Worksheet on the definition of a limit

The definition of \(f(x) \to L \) as \(x \to a \) is: for each \(\epsilon > 0 \) there exists a number \(\delta > 0 \) so that \(|f(x) - L| < \epsilon \) for every \(x \) with \(0 < |x - a| < \delta \).

A. Which (if any) of the following means the same thing as \(f(x) \) does not tend to \(L \) as \(x \) tends to \(a \)?

1. For each choice of \(\epsilon > 0 \) there exists a \(\delta > 0 \) so that \(|f(x) - L| > \epsilon \) for every \(x \) with \(0 < |x - a| < \delta \).
2. For each choice of \(\epsilon > 0 \) there exists a \(\delta > 0 \) so that \(|f(x) - L| > \epsilon \) for some \(x \) with \(0 < |x - a| < \delta \).
3. For some choice of \(\epsilon > 0 \) and for every choice of \(\delta > 0 \) we have \(|f(x) - L| > \epsilon \) for some \(x \) with \(0 < |x - a| < \delta \).
4. For some choice of \(\epsilon > 0 \) and for every choice of \(\delta > 0 \) we have \(|f(x) - L| > \epsilon \) for every \(x \) with \(0 < |x - a| < \delta \).
5. For some choice of \(\epsilon > 0 \) there exists a \(\delta > 0 \) so that \(|f(x) - L| > \epsilon \) for every \(x \) with \(0 < |x - a| < \delta \).
6. There exists a number \(M \neq L \) so that for each choice of \(\epsilon > 0 \) there exists a number \(\delta > 0 \) so that \(|f(x) - M| < \epsilon \) for every \(x \) with \(0 < |x - a| < \delta \).
7. There exists a number \(\delta > 0 \) so that for each choice of \(\epsilon > 0 \), \(|f(x) - L| > \epsilon \) for every \(x \) with \(0 < |x - a| < \delta \).

B. Which of the following means \(f(x) \to \infty \) as \(x \to L \), and which means \(f(x) \to L \) as \(x \to \infty \)?

1. For every choice of number \(\epsilon \) there exists a number \(N \) so that \(|f(x) - L| < \epsilon \) for every \(x \) with \(x > N \).
2. For every choice of number \(N \) there exists \(\delta > 0 \) so that \(|f(x)| > N \) for every \(x \) with \(0 < |x - L| < \delta \).
3. For every choice of number \(N \) there exists \(\delta > 0 \) so that \(f(x) > N \) for every \(x \) with \(0 < |x - L| < \delta \).
4. For every choice of number \(N \) there exists \(\delta > 0 \) so that \(|f(x) - L| < \delta \) for every \(x \) with \(x > N \).