A (Review from last semester) (a) Let \(p(x) = x^3 + 9x + 6 \in \mathbb{Q}[x] \) and let \(\theta \) be a root of \(p \) in some extension field. Express \((1 + \theta)^{-1} \) as a polynomial in \(\theta \).

(b) Same question with \(p(x) = x^3 - 2x - 2 \).

B Prove directly that the map \(a + b\sqrt{2} \mapsto a - b\sqrt{2} \) is an isomorphism of \(\mathbb{Q}(\sqrt{2}) \) with itself.

C Determine the degree over \(\mathbb{Q} \) of \(2 + \sqrt{3} \) and of \(1 + 3\sqrt{2} + 3\sqrt{4} \).

D* Prove that \(\mathbb{Q}(\sqrt{3} + \sqrt{5}) = \mathbb{Q}(\sqrt{3}, \sqrt{5}) \). Conclude that \([\mathbb{Q}(\sqrt{3} + \sqrt{5}) : \mathbb{Q}] = 4 \). Find an irreducible polynomial satisfied by \(\sqrt{3} + \sqrt{5} \), giving justification that your polynomial is irreducible.

E Let \(F \) be a field of characteristic \(\neq 2 \). Let \(D_1 \) and \(D_2 \) be elements of \(F \), neither of which is a square in \(F \). Prove that \(F(\sqrt{D_1}, \sqrt{D_2}) \) is of degree 4 over \(F \) if \(D_1D_2 \) is not a square in \(F \) and is of degree 2 over \(F \) otherwise. When \(F(\sqrt{D_1}, \sqrt{D_2}) \) is of degree 4 over \(F \) the field is called a biquadratic extension of \(F \).

F Let \(F \) be a field of characteristic \(\neq 2 \). Let \(a, b \) be elements of the field \(F \) with \(b \) not a square in \(F \). Prove that a necessary and sufficient condition for \(\sqrt{a} + \sqrt{b} = \sqrt{m} + \sqrt{n} \) for some \(m \) and \(n \) in \(F \) is that \(a^2 - b \) is a square in \(F \). Use this to determine when the field \(\mathbb{Q}(\sqrt{a} + \sqrt{b}) \) with \(a, b \in \mathbb{Q} \) is biquadratic over \(\mathbb{Q} \).

G* Let \(K \) be an extension of \(F \) of degree \(n \).

(a) For any \(\alpha \in K \) prove that \(\alpha \) acting by left multiplication of \(K \) is an \(F \)-linear transformation of \(K \).

(b) Prove that \(K \) is isomorphic to a subfield of the ring of \(n \times n \) matrices of \(F \), so that ring of \(n \times n \) matrices over \(F \) contains an isomorphic copy of every extension of \(F \) of degree \(\leq n \).

H Let \(K = \mathbb{Q}(\sqrt{D}) \) for some squarefree integer \(D \). Let \(\alpha = a + b\sqrt{D} \) be an element of \(K \). Use the basis 1, \(\sqrt{D} \) for \(K \) as a vector space over \(\mathbb{Q} \) and show that the matrix of the linear transformation ‘multiplication by \(\alpha \)’ on \(K \) considered in the last exercise has the matrix \(\begin{pmatrix} a & bD \\ b & a \end{pmatrix} \). Prove directly that the map \(a + b\sqrt{D} \mapsto \begin{pmatrix} a & bD \\ b & a \end{pmatrix} \) is an isomorphism of the field \(K \) with a subfield of the ring of \(2 \times 2 \) matrices with coefficients in \(\mathbb{Q} \).

I* Determine the splitting field over \(\mathbb{Q} \), together with its degree over \(\mathbb{Q} \) for each of (a) \(x^4 - 2 \), (b) \(x^4 + 2 \), (c) \(x^4 + x^2 + 1 \) and (d) \(x^6 - 4 \).

J* (Fall 2000, qn. 5)(12%) Let \(K \supseteq k \) be a field extension and \(f \in k[X] \) an irreducible polynomial of degree relatively prime to the degree of the field extension \([K : k] \). Show that \(f \) is irreducible in \(K[X] \).