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When he was an undergraduate at Swarthmore College in 1960, David W. Henderson [4] showed that 
there is a surprising connection between Venn diagrams and prime numbers

Theorem.  If a symmetric n-Venn diagram exists, then n is prime.

An n-Venn diagram is a Venn diagram on n sets, which is defined to be a collection of n simple closed 
curves (Jordan curves) C1, C2, …, Cn in the plane such that any two intersect in finitely many points and 
each of the 2n sets of the form Ë Ci

ei  is nonempty and connected, where ei is one of "interior" or 
"exterior". Thus the Venn regions are all bounded except for the region exterior to all curves; each 
bounded region is the interior of a Jordan curve. See [6] for much more information on Venn diagrams. An 
n-Venn diagram is symmetric if each curve Ci is riHC1L, where r is a rotation of order n about some center 
(we use O for the fixed point of rotation r).

We use Boolean notation for combinations of sets, with the 0-1 string e1 e2 …en representing  ËCi
ei , 

where ei is interior (respectively, exterior) if ei = 1 (respectively, 0). Thus 111 …1 represents F, the full 
intersection of all the interiors, 000 …0 is the intersection of all the exteriors (the unbounded region), and 
100 …0 represents the set of points interior to C1 and exterior to the others. In a symmetric Venn diagram, 
rotation of a region by r corresponds to a rightward cyclic shift of the Boolean string.

The universally familiar three-circle Venn diagram is symmetric, as is the one on two sets using two cir-
cles. For about 40 years a major open question was whether symmetric n-Venn diagrams exist for all 
prime n. Henderson found one for n = 5 and also (unpublished) for n = 7. Much later, Hamburger [3] 
settled the case of 11, which was quite complicated, and then in 2004 Griggs, Killian, and Savage [1] 
found an approach that works for all primes. So we now have the strikingly beautiful theorem that a sym-
metric n-Venn diagram exists if and only if n is prime.

But there is a small problem: Henderson's proof, which appears to be very simple, has a gap. Here is the 
proof from [4].

Suppose 1 § k § n - 1. Since a symmetric n-Venn diagram is symmetric with respect to a rotation of 
2 p ên, the regions corresponding to the Boolean strings with k 1s must come in groups of size n, each 
group consisting of one such region and its images under repeated rotation by 2 p ên. Therefore n divides 

J nk N. This concludes the proof because the only n for which this is true for the specified k-values are the 

primes (an easy-to-prove fact of number theory; see [5]). 

This is a very seductive argument. The primeness arises in such a cute way that one wants it to be true. 
Thus the proof has been repeated in many papers in the decades since it was first published. Yet there are 
problems. The proof does not call upon the connectedness of the Venn regions. Without connectedness the 
result is false; see Figure 1 (due to Grünbaum [2]), which shows a diagram satisfying all of the conditions 
for a symmetric 4-Venn diagram, except the one saying that the Venn regions must be connected. Note 
that this diagram has disconnected regions (for example, the region consisting of the two black triangles).



Figure 1.  Rotating an equilateral triangle leads to a symmetric diagram that represents all 16 combina-
tions of the four sets. But the set that represents a combination is not necessarily connected (as in the 
shaded case).

More important, the reasoning in Henderson's proof that the Venn regions come in groups of size n is 
insufficient, since it could perhaps happen that a Venn region R coincides with one of its rotated copies, 
thus disrupting the count. Certainly R cannot equal r HRL (unless R is the common exterior or interior), 
because the Boolean string for R must include both a 1 and a 0 and therefore a cyclic shift of the string one 
place yields a different string, and therefore a region disjoint from R. However, some patterns are invariant 
under two rotations: the string 1010 is unchanged by two rightward shifts. This phenomenon would invali-
date the proof, so to fix it one must show that in a symmetric n-Venn diagram, riHRL cannot equal R if 
1 § i § n - 1, unless R is either the common exterior or interior.

In email exchanges with Branko Grünbaum and David Henderson, alternative approaches to ours were 
proposed. These involved the use of winding numbers or similar ideas, all of which require that the curves 
in the Venn diagram be rectifiable. One can in fact reduce the general case to the rectifiable case, or even 
to the case that all curves are piecewise linear, but this adds the complexity of a compactness argument. 
Our approach ~ based on the following lemma ~ is self-contained and provides a purely geometric proof 
of a geometric fact. The lemma can be used either to fix Henderson's proof or to create a more direct proof 
with no reference to number theory. We require the Jordan curve theorem: every simple closed curve J in 
the plane divides the complement of J into two connected open sets, with J being the boundary of each.

Lemma.  Let J be a simple closed curve invariant under a nonidentity rotation r about center O. Then O is 
in the interior of J.

Postponing the proof for a moment, we show how the theorem follows.

Proof of Theorem.  Suppose the assertion is false, so that there is a composite number n with proper 
divisor b and a Jordan curve C such that, for a rotation r of order n, the curves rkHCL, k = 0, …, n - 1, 
form an n-Venn diagram. Let R be the region with Boolean representation 100 100 … 100, with b bits in 
each block (here b = 3). Then both R and rHRL are invariant under rb and so the lemma places O in each of 
them. This is a contradiction because the two sets are distinct Venn regions (the Boolean representation of 
rHRL begins with 01).  Ñ

And now the proof of the lemma:

Proof of Lemma.  Let S be the exterior of J. Let x be a point on J that is farthest from O and let C denote 
the circle centered at O and passing through x; therefore J is contained in C and its interior. Note that J 
travels from x to rHxL and then back to x, thus splitting into two paths, which we call J1 and J2. Suppose O 
is not in the interior of J. Then either O œ S or O is on J. In the first case, let z = O. In the second case, 
when O is on J ~ on J1, say ~ there is a small disk D about O that is inside C and disjoint from J2. Such 
a disk must contain a point z œ S. In either case, there is an unbounded path that starts at z and is contained 
in S. Let P be the truncation of such a path as soon as it reaches circle C, so that P goes from z to a point y 
on C and in S.
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Figure 2.  A schematic representation of the situation where O is on J. The point z is in the exterior of J 
and near O. Then one forms a path P from z to C and rotates the path to a path Q that connects the interior 
of K to its exterior.

Let B be a circle with center O and radius larger than that of C. Form the simple closed curve K that starts 
at x, follows path J2 to rHxL, goes radially outward to B, follows an arc of B to the point radially aligned 
with x, and then goes radially inward to x. Of the two possible B-arcs, use the one that places z, indeed all 
of D, in the interior of K. The use of the larger circle guarantees that K 's return trip to x misses J. Using the 
fact that y, being in S, cannot rotate to a point on J, we can rotate path P to riHPL = Q so that y moves to u, 
a point on C whose radial extension to infinity does not intersect K (Figure 2). Symmetry implies that Q is 
contained in S. Because riHzL is in disk D, it lies in the interior of K. But u is in the exterior of K. Thus Q 
connects the interior of K to its exterior, which means that Q intersects K, a contradiction as a common 
point would be on or inside C and so would be both in S and on J.  Ñ

Note the following useful consequence of the lemma: in a symmetric Venn diagram, O lies in F, the full 
intersection region. This is because F, and therefore its bounding curve, are invariant under the rotation. 
This sheds light on Henderson's proof as follows. Let R be a Venn region as in that proof. Then if 
1 § k § n - 1, it cannot happen that rkHRL = R because the lemma, applied to the boundary of R and the 
rotation rk, would place O in the interior of R. Since O is also inside F, this is a contradiction. Therefore n 

does indeed divide J nk N whenever 1 § k § n - 1, as claimed.
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