Math 8202 Homework 9 PJW

Date due: April 3, 2006.

Hand in only the starred questions.

Section 13.4, page 525 3*, 4.

Section 13.5, page 531 5*, 6*, 7, 8, 10*.

F*. (Fall 2002 qn. 5, part (a)) Let \(k \) be a field of characteristic \(p > 0 \), and \(K = k(t) \) where \(t \) is an element transcendental over \(k \). Show that \(X^p - t \) is irreducible in \(K[X] \).

G*. (Fall 2001, qn. 6) (10%) Let \(\mathbb{F}_{p^k} \) be the field with \(p^k \) elements, where \(p \) is prime.
 (a) Show that \(x^4 + 1 \in \mathbb{F}_p[x] \) has a root in \(\mathbb{F}_{p^2} \).
 (b) Deduce that \(x^4 + 1 \) is reducible in \(\mathbb{F}_p[x] \). For which values of \(p \) does a linear factor exist in \(\mathbb{F}_p[x] \)?
 [You may assume standard facts about finite fields.]

H. (Fall 2000, qn. 5)(12%) Let \(K \supseteq k \) be a field extension and \(f \in k[X] \) an irreducible polynomial of degree relatively prime to the degree of the field extension \([K : k] \). Show that \(f \) is irreducible in \(K[X] \).

I. (Fall 2000, qn. 6)(15%) a) (8) Let \(K \supseteq k \) be a field extension of prime degree, and let \(a \in K \) be an element which does not lie in \(k \). Considering \(K \) as a vector space over \(k \), let \(m_a : K \to K \) be the \(k \)-linear mapping specified by \(m_a(x) = ax \). Prove that the characteristic polynomial of \(m_a \) is irreducible.
 b) (7) Let \(\alpha \) be a root of \(X^3 - X + 1 \) in \(\mathbb{F}_{27} \). Find the minimal polynomial of \(\alpha^4 \) over \(\mathbb{F}_3 \).
 [Here \(\mathbb{F}_{27} \) and \(\mathbb{F}_3 \) denote fields with 27 and 3 elements, respectively. You may assume that \(X^3 - X + 1 \) is irreducible in \(\mathbb{F}_3[X] \).]