Canonical Mackey functors

Peter Webb

University of Minnesota

2 August 2016
Outline

The basics of Mackey functors

Stratification

New theorem
What is a Mackey functor?

A Mackey functor M for a group G over a ring R returns an R-module $M(K)$ for each subgroup K of G. It has restriction, induction and conjugation maps. Conjugation maps $c_g : M(K) \to M(K)$ are supposed to act trivially if $g \in K$, so $M(K)$ is an $RN_G(K)/K$-module.

Examples

- If V is any RG-module the fixed point and fixed quotient functors FP_V and FQ_V are defined by $FP_V(K) := V^K$ and $FQ_V(K) := V_K$.
- For fixed n and V, the cohomology groups $M(K) = H^n(K, V)$ define a Mackey functor. Other examples include various Grothendieck groups of group rings, such as $M(K) = \text{Irr}(K)$.
A Mackey functor over R is a mapping $M : \{\text{subgroups of } G\} \rightarrow R\text{-mod}$ with morphisms $I^H_K : M(K) \rightarrow M(H)$, $R^H_K : M(H) \rightarrow M(K)$, $c_g : M(H) \rightarrow M(\overline{g}H)$ whenever $K \leq H$ and $g \in G$, such that

- $I^H_H, R^H_H, c_h : M(H) \rightarrow M(H)$ are the identity morphisms for all subgroups H and $h \in H$,
- $R^K_J R^H_K = R^H_J$
- $I^H_K I^K_J = I^H_J$ for all subgroups $J \leq K \leq H$,
- $c_g c_h = c_{gh}$ for all $g, h \in G$,
- $R^g_K c_g = c_g R^K_H$
- $I^{gH}_K c_g = c_g I^H_K$ for all subgroups $K \leq H$ and $g \in G$,
- $R^H_J I^K_J = \sum_{x \in [J \setminus H/K]} I^J_{J \cap x K} c_x R^K_{J \cap x K}$ for all subgroups $J, K \leq H$.
The Mackey functors for G are the objects of an abelian category $\text{Mack}_R(G)$.

These functors are modules for an algebra $\mu_R(G)$ called the Mackey algebra.

There are projective and injective Mackey functors, simple Mackey functors, blocks of Mackey functors, etc.

Induction and restriction of Mackey functors between groups $H \leq G$ can be defined using the morphism $\mu_R(H) \to \mu_R(G)$. The are both the left and right adoint of each other, so are exact and preserve projectives and injectives.

Simple Mackey functors

Theorem (Thévenaz-Webb (1990))

Let $H \leq G$ and let V be a simple $R[N_G(H)/H]$-module. Then $(\text{Inf}_{N(H)/H}^{N(H)} FP_V)^{\uparrow G}_{N(H)}$ has a unique simple subfunctor $S_{H,V}$. These functors $S_{H,V}$ form a complete list of the simple Mackey functors.

The set of pairs H, V that index the simple Mackey functors comes with a natural preorder given by inclusion of the subgroups H.

Did you ever see a monkey factor?
The Δ and ∇ functors: 2001 theory

For any subgroup $H \leq G$ and $RN_G(H)/H$-module U we define

$\Delta_{H,U} = (\inf_{N(H)/H}^{N(H)} FQ_U) \uparrow_G^{N(H)}$ and

$\nabla_{H,U} = (\inf_{N(H)/H}^{N(H)} FP_U) \uparrow_G^{N(H)}$

Proposition

There are formulas:

$$\Delta_{H,U}(K) = \bigoplus_{g \in [K \backslash N_G(H,K)/N_G(H)]} U_{N_{Kg}(H)},$$

and

$$\nabla_{H,U}(K) = \bigoplus_{g \in [K \backslash N_G(H,K)/N_G(H)]} U^{N_{Kg}(H)}.$$

Thus $\Delta_{H,U}(H) = U = \nabla_{H,U}(H);$ both $\Delta_{H,U}(K)$ and $\nabla_{H,U}(K)$ vanish unless K contains a conjugate of H.
Adjoint characterizations

Proposition

\(U \mapsto \nabla_{H,U} \) is right adjoint to taking the **Brauer quotient**
\(M \mapsto \overline{M}(H) \).

Similarly \(U \mapsto \Delta_{H,U} \) is left adjoint to taking the **restriction kernel**
\(\underline{M}(H) \).
The categories $\mathcal{F}(\Delta)$ and $\mathcal{F}(\nabla)$

We will assume from now on that R is a complete p-local ring and U is a p-permutation $RN_G(H)/H$-module.

Let $\mathcal{F}(\Delta)$ be the full subcategory of Mackey functors that have a finite filtration with factors $\Delta_{H, U}$ where $H \leq G$ and U is a p-permutation $RN_G(H)/H$-module.

Similarly, $\mathcal{F}(\nabla)$ is the category with ∇ factors.
Ext vanishing of Δ and ∇

Let R be a complete p-local ring. Let H and K be subgroups of G and let U and W be p-permutation modules for $R[N_G(H)/H]$ and $R[N_G(K)/K]$.

Theorem

- $\operatorname{Ext}^1_{\mu_R(G)}(\Delta_{H,U}, \Delta_{K,W}) = 0$ unless $H >_G K$.
- $\operatorname{Ext}^1_{\mu_R(G)}(\Delta_{H,U}, \nabla_{K,W}) = 0$ unless $H =_G K$.
- $\operatorname{Ext}^1_{\mu_R(G)}(\nabla_{H,U}, \nabla_{K,W}) = 0$ unless $H <_G K$.

Theorem

- $\operatorname{Hom}_{\mu_R(G)}(\Delta_{H,U}, \Delta_{K,W}) = 0$ unless $H \geq_G K$.
- $\operatorname{Hom}_{\mu_R(G)}(\Delta_{H,U}, \nabla_{K,W}) = 0$ unless $H =_G K$.
- $\operatorname{Hom}_{\mu_R(G)}(\nabla_{H,U}, \nabla_{K,W}) = 0$ unless $H \leq_G K$.
Corollary

$\mathcal{F}(\Delta)$ and $\mathcal{F}(\nabla)$ are functorially finite (Ringel). They are closed under direct summands, hence have relative almost split sequences.
Mackey functors in $\mathcal{F}(\Delta)$ for C_4 over \mathbb{F}_2

<table>
<thead>
<tr>
<th>(H,U)</th>
<th>$1, R$</th>
<th>$1, \frac{R}{R}$</th>
<th>$1, RC_4$</th>
<th>C_2, R</th>
<th>$C_2, \frac{R}{R}$</th>
<th>C_4, R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mackey functors $\Delta_{H,U}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{2}{4}$</td>
<td>$\frac{2}{4}$</td>
</tr>
<tr>
<td>Ext-injectives $T_{H,U}$</td>
<td>$\frac{4}{2}$</td>
<td>$\frac{4}{2}$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{4}{2}$</td>
<td>$\frac{4}{2}$</td>
</tr>
<tr>
<td>Ext-projectives $\Pi_{H,U}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{4}{2}$</td>
<td>$\frac{4}{2}$</td>
</tr>
</tbody>
</table>
Relative AR quiver of $\mathcal{F}(\Delta)$ for C_4 over \mathbb{F}_2
Theorem

Finitely generated projective Mackey functors lie in $\mathcal{F}(\Delta)$. Finitely generated injective Mackey functors lie in $\mathcal{F}(\nabla)$.

Theorem

The indecomposable Ext-injective and Ext-projective objects in $\mathcal{F}(\Delta)$ are precisely the Ext-injective hulls $I^\Delta_{H,U}$ and Ext-projective covers $\nabla^\Delta_{H,U}$ of the $\Delta_{H,U}$. In any Δ-filtration, $I^\Delta_{H,U}$ always has $\Delta_{H,U}$ at the bottom and $\nabla^\Delta_{H,U}$ always has $\Delta_{H,U}$ at the top.
Reformulation of Alperin’s weight conjecture

Theorem

- $\Pi_{H,U} = \Delta_{H,U} = I_{H,U} \iff H = 1$ and U is projective.
 (In this case, $\Pi_{H,U}$ is projective.)
- $S_{H,U} = \Delta_{H,U} = I_{H,U} \iff (H, U)$ is a weight.

Corollary

Alperin’s weight conjecture holds for G if and only if, among the Mackey functors $\Delta_{H,U} = I_{H,U}$, the number that are projective equals the number that are simple.
New theorem

Theorem (2016)

- \(\mathcal{F}(\Delta) \perp \subseteq \mathcal{F}(\nabla) \) and \(\perp \mathcal{F}(\nabla) \subseteq \mathcal{F}(\Delta) \).
- \(\mathcal{F}(\Delta) \cap \mathcal{F}(\nabla) = \mathcal{F}(\Delta) \cap \mathcal{F}(\Delta) \perp = \mathcal{F}(\nabla) \cap \perp \mathcal{F}(\nabla) \).
- The indecomposable objects in \(\mathcal{F}(\Delta) \cap \mathcal{F}(\nabla) \) are precisely the \(\text{Ext} \)-injective hulls \(I^\Delta_{H,V} \) of the \(\Delta_{H,V} \) in \(\mathcal{F}(\Delta) \), and they are precisely the \(\text{Ext} \)-projective covers \(\Pi^\nabla_{H,V} \) of the \(\nabla_{H,V} \) in \(\mathcal{F}(\nabla) \).
- \(I^\Delta_{H,V} \cong \Pi^\nabla_{H,V} \).
- \(\mathcal{F}(\Delta) \cap \mathcal{F}(\nabla) \) is self-dual: \((I^\Delta_{H,V})^* \cong \Pi^\nabla_{H,V}^* \cong I^\Delta_{H,V}^* \).
Corollary

The Ext-injective hull $I_{H,V}^\Delta$ of $\Delta_{H,V}$ in $\mathcal{F}(\Delta)$ also has a ∇-filtration. In any Δ-filtration of $I_{H,V}^\Delta$ the bottom term must always be $\Delta_{H,V}$. In any ∇-filtration of $I_{H,V}^\Delta$ the top term must always be $\nabla_{H,V}$.

Corollary

Induction and restriction of Mackey functors both preserve $\mathcal{F}(\Delta) \cap \mathcal{F}(\nabla)$.

Corollary

If all the p-permutation modules V are self-dual then the Ringel dual algebra $\text{End}(\bigoplus I_{H,V}^\Delta)$ has symmetric Cartan matrix.