Math 8202 Homework 5 PJW

Date due: March 2, 2009. Hand in only the 5 starred questions (all of the questions - I apologize for not having a greater selection of questions this week! :-)).

DDD* Suppose \(f(x) \in \mathbb{Z}[x] \) is an irreducible quartic whose splitting field has Galois group \(S_4 \) over \(\mathbb{Q} \) (there are many such quartics). Let \(\theta \) be a root of \(f(x) \) and set \(K = \mathbb{Q}(\theta) \). Prove that \(K \) is an extension of \(\mathbb{Q} \) of degree 4 with no proper subfields. Are there any Galois extensions of \(\mathbb{Q} \) of degree 4 with no proper subfields?

EEE* (Fall 2002, qn. 6) Let \(a \) be a nonzero rational number.
 (a) (6%) Determine the values of \(a \) such that the extension \(\mathbb{Q}(\sqrt{ai}) \) is of degree 4 over \(\mathbb{Q} \), where \(i^2 = -1 \).
 (b) (12%) When \(K = \mathbb{Q}(\sqrt{ai}) \) is of degree 4 over \(\mathbb{Q} \) show that \(K \) is Galois over \(\mathbb{Q} \) with the Klein 4-group as Galois group. In this case determine all the quadratic extensions of \(\mathbb{Q} \) contained in \(K \).

FFF* On page 211 of Rotman’s book, for a finite extension \(K = k(\alpha_1, \ldots, \alpha_n) \) of a field \(k \), a normal closure of \(K/k \) is defined to be an extension \(E \supseteq K \) of least degree which is the splitting field of some polynomial \(f \in k[x] \). No assertion of the uniqueness of \(E \) is made. Show that if each of the minimal polynomials of the \(\alpha_i \) over \(k \) is separable, then the normal closure of \(K/k \) is unique.

GGG* Let \(L \) be the normal closure of a finite extension \(\mathbb{Q}(\alpha) \) of \(\mathbb{Q} \). For any prime \(p \) dividing the order of Gal(\(L/\mathbb{Q} \)) prove that there is a subfield \(F \) of \(\mathbb{O} \) with \([L:F] = p \) and \(L = F(\alpha) \).

HHH* Let \(F \) be a subfield of the real numbers \(\mathbb{R} \). Let \(a \) be an element of \(F \) and let \(K = F(\sqrt[n]{a}) \) where \(\sqrt[n]{a} \) denotes a real \(n \)th root of \(a \). Prove that if \(L \) is any Galois extension of \(F \) contained in \(K \) then \([L:F] \leq 2 \).