly a left G-set is equivalent to the specification of a homomorphism
G → SΩ provided we adopt the convention that mappings are applied from the left.
Because GAP applies mappings from the right, we will work with right G-sets.

For each ω ∈ Ω the set ωG = {ωg
∣∣ g ∈ G} is the orbit of Ω that contains ω. We

say that G acts transitively on Ω if there is only one orbit. We put

StabG(ω) = Gω = {g ∈ G
∣∣ ωg = ω}

and this is the stabilizer of ω in G. For example:

• if G permutes the set of its subgroups by conjugation then StabG(H) = NG(H),

• if G permutes the set of its elements by conjugation then StabG(x) = CG(x),

• if G permutes the right cosets H\G = {Hg
∣∣ g ∈ G} by right multiplication then

StabG(Hg) = Hg = g−1Hg. This is part 3. of the result below.

A homomorphism f : Ω→ Ψ of G-sets is a mapping with f(ωg) = (f(ω))g always,
and if this condition is satisfied we say that the mapping f is equivariant for the action
of G. Such a homomorphism of G-sets is an isomorphism if and only if it is bijective,
if and only if there is a G-set homomorphism f1 : Ψ→ Ω with 1Ψ = ff1 and 1Ω = f1f .

Class Activity. Is this obvious?

We probably already know the ‘orbit-stabilizer’ theorem. Part 2 of the next propo-
sition is a more sophisticated version of this result, applying to infinite G-sets and
containing more information.

Proposition 0.1.1. 1. Every G-set Ω has a unique decomposition Ω =
⋃

i∈I Ωi

where I is some indexing set and the Ωi are orbits of Ω.

2. If Ω is a transitive G-set and ω ∈ Ω then Ω ∼= StabG(ω)\G as G-sets. Thus if Ω
is finite then |Ω| = |G : StabG(ω)|.

3. When H ≤ G, the stabilizer of the element Hg in the space of right cosets H\G
is Hg = g−1Hg.
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4. If H,K ≤ G, there is a G-set homomorphism f : H\G→ K\G with f(H) = Kg
if and only if H ⊆ Kg.

5. If H,K ≤ G then H\G ∼= K\G as G-sets if and only if K and H are conjugate
subgroups of G.

6. Every equivariant map between transitive G-sets is an epimorphism.

7. AutG−set(H\G) ∼= NG(H)/H.

We see from 4. that every homomorphism H\G → K\G is the composite of a
homomorphism H\G → Kg\G specified by H 7→ Kg where H ≤ Kg, followed by an
isomorphism Kg\G→ K\G specified by Kg 7→ Kg.

Proof. 2. Given ω ∈ Ω, define a mapping G→ Ω by g 7→ ωg. This is a map of G-sets.
We check that the set of elements of G mapped to ωg is StabG(ω)g, so that there is
induced a G-equivariant bijection between the two sets as claimed.

4. We first observe that if f : Ω → Ψ is a map of G sets then StabG(ω) ⊆
StabG(f(ω)). From this, the implication ‘⇒’ follows. Conversely, if H ⊆ Kg we show
that the specification f : H\G → K\G by f(Hx) = Kgx is well defined. This is
because if Hx = Hy the xy−1 ∈ H so xy−1 ∈ Kg and x = g−1kgy for some k ∈ K.
Thus Kgx = Kgg−1kgy = Kgy. The mapping f is G-equivariant, so we have a
homomorphism as claimed.

7. The mapping NG(H)→ AutG−set(H\G) given by g 7→ (H 7→ Hg) is a surjective
homomorphism of groups. Its kernel is H.

Let H be a subgroup of a group G. A right transversal to H in G is the same thing
as a set of right coset representatives for H in G, that is: a set of elements g1, . . . , gt
of G so that G = Hg1 ∪ · · · ∪Hgt.

Proposition 0.1.2. Let G act transitively on a set Ω and let ω ∈ Ω be an element
with stabilizer Gω. Then elements {gi

∣∣ i ∈ I} of G form a right transversal to Gω in
G if and only if Ω = {ωgi

∣∣ i ∈ I} and the ωgi are all distinct.

Proof. This comes from the isomorphism of G-sets Ω ∼= Gω\G under which ωg ↔
Gωg.

Algorithm 0.1.3. This observation provides a way to compute a transversal for
StabG(ω) in G. Take the generators of G and repeatedly apply them to ω, obtain-
ing various elements of the form ωgi1gi2 · · · gir where the gij are generators of G. Each
time we get an element we have seen previously, we discard it. Eventually we obtain
the orbit ωG, and the various elements gi1gi2 · · · gir are a right transversal to StabG(ω)
in G.

There is an example below with a group of permutations of six points.
The elements of this transversal come expressed as words in the generators of G. It

is what GAP does, except that it does the above with the inverses of the generators of
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G. If an inverse generator g−1 sends an already-computed element u to a new element
v, the generator g is stored in position v in a list. This means that applying g to v
gives u. By repeating this we eventually get back to the first element of the orbit. It
is this list of generators that GAP stores in the field ‘ transversal’ of a stabilizer
chain. Elements of a right transversal are obtained by multiplying the inverses of the
generators in reverse sequence.

0.1.1 Stabilizer chains

Computing chains of stabilizers is the most important technique available in computa-
tions with permutation groups. The idea of doing this in the context of computational
group theory is due to Charles Sims. The following theorem of Schreier allows us to
compute generators for stabilizer subgroups and the whole approach is known as the
Schreier-Sims algorithm.

Theorem 0.1.4 (Schreier). Let X be a set of generators for a group G, H ≤ G a
subgroup, and T a right transversal for H in G such that the identity element of G
represents the coset H. For each g ∈ G let g ∈ T be such that Hg = Hg. Then

{tg(tg)−1
∣∣ t ∈ T, g ∈ X}

is a set of generators for H.

Note that since Htg = Htg, the elements tg(tg)−1 lie in H always. Also a = a
and ab = ab. The generators in the set are called Schreier generators. Not only do
they generate H but, if the elements of the transversal are expressed as words in the
generators of G, then the generators of H are also expressed as words in the generators
of G.

Proof. Suppose that g1 · · · gn ∈ H where the gi lie in X. Then

g1 · · · gn = (g1g1
−1)(g1g2g1g2

−1)(g1g2g3g1g2g3
−1) · · · (g1 · · · gn−1gn)

is a product of the Schreier generators. Note that g1 · · · gn ∈ H so that g1 · · · gn = 1.

If G permutes Ω, a base for G on Ω is a list of elements ω1, ω2, . . . , ωs of Ω so that
the stabilizer Gω1,ω2,...,ωs equals 1. Here Gω1,ω2,...,ωr is the stabilizer inside the subgroup
Gω1,ω2,...,ωr−1 of ωr, for each r. Let us write Gr instead of Gω1,ω2,...,ωr and G0 = G. In
this situation the chain of subgroups

G = G0 ≥ G1 ≥ · · · ≥ Gs = 1

is called a stabilizer chain (for G, with respect to the given base). We will consider for
each r the subset Ωr of Ω which is defined to be the Gr-orbit containing ωr+1. Thus
Ω0 = ω1G, Ω1 = ω2G1 etc. A strong generating set for G (with respect to the base) is
a set of generators for G which includes generators for each of the subgroups Gr. Thus
in a strong generating set, Gr is generated by those generators that happen to fix each
of ω1, . . . , ωr.
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Proposition 0.1.5. Each Ωi is acted on transitively by Gi. As Gi-sets, Ωi
∼= Gi+1\Gi.

Hence |G| = |Ω0| · · · |Ωs−1|.

Proof. We have ωi+1 ∈ Ωi and StabGi(ωi+1) = Gi+1.

Given a set of generators G = 〈g1, . . . , gd〉 and a subgroup H ≤ G a right Schreier
transversal for H in G is a right transversal with elements expressed as words in the
generators, as suggested by the following 1, gi1 , gi1gi2 , gi3 , . . . so that each initial segment
of a word appears (earlier) in the list. Schreier transversals correspond to rooted trees.

Example 0.1.6. Let G = 〈(1, 5)(2, 6), (1, 3)(4, 6), (2, 3)(4, 5)〉 and write these genera-
tors as a = (1, 5)(2, 6), b = (1, 3)(4, 6), c = (2, 3)(4, 5). Find a set of coset representa-
tives for StabG(1).

Solution: We construct a Schreier tree:

1
a−→ 5

c−→ 4

b

y
3

c−→ 2
a−→ 6

giving coset representatives 1, a, b, ac, bc, bca. These form a Schreier transversal: every
initial segment of a word is in the transversal. These generators have order 2, and GAP
stores their inverses in the list [1, c, b, c, a, a].

Class Activity. Given that the element abc = (1, 4, 6, 3)(2, 5) = x lies in G, find the
coset representative that represents StabG(1)x.

Table of tg:
1 a b ac bc bca

a 1 b ac bca bc a
b a 1 bca bc ac b
1 ac bc a b bca c

Table of tgtg
−1

:

1 a b ac bc bca

1 a2 bab−1 acac−1a−1 1 bca2c−1b−1 a
1 aba−1 b2 acba−1c−1b−1 bcbc−1b−1 bcabc−1a−1 b
c 1 1 ac2a−1 bc2b−1 bcaca−1c−1b−1 c

Observe that 5 of these entries are necessarily 1. Upon evaluation of these expressions
in G the last table becomes the following:

1 a b ac bc bca

1 1 (2, 4)(3, 5) (2, 3)(4, 5) 1 1 a
1 (2, 4)(3, 5) 1 (2, 5)(3, 4) (2, 3)(4, 5) (2, 5)(3, 4) b
(2, 3)(4, 5) 1 1 1 1 (2, 4)(3, 5) c
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We see that, in the stabilizer chain, G0 acts on Ω of size 6, G1 = 〈(2, 3)(4, 5), (2, 4)(3, 5)〉
acts on {2, 3, 4, 5} of size 4, and G12 = 1, so that |G| = 4 ·6 = 24. The fact that G12 = 1
we can see by inspection, because the group is so small, but to continue the algorithm
properly we go through Schreier’s theorem.

Theorem 0.1.7 (Schreier). Let G have d generators and let H ≤ G have finite index.
Then H can be generated by |G : H|(d− 1) + 1 elements.

Proof. Consider the generators tg(tg)−1 for H, and write n = |G : H|. The number of
edges in the Schreier tree is n − 1. Each gives an entry 1 in the table of generators.
The number of table entries which are not 1 is at most dn− n+ 1 = n(d− 1) + 1.

Write d(G) for the smallest size of a set of generators of G. The last result can be
written d(H) − 1 ≤ |G : H|(d(G) − 1). When G is a free group it turns out that we
always get equality in this bound. We will see this when we come to the section on free
groups and, more generally, groups acting on trees. In the example, there were 5 edges
in the Schreier tree, and these accounted for the 5 identity elements in the first table.

Algorithm 0.1.8. Given a stabilizer chain with a transversal for each stabilizer group
in the next, we can test whether a permutation belongs to a group. If it does, and the
transversal elements are words in the generators, we can express the permutation as a
word in the generators. This algorithm solves problems such as restoring Rubik’s cube
to its initial position, given a random permutation of its faces.

Given a permutation π find the coset representative x1 of the coset G1π by com-
puting the action of π on Ω. We compute (ω1)π. If π ∈ G this must equal (ω1)g for
some unique g in a right transversal for G1 in G0 and so πg−1 ∈ G1. In fact, π ∈ G
if and only if (ω1)π = (ω1)g for some g in the transversal and πg−1 ∈ G1. We now
continue to test whether πg−1 ∈ G1 by repeating the algorithm.

Example 0.1.9. Continuing the previous example: is (1, 2, 3) inG? Since (1, 2, 3)c−1b−1 =
(4, 5, 6) 6∈ G1, the answer is No.

Class Activity. Is (1, 3, 5)(2, 6, 4) in G? If it is, write this permutation as a word in
the given generators of G.

Algorithm 0.1.10. We give an algorithm for listing the elements of G. We start by
listing elements in the subgroups at the small end of the stabilizer chain, at each stage
listing them by cosets in the next biggest stabilizer. Thus, if the elements of Gi+1 have
been listed and t1, . . . , ts is a transversal for Gi+1 in Gi then Gi = Gi+1t1∪· · ·∪Gi+1ts.
In the example we get

[(), (3, 5)(2, 4), (2, 3)(4, 5), (3, 4)2, 5), a, (3, 5)(2, 4)a, (2, 3)(4, 5)a, . . . ,

starting with the 4 elements of G1, and continuing with the cosets of G1 put in the
order given by the Schreier transversal. This puts an ordering on the elements of G.
GAP orders everything.
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Class Activity. Examine the list of elements of some groups, such as S4 to see the
coset structure in the list.

Other algorithms, such as computing generators for a Sylow p-subgroup of a group,
or for the normalizer of a subgroup, depend on computing a stabilizer chain. This
approach to computation within permutation groups is due to Charles Sims.


