
Math 3592H Honors Mathematics I Fall Semester 2012

Assignment 12 – Due Tuesday 12/4/2012. There will be no quiz on this day. The third

midterm exam is on December 6. You will be tested on the material in Sections 2.1 - 2.6

which we have studied.

Read: Hubbard and Hubbard Section 2.6 Theorem 2.6.2 only, Section 2.7 and the following

parts of Section 2.8: only pages 232-237, the beginning of Example 2.8.6, the beginning

of Example 2.8.14 and the beginning of Example 2.8.15. We will not do Kantorovich’s

theorem in Section 2.8.

Exercises (Due Tuesday 12/4/2012):

2.7 (page 231-2): 1*, 2, 3, 5, 6

2.8 (pages 251-253): 2, 4, 6b*, 7a, 10, 12a

2.11 (page 281): 22b, 23

Extra questions:

1. For each of the following matrices, representing a linear map R
2
→ R

2, either find a

basis consisting of eigenvectors or else show that such a basis cannot exist.

(a) ∗

(

3 −1
2 0

)

; (b) ∗

(

22 −9
49 −20

)

; (c)

(

4 −1
2 1

)

; (d)

(

13 −6
0 −13

)

2. (a)* Regarding each of the matrices in question 1 as the matrix of a linear map

expressed with respect to the standard basis of R2, find the matrix of this linear map

when expressed with respect to the basis
(

1

2

)

,
(

−1

−1

)

.

3.* Find a matrix P so that PAP−1 is diagonal, where A =

(

3 −1
2 0

)

.

4. Find a basis for R
3 consisting of eigenvectors of the following matrix, or else show

that such a basis does not exist:





1 0 0
0 3 −1
0 2 0





Comments: We did not quite finish Section 2.6 last week, but we had done enough for

you to do the homework questions. The part of Section 2.6 we missed out was theoretical

and had to do with the base change matrix and the fact that any two bases for a vector

space have the same size. I advise you not to read about the base change matrix. I will not

test you on it, it is hard to understand, and it is not the best way to compute coordinates

with respect to a new basis.
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