These questions can all be done using technology presented in class. It would be possible to do some of them in a different way, perhaps by studying various texts. The point about these questions is that they reinforce what is done in class, and I prefer it if you use the methods I have taught.

1. (4 pts) Show by example that the homomorphism $FGL(E) \to S_F(n,r)$ given by the representation of $GL(E)$ on $E^\otimes r$ need not be surjective if the field F is not infinite.

2. (4 pts) Show by example that it is possible to find a group G, a $\mathbb{Z}G$-module U and a prime p so that the ring homomorphism $\text{End}_{\mathbb{Z}G} \to \text{End}_{\mathbb{F}_pG}(U/pU)$ is not surjective.

3. (2 pts) Let M be a module for a ring A, and suppose that M has just two composition factors and is indecomposable. Show that M has a unique submodule, other than 0 and M.

4. True or false? Provide either a proof or a counterexample for each part. Let t be a λ-tableau.
 (a) (2 pts) In any direct sum decomposition of M^λ as a direct sum of indecomposable \mathbb{F}_pS_r-modules, there is a unique summand on which κ_t has non-zero action.
 (b) (2 pts) Furthermore, if Y^μ is a Young module for \mathbb{F}_pS_r which has a submodule isomorphic to S^λ then $\lambda \trianglerighteq \mu$.
 (c) (2 pts) Determine whether or not this gives a proof that the various Young modules Y^λ, as λ ranges through partitions of r, are all non-isomorphic.

5. In this question, tableaux may have repeated entries. Let λ be a partition of r, and let μ be any sequence of non-negative integers, whose sum is r. We say that a λ-tableau T has type μ if, for every i, the number i occurs μ_i times in T. For example, $T = \begin{array}{cccc} 2 & 2 & 1 & 1 \\ 1 & \end{array}$ is a $[4,1]$-tableau of type $[3,2]$. We will number the positions in T according to some tableau with distinct entries, such as

$$t = \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 5 & \end{array},$$

but it could have been some other such tableau.
 (a) (2 pts) Show that the set of λ-tableaux of type μ is in bijection with the set of μ-tabloids.

We now let S_r act on the λ-tableaux of type μ by permuting the positions of the entries. Thus if $T = \begin{array}{cccc} 2 & 2 & 1 & 1 \\ 1 & \end{array}$ then $T(1,5) = \begin{array}{cccc} 1 & 2 & 1 & 1 \\ 2 & \end{array}$ and $T(1,5,2) = \begin{array}{cccc} 2 & 1 & 1 & 1 \\ 2 & \end{array}$ since $(1,5,2) = (1,5)(1,2)$. We say that T_1 and T_2 are row equivalent if $T_2 = T_1 \pi$ for some permutation in the row stabilizer of the λ-tableau t.

1
(b) (2 pts) Show that the row equivalence classes of \(\lambda \)-tableaux of type \(\mu \) are in bijection with the double cosets \(S_\mu \backslash S_r / S_\lambda \).

(c) (2 pts) Show that for each \(\lambda \)-tableau \(T \) of type \(\mu \) there is a \(RS_r \)-module homomorphism \(\theta_T : M^\lambda \to M^\mu \) such that \(\theta_T(\{t\}) = \sum \{ T_i \mid T_i \text{ is row equivalent to } T \} \). Thus, in the above example,

\[
\theta_T(\{t\}) = \begin{pmatrix}
2 & 2 & 1 & 1 \\
1 & 1 & 2 & 1 & 2 & 1 & 1 & 2
\end{pmatrix}.
\]

(d) (2 pts) Show that, as \(T \) ranges over the row equivalence classes of \(\lambda \)-tableaux of type \(\mu \) the homomorphisms \(\theta_T \) give a basis for \(\text{Hom}_{RS_r}(M^\lambda, M^\mu) \).

6. In this question you may assume that there is a decomposition of the group algebra \(\mathbb{F}_2S_3 \cong Y^{[1^3]} \oplus Y^{[2,1]} \oplus Y^{[2,1]} \) and that \(Y^{[1^3]} \) has dimension 2, and has a unique \(\mathbb{F}_2S_3 \)-submodule of dimension 1. Let \(E = \mathbb{F}_2^3 \) be a 3-dimensional space over \(\mathbb{F}_2 \).

(a) (2 pts) Express \(E \otimes^3 \) as a direct sum of modules \(M^\lambda \), determining the multiplicity of each \(M^\lambda \) summand.

(b) (2 pts) Make a table with rows and columns indexed by the partitions of 3, whose \(\lambda, \mu \) entry is the number of double cosets \(|S_\lambda \backslash S_3 / S_\mu| \).

(c) (2 pts) Compute the dimension of \(S_{\mathbb{F}_2}(3,3) \).

(d) (2 pts) Compute the dimensions of the simple modules for \(S_{\mathbb{F}_2}(3,3) \).

(e) (2 pts) Show that, as \(S_{\mathbb{F}_2}(3,3) \)-modules, the symmetric tensors \(ST^3(E) \) is indecomposable, but that \(E \otimes^3 \) is the direct sum of three indecomposable submodules, and find their dimensions.

Extra question: do not hand in

7. Find a basis for the space of homomorphisms \(\text{Hom}_{FS_5}(M^{(3,2)}, M^{(2,1,1,1)}) \). For each element \(\theta \) in your basis, compute the effect of \(\theta \) on the tabloid

\[
\begin{array}{c}
1 & 2 & 3 \\
4 & 5
\end{array}
\]

8. Let \(U = U_1 \oplus U_2 = U'_1 \oplus U'_2 \) be two direct sum decompositions of a module for an algebra \(A \), and let \(1_U = f_1 + f_2 = f'_1 + f'_2 \) be the corresponding expressions for \(1_u \) as sums of orthogonal idempotents in \(\text{End}_A(U) \). Show that (a) \(U_1 \cong U'_1 \) and \(U_2 \cong U'_2 \) as \(A \)-modules, if and only if (b) there exists an invertible \(\alpha \in \text{End}_A(U) \) so that \(f'_1 = \alpha f_1 \alpha^{-1} \), if and only if (c) as \(\text{End}_A(U) \)-modules, \(\text{End}_A(U)f_1 \cong \text{End}_A(U)f'_1 \) and \(\text{End}_A(U)f_2 \cong \text{End}_A(U)f'_2 \).