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Chapter 1

Introduction

1.1 Some history

The cohomology of groups arose from three different sources during the first half of
the 20th century. The earliest appearance of the low degree homology and cohomology
groups took place before cohomology had been defined, and came as group-theoretic
constructions that were important in understanding groups. The first of these to be
considered is the abelianization G/G′ of a group G, essential to the work of Galois on
solving polynomial equations in terms of radicals. This group was later seen to be the
first homology group H1(G,Z). In 1904 I. Schur studied a group, now known as the
Schur multiplier of G, that plays a role in central extensions of G, and it turns out
to be isomorphic to the second homology group H2(G,Z). In 1934 R. Baer studied Mention Hopf’s

1941 formula?a group of equivalence classes of group extensions of G by a representation M . This
group was later seen to be the second cohomology group H2(G,M).

At a similar time during the 20th century the importance of groups in topology was
emerging, as was the fact that topological methods can be used to derive information
about groups. A significant theorem in this development was the following.

Theorem 1.1.1 (Hurewicz 1936). Let X be a path-connected space with base point x0

and πn(X,x0) = 0 for all n ≥ 2. Then X is determined up to homotopy by π1(X,x0).

A space X satisfying the conditions of the theorem is called aspherical. In honor
of later work of Eilenberg and MacLane in constructing such spaces, if G = π1(X) for
some aspherical space X that is also a CW-complex we call X an Eilenberg-MacLane
space, and write it K(G, 1). If G is regarded as a topological group with the discrete
topology, this space is also denoted BG, and is termed the classifying space of G.

If X is an aspherical CW-complex, its homology depends only on its fundamental
group. A possible definition of group homology and cohomology when G = π1(X) is

Hn(G,Z) = Hn(X) and Hn(G,Z) = Hn(X),

these groups being determined up to isomorphism.
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Example 1.1.2. Take X to be d loops joined together at a point x0. Then π1(X,x0) =
Fd is a free group on d generators and πn(X,x0) = 0 for n ≥ 2, so that X is a classifying
space for the free group. According to the above definition

Hn(Fd,Z) =


Z if n = 0

Zd if n = 1

0 otherwise.

Note that the universal cover of X is a tree on which Fd acts freely, which is a con-
tractible space. For most groups G the K(G, 1) is more complicated than this. It is
not immediately apparent, but if G is a non-identity finite group then a K(G, 1) must
be infinite-dimensional.

In papers of 1945, Eilenberg and MacLane and, independently, Eckmann, intro- E-M was
submitted 1943.
Check
Eckmann’s date.

duced an algebraic approach that both defines the homology and cohomology groups,
and also allows them to be computed. The algebraic definition is

Hn(G,M) = TorZGn (Z,M) and Hn(G,M) = ExtnZG(Z,M).

Thus, for each group G and representation M of G there are abelian groups Hn(G,M)
and Hn(G,M) where n = 0, 1, 2, 3, . . ., called the nth homology and cohomology of G
with coefficients in M . To understand this we need to know what a representation of G
is, and we also need to know what the group ring ZG is. These things will be explained
in the next sections. Eilenberg and MacLane also realized at this time that the Schur
multiplier and Baer’s group of extensions appear among their infinite list of groups. Is this true?

We may see the connection between the topological and algebraic definitions of
group cohomology using the theory of covering spaces. If X is an aspherical CW-
complex its universal cover X̃ has trivial homotopy groups, and so is contractible by
a theorem of Whitehead. Furthermore its fundamental group G = π1(X,x0) acts Explain.

Reference?freely on X̃ by deck transformations and X = X̃/G. The cellular chain complex
C•(X̃) of X̃ is thus an acyclic complex of ZG-modules (apart from homology Z in
degree 0), and (provided a suitable subdivision of X has been taken) they are free.
The homotopy lifting property of the universal cover shows that this complex of ZG-
modules is determined up to equivariant chain homotopy. The homology of X may be
computed by taking the homology of the largest quotient of C•(X̃) on which G acts
trivially. We will study these technicalities in the future sections.

The theorem of Hurewicz tells us what the group cohomology is if there happens
to be an aspherical space with the right fundamental group, but it does not say that
there always is such a space. That assertion is the next theorem.

Theorem 1.1.3 (Eilenberg and MacLane 1953). Given any group G there exists an
aspherical CW complex X with π1(X,x0) = G.

One way to construct an Eilenberg-MacLane space for a group G is to take a
presentation of the group, start with a set of loops corresponding to the generators of
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G, glue in 1-cells corresponding to the relators of G, and then glue in higher dimensional
cells to kill higher homotopy. This approach is rudimentary, and there are other more
systematic approaches. One is to regard the group as a category and form the nerve of
the category.

Example 1.1.4. We construct Baer’s group of extensions: it can be done without When did Baer
do this?knowing the definition of group cohomology, although some terms are defined in later

sections. A group extension is defined to be a short exact sequence of groups

1→ A→ E → G→ 1,

which is equivalent to requiring that the image of A in E is a normal subgroup of E,
and the quotient is isomorphic to G. If A is abelian, such an extension determines a
module action of G on A via conjugation within E: given g ∈ G, a ∈ A let ḡ ∈ E be an
element that maps on to g. Then a 7→ ḡa = ḡaḡ−1 is the action of g on a. We check this
action is well defined, giving a homomorphism G→ Aut(A), i.e. A is a representation
of G.

Given a representation A of G, an extension of G by A will mean an exact sequence
of groups

1→ A→ E → G→ 1

such that the action of G on A induced by conjugation within E is the same as the
given action.

Here are some examples of extensions. Let D8 = 〈x, y
∣∣ x4, y2, yxy−1 = y3〉 and

Q8 = {±1,±i,±j,±k}. Consider

1→ 〈x2〉 → D8 → C2 × C2 → 1

1→ 〈y, x2〉 → D8 → C2 → 1

1→ {±1} → Q8 → C2 × C2 → 1

Class Activity. Is the action given by conjugation of the quotient group on the normal
subgroup trivial or not, in these examples? (Trivial means that every group element
acts as the identity automorphism.)

Two extensions of G by A are said to be equivalent if and only if they can appear
in a commutative diagram

A −→ E1 −→ G

‖
yφ ‖

A −→ E2 −→ G

for some homomorphism φ : E1 → E2. Such a homomorphism is necessarily an iso-
morphism (as may be verified as an exercise). Therefore ‘equivalence’ is an equivalence
relation on the set of extensions of G by A. Equivalent extensions necessarily have iso-
morphic middle groups; it is possible to have non-equivalent extensions whose middle
groups are isomorphic.
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We put H2(G,A) := {equivalence classes of extensions of G by A}, and define an
addition on H2(G,A) as follows. Given extensions

1→ A→ Ei
πi→G→ 1

where i = 1, 2, form the commutative diagram with exact rows

1 −→ A×A −→ E1 × E2 −→ G×G −→ 1

‖
x xdiagonal

1 −→ A×A −→ X −→ G −→ 1

add

y y ‖

1 −→ A −→ Y −→ G −→ 1

where
X = {(e1, e2) ∈ E1 × E2

∣∣ π1e1 = π2e2}
Y = X/{(a,−a)

∣∣ a ∈ A}
The bottom row is an extension of G by A called the Baer sum of the two extensions.
We define the sum of the equivalence classes of the two extensions to be the equivalence
class of their Baer sum. Under this operation H2(G,A) becomes an abelian group in
which the zero element is the semidirect product. At this point these facts and the
background justification that the Baer sum is well defined on equivalence classes, could
be taken as an exercise. We will establish the group structure on H2(G,A) in a later
section.

The calculation of the structure of Baer’s group is not straightforward, and it is
best done using the technical machinery we will develop in later sections. For example,
we will see that when G = C2 × C2 and A = C2 there are eight equivalence classes of
extensions: one is the direct product E ∼= C2 × C2 × C2, there are three equivalence
classes where E ∼= C4 × C2, three where E ∼= D8, and one where E ∼= Q8. Insert a picture.

The calculation of these groups of extensions is useful when Baer’s group turns out
to be the identity, in which case all extensions of the prescribed type are split. It is
also useful in constructing p-groups for the purposes of classification, since all finite
p-groups of order larger than p can be realized as extensions of smaller groups. We will
use Baer’s group in a later section in classifying crystallographic groups.

Exercise: show
that the three
extensions
C2 → C4×C2 →
C2 × C2 are
inequivalent.

Possibly mention
Dummit and
Foote 17.4, the
Brauer group
Br(K/F ) ∼=
H2(G,K×) of
central simple
F -algebras that
split over K,
G = Gal(K/F )
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Appendix: Basic Homological
Algebra

All rings we consider will have a 1, and modules will generally be left unital modules.
In this section R may denote any ring. We will need to know about tensor products,
and these are described in the books by Dummit and Foote (section 10.4) and Rotman
(section 8.4). Introduce:

commutative
diagram,
category?,
monomorphism
= injection =
mono = 1-1 map

2.1 Tensor products

See Dummit and Foote section 10.4.

Definition 2.1.1. See Dummit and Foote before Theorem 10. If R is a ring, M is
a right R-module and N is a left R-module we let X be the free abelian group with
basis the elements of M ×N and Y the subgroup generated by all elements of the form
(m1 +m2, n)− (m1, n)− (m2, n), (m,n1 +n2)− (m,n1)− (m,n2) and (mr, n)− (m, rn).
We define M ⊗R N := X/Y .

Elements of M ⊗R N are called tensors. We write m ⊗ n for the image of (m,n)
in M ⊗R N , and such tensors are called simple tensors or basic tensors. Every tensor
can be written as a linear combination of simple tensors. In M ⊗R N the following
relations hold:

(m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n
m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2

mr ⊗ n = m⊗ rn

We deduce, for example, that m⊗ 0 = 0 = 0⊗ n for all m and n. From the definition
we have that M ⊗R N has the structure of an abelian group. It does not, in general,
have the structure of an R-module.

Definition 2.1.2. Let M be a right R-module, N a left R-module and L an abelian

5
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group. A mapping φ : M ×N → L is said to be R-balanced if and only if

φ(m1 +m2, n) = φ(m1, n) + φ(m2, n)

φ(m,n1 + n2) = φ(m,n1) + φ(m,n2)

φ(mr, n) = φ(m, rn)

always. For example, the mapping M × N → M ⊗R N given by φ(m,n) = m ⊗ n is
balanced.

Class Activity. Discuss the difference between the notion of being balanced and
some concept of being R-bilinear. We could try to formulate a notion of being R-
bilinear using axioms such as the following. Given left R-modules L,M,N , a mapping
φ : M ×N → L is R-bilinear if and only if

φ(r1m1 + r2m2, n) = r1φ(m1, n) + r2φ(m2, n)

φ(m, s1n1 + s2n2) = s1φ(m,n1) + s2φ(m,n2)

φ(mr, n) = φ(m, rn) = rφ(m,n).

How much of that makes sense? Is it a problem that φ(rm, sn) = rφ(m, sn) =
rsφ(m,n) = srφ(m,n)?

Theorem 2.1.3 (Dummit and Foote Corollary 11). The balanced map M × N →
M ⊗RN is universal with respect to balanced maps. This means: given a balanced map
M×N → L there exists a unique group homomorphism M⊗RN → L so that the given
balanced map is the composite M ×N →M ⊗R N → L. The tensor product M ⊗R N
is defined up to isomorphism by this property.

Theorem 2.1.4 (Dummit and Foote Theorem 10). Balanced maps M ×N → L biject
with group homomorphisms M ⊗R N → L.

Example 2.1.5. If f : R→ S is a ring homomorphism with f(1R) = 1S then S⊗RR ∼=
S as left S-modules via an isomorphism s ⊗ r 7→ sf(r). The left S-module structure
comes from multiplication on the left side. Thus, for example, Q⊗Z Z ∼= Q.

Example 2.1.6. Let I be a right ideal of R. Then (I\R)⊗RM ∼= M/IM . As a proof,
we construct inverse maps (I + r)⊗m 7→ rm+ IM and (I + 1)⊗m← m+ IM .

Example 2.1.7. Z/mZ⊗Z Z/nZ ∼= Z/g.c.d.(m,n)Z.

Theorem 2.1.8. Tensor product distributes over direct sums:

(M ⊕M ′)⊗R N ∼= (M ⊗R N)⊕ (M ′ ⊗R N),

with a similar formula on the other side.

Proof. This follows from the universal property.

Example 2.1.9. For example, Q⊗Z Zn ∼= Qn.
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Example 2.1.10. Let U and V be vector spaces over a field K with bases u1, . . . , ur
and v1, . . . , vs. Then the tensors ui ⊗ vj where 1 ≤ i ≤ r and 1 ≤ j ≤ s form a basis
for U ⊗K V .

Sometimes people regard a rank n tensor as an array of numbers (ai,j,k,...) with n
suffices i, j, k, . . .. Such numbers are the coordinates of the element

∑
ai,j,k,...ui ⊗ vj ⊗

wk ⊗ · · · of the vector space U ⊗ V ⊗W ⊗ · · · .

Definition 2.1.11. Let φ : M → M ′ and ψ : N → N ′ be homomorphisms of right
and left R-modules, respectively. We define φ ⊗ ψ : M ⊗R N → M ′ ⊗R N ′ to be the
group homomorphism determined by the balanced map M ×N →M ′ ⊗R N ′ given by
(m,n) 7→ φ(m)⊗ ψ(n).

Example 2.1.12. Let φ : Z2 → Z2 have matrix

[
1 2
3 4

]
and let ψ : Z2 → Z2 have

matrix

[
1 0
−1 2

]
, with respect to given bases of Z2. Then on taking the basis of Z2⊗ZZ2

in a certain order the matrix of φ⊗ ψ is1

[
1 0
−1 2

]
2

[
1 0
−1 2

]
3

[
1 0
−1 2

]
4

[
1 0
−1 2

]


Class Activity. Put the basis vectors ui ⊗ vj in the correct order so that the above
matrix is the matrix of φ⊗ ψ. What is the trace of φ⊗ ψ? Is base change

for rank 2 tensors
BT aB or
BAB−1?

Definition 2.1.13. If A and B are rings there is a multiplication on the group A⊗B
defined on basic tensors by (a1⊗ b1)(a2⊗ b2) := a1a2⊗ b1b2, making A⊗B into a ring.

Examples 2.1.14. Consider exercises 3, 4, 25 of Dummit and Foote. Are any of
C⊗C C, C⊗R C, Q⊗Z C isomorphic as rings?

Definition 2.1.15. Let R and S be rings. An (S,R)-bimodule is a left S-module A
that is also a right R-module, in such a way that the actions of R and S commute:
(ra)s = r(as) for all r ∈ R, a ∈ A and s ∈ S.

If R is a commutative ring then every left R-module A can also be regarded as a
right R-module, and so A is automatically an (R,R)-bimodule. The definition of a
bimodule has more serious impact when the rings R and S are not commutative.

If A is an (S,R)-bimodule, B is a left S-module and C is a left R-module then
A⊗RC is a left S-module with action given by s(a⊗ c) := sa⊗ c, HomS(A,B) is a left
R-module with action given by (rφ)(a) := φ(ar), and HomS(B,A) is a right R-module
with action given by (φr)(b) := φ(rb). The operation of tensor product on bimodules
is associative.

Theorem 2.1.16 (Dummit and Foote Theorem 43 from 10.5). Let A be an (S,R)-
bimodule, B a left S-module and C a left R-module. Then

HomS(A⊗R C,B) ∼= HomR(C,HomS(A,B))
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via an isomorphism that is natural in B and C.

Proof. We define inverse isomorphisms

φ 7→ (b 7→ (a 7→ φ(a⊗ b)))
(a⊗ b 7→ ψ(b)(a))← ψ

With the first mapping we check that the image is an R-module homomorphism and
that the inner mapping is an S-module homomorphism. With the second mapping we
check that it is an S-module homomorphism and that the mapping (a, b)→ ψ(b)(a) is
R-balanced.

The two mappings are mutually inverse, and so we have an isomorphism.

In categorical language, we say that the functor A ⊗R − : R-mod → S-mod is
left adjoint to the functor HomS(A,−) : S-mod → R-mod, which is right adjoint to
A⊗R −.

Corollary 2.1.17. Let f : R → S be a ring homomorphism, let B be a left R-module
and let C be a left S-module. We regard S as an (S,R)-bimodule where the left action
of S is multiplication and the right action of R is multiplication after first applying f .
Then HomS(S ⊗R B,C) ∼= HomR(B,C), where C is regarded as a left R-module via
the homomorphism f .

Proof. This is an instance of the previous theorem, because HomS(S,C) ∼= C as R-
modules via a correspondence g ↔ g(1). This is an isomorphism of R-modules because
if r ∈ R then rg ↔ (rg)(1) = g(r) = r · g(1). Note that the action of R on HomS(S,C)
is (rg)(s) = g(sr).

2.2 Splitting and exactness; projective and injective mod-
ules

Definition 2.2.1. Let α : A → B be a homomorphism. We say that α is a split
monomorphism if there exists a morphism β : B → A so that βα = 1A; and we say
that α is a split epimorphism if there exists a morphism β : B → A so that αβ = 1B.

Define exact, and
short exact
sequence.

It is an exercise to see that a split monomorphism is a monomorphism, and a split
epimorphism is a epimorphism. From the algebraic point of view of manipulation of
symbols, it is a question of identifying whether an element α has a right or left inverse
which, in the context of rings, is a natural thing to do. We are also familiar with
equivalent conditions for a matrix with entries in a field to have a left or right inverse.
Over more general rings the issue is a little more subtle.

Lemma 2.2.2. Given a short exact sequence of R-modules

0→ A
α−→B β−→C → 0

the following are equivalent:
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1. the monomorphism α is split;

2. the epimorphism β is split;

3. there is a commutative diagram

0 → A
α−→ B

β−→ C → 0
i1
↘ ∼=

x π2
↗

A⊕ C

where i1 is inclusion and π2 is projection.
Exercise? Is it
equivalent to
replace π2 in the
diagram by i2
going in the
opposite
direction?

Definition 2.2.3. If any of 1, 2, or 3 of Lemma 2.2.2 is satisfied we say the sequence
0→ A→ B → C → 0 is split.

The next result puts together Theorem 28, Corollary 32, Theorem 33, Proposition
34, Theorem 39 and Corollary 41 from section 10.5 of Dummit and Foote.

Lemma 2.2.4. Let A, B, C and M be left R-modules, N a right R-module.

1. The sequence A
α−→ B

β−→ C → 0 is exact if and only if

0 → HomR(C,M)
β∗−→ HomR(B,M)

α∗−→ HomR(A,M) is exact for all M , if and
only if

N ⊗R A
α∗−→ N ⊗R B

β∗−→ N ⊗R C → 0 is exact for all N .

2. The sequence 0→ A→ B → C is exact if and only if

0→ HomR(M,A)
α∗−→ HomR(M,B)

β∗−→ HomR(M,C) is exact for all M .

Proof. Outline. We first show that if A
α−→ B

β−→ C → 0 is exact then

0→ HomR(C,M)
β∗−→ HomR(B,M)

α∗−→ HomR(A,M)

is exact. For the converse, assume that

0→ HomR(C,M)
β∗−→ HomR(B,M)

α∗−→ HomR(A,M)

is exact. We show that B → C is onto: let B → C → C ′ → 0 be exact. Then
0→ HomR(C ′,M)→ HomR(c,M)→ HomR(B,M) is exact. Therefore Hom(C ′M) =
0 for all M , so that C ′ = 0. Next, we show that αA ⊆ Kerβ. If βα 6= 0 then
Hom(C,C)toHom(A,C) maps 1 → βα is nonzero. Next we show αA = Kerβ. Take
p : B →M = B/αA in

0→ HomR(C,M)
β∗−→ HomR(B,M)

α∗−→ HomR(A,M),

which has α∗p = 0, and Imβ∗ is contained in maps that are zero on Kerβ. Now p
is not such unless etc. Use an adjoint property for the ⊗? Also, take N = R in one
direction. This needs some

work.
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Definition 2.2.5. We say that the functors HomR( ,M) and HomR(M, ) are left
exact, while N⊗ is right exact. A covariant functor F is exact if and only if whenever
0 → A → B → C → 0 is exact then 0 → F (A) → F (B) → F (C) → 0 is exact, i.e. F
is both right and left exact.

Definition 2.2.6. The R-module P is said to be projective if and only if given any
diagram

Pyβ
A

α−→ B

with α epi there exists γ : P → A such that β = αγ.

Lemma 2.2.7. The following are equivalent for an R-module P :

1. P is projective,

2. every epimorphism M → P splits,

3. there is a module Q such that P ⊕Q is free,

4. HomR(P, ) is an exact functor.

Definition 2.2.8. There is a similar (dual) definition of an injective module. An
equivalent condition is that an R-module I is injective if and only if HomR( , I) is an
exact functor. Also, an R module N is flat if and only if N ⊗ is an exact functor.

Proposition 2.2.9. Projective modules are flat.

Proof. Free modules are flat and hence so are projective modules, because they are
direct summands of free modules.

2.3 Chain complexes

Definition 2.3.1. A chain complex of R-modules is a sequence of R-modules

M = · · · d3−→M2
d2−→M1

d1−→M0
d0−→· · ·

such that didi+1 = 0 always. This condition is equivalent to the requirement that
Im(di+1) ⊆ Ker(di) always. We define the homology group of M in degree i to be
Hi(M) = Ker(di)/ Im(di+1). The maps in the family d = (di) send modules in given
degrees to modules in degree lower by 1, and so we say d has degree −1. We also
consider sequences of modules with a family of mappings d of degree +1 and in that
case we term the sequence a cochain complex. The group H i(M) = Ker(di)/ Im(di−1)
is the cohomology group of M in degree i in this case.
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A morphism of complexes φ : M → N is a sequence of morphisms φi : Mi → Ni

such that
· · · d3−→ M2

d2−→ M1
d1−→ M0

d0−→ · · ·

φ2

y φ1

y φ0

y
· · · e3−→ N2

e2−→ N1
e1−→ N0

e0−→ · · ·
commutes. Such a φ induces a map Hn(φ) : Hn(M)→ Hn(N ).

Class Activity. The diagram I’m not sure
whether this is a
good example.
See also the next
example

Z2
[ 1 1
1 1 ]
−→ Z2

[
1 −1
−1 1

]
−→ Z2y[ 1 1 ]

y[ 1 1 ]

y[ 1 1 ]

Z [2]−→ Z [0]−→ Z

is a morphism of chain complexes. We may compute the homology of a chain complex
in general using the Smith normal form for integer matrices. In this example the top
complex has homology groups Z, 0,Z and the bottom complex has homology groups
0,Z/2Z,Z.

In different language, a chain complex is a graded R-moduleM = (Mi)i∈Z equipped
with a graded endomorphism d :M→M of degree −1 satisfying d2 = 0. This means
that d is a module homomorphism and d(Mi) ⊆ d(Mi−1) for all i. The homology of
M is the graded group H(M) = Ker(d)/ Im(d). If the map d had degree +1 we would
have a cochain complex instead.

Definition 2.3.2. A (chain) homotopy between two morphisms φ, θ : M → N is a
graded module morphism h :M→N of degree +1 such that eh+ hd = φ− θ. In this
case we say that φ and θ are homotopic and write φ ' θ.

Proposition 2.3.3. 1. If φ and θ are homotopic then the two mappings Hn(φ) =
Hn(θ) : Hn(M)→ Hn(N ) are the same.

2. If there are chain maps φ : M → N and ψ : N → M with φψ ' 1N and
ψφ ' 1M then Hn(φ) and Hn(ψ) are inverse isomorphisms on homology.

See Exercise 3 of section 17.1 of Dummit and Foote for the following.

Lemma 2.3.4 (The Snake Lemma). Let the following commutative diagram of R-
modules have exact rows:

A
φ−→ B

θ−→ C → 0yα yβ yγ
0 → A′

φ′−→ B′
θ′−→ C ′

Then there is an exact sequence

Kerα→ Kerβ → Ker γ
ω−→ Cokerα→ Cokerβ → Coker γ
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where the mappings between the kernels are the restrictions of φ and θ, and the map-
pings between the cokernels are induced by φ′ and θ′. Furthermore, if φ is mono so is
Kerα→ Kerβ, and if θ′ is epi so is Cokerβ → Coker γ.

Proof. The map ω is defined as follows: let c ∈ Ker γ, choose b ∈ B with θ(b) = c. Then
θ′β(b) = γθ(b) = 0 so β(b) = φ′(a) for some a ∈ A′. Define ω(c) = a+α(A) ∈ Coker(α).
This is well-defined (see Mr Cooperman’s objections in ‘It’s My Turn’). We now check
exactness (see Hilton and Stammbach p.99).

For example, to check exactness at Ker γ, we observe first that θ(Kerβ) ⊆ Kerω.
This is because if β(b) = 0 then in the construction of ωθ(b) we can use the elements
b ∈ B, β(b) = 0 ∈ B′ and 0 ∈ A′, so that ωθ(b) = 0.

To show that θ(Kerβ) ⊇ Kerω let c ∈ Ker γ ∩Kerω. In constructing ω(c) we find
elements b ∈ B and a ∈ A′ as above. The element a lies in α(A) because ω(c) = 0. Write
a = α(a0) for some a0 ∈ A. Now βφ(a0) = φ′α(a0) = β(b). Thus b − φ(a0) ∈ Kerβ
and θ(b− φ(a0)) = θ(b)− θφ(a0) = θ(b) = c. Therefore c ∈ θ(Kerβ).

The remaining arguments are similar.

Class Activity. Is the morphism of chain complexes given earlier a chain homotopy
equivalence? Is the morphism below a chain homotopy equivalence?

Z2
[ 1 1
1 1 ]
−→ Z2

[
1 −1
−1 1

]
−→ Z2y[ 1 0 ]

y0

y[ 1 1 ]

Z 0−→ 0
0−→ Z

Try upward morphisms

[
1
0

]
.

Definition 2.3.5. The mapping ω in the Snake Lemma is called the connecting ho-

momorphism. A sequence of complexes L φ−→M θ−→N is said to be exact at M if and

only if each for all i, the sequence Li
φi−→Mi

θi−→Ni of modules in degree i is exact at
Mi.

Theorem 2.3.6. A short exact sequence 0 → L φ−→M θ−→N → 0 of chain complexes
gives rise to a long exact sequence in homology:

· · · → Hn(L)
Hn(φ)−→ Hn(M)

Hn(θ)−→Hn(N )
ωn−→Hn−1(L)→ · · · .

The connecting homomorphism ω is natural, in the sense that a commutative diagram
of chain complexes

0 → L → M → N → 0

↓ ↓ ↓

0 → L′ → M′ → N ′ → 0
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with exact rows yields a commutative square

Hn(N ) → Hn−1(L)

↓ ↓

Hn(N ′) → Hn−1(L′).

Proof. The differential dn : Ln → Ln−1 induces a map dn : Coker dn+1 → Ker dn−1: Label the top
two edges of the
left term as
Coker dn+1.

Ln−2•

•

Ln−1•
Im dn−1•

dn−1−→
Ker dn−1• •]

Hn−1(L)
Ln•

Im dn•
dn−→

Ker dn• •]
Hn(L)

Im dn+1•

•

Similarly with the M ’s and N ’s. Apply the snake lemma to the following diagram, all
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rows and columns of which are exact:

0 0 0

↓ ↓ ↓

Hn(L) Hn(M) Hn(N )

↓ ↓ ↓

Coker dn+1 −→ Coker en+1 −→ Coker fn+1 −→ 0

↓ ↓ ↓

0 −→ Ker dn−1 −→ Ker en−1 −→ Ker fn−1

↓ ↓ ↓

Hn−1(L) Hn−1(M) Hn−1(N )

↓ ↓ ↓

0 0 0

The naturality is an exercise.

Class Activity. Why are the middle rows of the last big diagram exact? (We use the
snake lemma with

0 → Ln+1 → Mn+1 → Nn+1 → 0

dn+1

y en+1

y fn+1

y
0 → Ln → Mn → Nn → 0.)

Class Activity. Calculate the homology of the kernel complex of the morphism of
chain complexes given earlier. Noting that the morphism was surjective in each degree,
apply the last theorem with the long exact sequence.

There is a similar result that applies when we have a short exact sequence of cochain
complexes 0 → L → M → N → 0. In that case the connecting homomorphism has
degree +1, giving a long exact sequence

· · · → Hn(L)→ Hn(M)→ Hn(N )
ωn−→Hn+1(L)→ · · · .

2.4 Projective resolutions, Ext and Tor

Let R be a ring and M an R-module. A projective resolution of M is an exact sequence

· · · → P2 → P1 → P0 →M → 0
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in which the Pi are projective modules. Let P be the complex obtained by replacing
M by 0 in the above, so Hn(P) = 0 if n > 0 and H0(P) ∼= M is a given isomorphism.
It is useful to write P →M to denote this projective resolution. Example at this

point? Maybe
ZC2?

We may always construct resolutions of a module M as follows. Given M , choose
a free module P0 with surjective mapping P0 → M and form the kernel K0. Repeat
this process with K0 instead of M . Depending on the context, other constructions of
resolutions may be available: we may have a bar resolution, and resolutions constructed
from other structures such as a presentation or an action on a space.

Given a second module N we may form the cochain complex

HomR(P, N) = [0→ HomR(P0, N)
d0−→HomR(P1, N)

d1−→HomR(P2, N)
d2−→· · · ]

obtained by applying HomR(−, N) to P. We now define the degree n Ext group of M
and N by

ExtnR(M,N) = Hn(HomR(P, N)),

the nth cohomology group of this complex.
The above definition depends on the choice of resolution P. It is the case that if

we change the resolution we obtain Ext groups that are naturally isomorphic to those
just constructed. More of this later!

Example 2.4.1. Let R = Z, so that R-modules are the same thing as abelian groups.
For each integer m, the cyclic group Z/mZ has a projective resolution as follows:

0→ Z m−→ Z→ Z/mZ→ 0

where P is the chain complex 0 → Z m−→ Z → 0. Taking another abelian group N we
compute Exti(Z/mZ, N) as the degree i cohomology of the cochain complex

Hom(P, N) = [Hom(Z, N)
m−→ Hom(Z, N)] = [N

m−→ N ].

Thus
Ext0

Z(Z/mZ, N) ∼= {x ∈ N
∣∣ mx = 0}

and
Ext1

Z(Z/mZ, N) ∼= N/mN

where mN = {mx
∣∣ x ∈ N}. Thus if N = Z/pZ, where p is prime dividing m, these

groups are both Z/pZ; and if p does not divide m then both groups are 0

Proposition 2.4.2. Ext0
R(M,N) ∼= HomR(M,N).

Proof. From the definition, Ext0
R(M,N) = Ker d0. Now P1 → P0 → M → 0 is exact,

so
0→ HomR(M,N)→ HomR(Po, N)

d0−→HomR(P1, N)

is exact by Lemma 2.2.4, and the result follows.
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Theorem 2.4.3. Let 0 → A → B → C → 0 be an exact sequence of R-modules and
let M be another R-module. There are exact sequences of abelian groups

(1)
0→ HomR(M,A)→ HomR(M,B)→ HomR(M,C)

ω−→Ext1(M,A)→ Ext1(M,B)→ · · ·

(2)
0→ HomR(C,M)→ HomR(B,M)→ HomR(A,M)

→ Ext1(C,M)→ Ext1(B,M)→ · · ·

Proof. (1) We calculate our Ext groups with a resolution P → M . The sequence
0→ A→ B → C → 0 gives a sequence of cochain complexes

(∗) 0→ HomR(P, A)→ HomR(P, B)→ HomR(P, C)→ 0.

where, at each level in the grading, this sequence is

0→ HomR(Pn, A)→ HomR(Pn, B)→ HomR(Pn, C)→ 0

obtained by applying HomR(Pn,−). Because each Pn is projective, HomR(Pn,−) is
exact, and so (∗) is a short exact sequence of cochain complexes. We now apply
Theorem 2.3.6 and Proposition 2.4.2.

(2) We construct resolutions P → B, P ′ → A and P ′′ → C appearing in a commu-
tative diagram

P ′ −→ Ay y
P −→ By y
P ′′ −→ C

with exact columns. To do this, let P ′,P ′′ be any resolutions of A and C and construct
P as follows. The start is pictured in a diagram:

P ′0
ε′−→ A −→ 0y y

P ′0 ⊕ P ′′0
ε−→ By y

P ′′0
ε′′−→ C −→ 0.

Lift ε′′ to a map P ′′0 → B and use this and ε′ as the components of ε, so that the
diagram commutes. By the snake lemma, Ker ε′ → Ker ε → Ker ε′′ is exact and ε is
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epi. Now repeat this procedure with the terms Ker ε′ → Ker ε→ Ker ε′′ instead of with
A→ B → C, and then with subsequent kernels, to construct P ′′. This could be

explained better!Apply HomR(−,M) to this diagram of resolutions and use the fact that

0→ P ′n → P ′n ⊕ P ′′n → P ′′n → 0

splits in each degree to get a short exact sequence of cochain complexes

0→ HomR(P ′′,M)→ HomR(P,M)→ HomR(P ′,M)→ 0.

The long exact sequence in cohomology is the one we are trying to construct.

Here is an immediate deduction:

Corollary 2.4.4. 1. An R-module P is projective if and only if for all n ≥ 1 and
for all modules M we have ExtnR(P,M) = 0.

2. An R-module I is injective if and only if for all n ≥ 1 and for all modules M we
have ExtnR(M, I) = 0.

Proof. (1) If P is projective then · · · → 0 → P → P → 0 is a projective resolution
of P , so that the complex HomR(P,M) is zero above degree 0 and hence so is its
cohomology. Conversely, if ExtnR(P,M) = 0 for all n ≥ 1 then whenever we have a
short exact sequence 0→ A→ B → C → 0 the long exact sequence becomes

0→ HomR(P,A)→ HomR(P,B)→ HomR(P,C)→ Ext1
R(P,A) = 0

so that HomR(P,−) is an exact functor. It follows that P is projective.
(2) If I is injective then HomR(−, I) is an exact functor so HomR(P, I) has zero

cohomology except in degree 0, and hence the Ext groups are zero above degree 0.
Conversely if these Ext groups are zero we deduce as in part (1) from the long exact
sequence that HomR(−, I) is an exact functor, so the I is injective.

We see in the above that we only need the groups Ext1
R(P,M) to vanish for all

modules M to deduce that P is projective, and similarly only Ext1
R(M, I) needs to

vanish for all modules M to deduce that I is injective.

Corollary 2.4.5. Let 0→ A→ B → C → 0 be a short exact sequence of R-modules.

1. If B is projective then ExtnR(C,M) ∼= Extn−1
R (A,M) for all modules M , provided

n ≥ 2.

2. If B is injective then Extn−1
R (C,M) ∼= ExtnR(A,M) for all modules M , provided

n ≥ 2.

Proof. For the proof of 1, part of the long exact sequence becomes

0 = Extn−1
R (B,M)→ Extn−1

R (A,M)→ ExtnR(C,M)→ ExtnR(B,M) = 0

giving the claimed isomorphism. The proof of 2 is similar using the long exact sequence
in the second variable.
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The process of changing the degree of an Ext group at the expense of changing the
module as indicated in the above corollary is known as dimension shifting. It is useful
in showing that Ext groups are well-defined up to isomorphism, and also in defining
operations on the Ext groups, as well as obtaining different identifications of specific
Ext groups that arise.

The next result provides a useful way to compute Ext groups.

Proposition 2.4.6. Let A and M be R-modules, let · · · d3→P2
d2→P1

d1→P0 →M → 0 be a
projective resolution of M , and put Ki = Ker di. There is an exact sequence

0→ HomR(Kn−2, A)→ HomR(Pn−1, A)→ HomR(Kn−1, A)→ ExtnR(M,A)→ 0.

This result shows that every element of ExtnR(M,N) is represented by a homomor-
phism Kn−1 → N .

Proof. First proof: The long exact sequence associated to 0 → Kn−1 → Pn−1 →
Kn−2 → 0 starts

0→ HomR(Kn−2, A)→ HomR(Pn−1, A)→ HomR(Kn−1, A)→ Ext1
R(Kn−2, A)→ 0.

By dimension shifting we have

Ext1
R(Kn−2, A) ∼= Ext2

R(Kn−3, A) ∼= · · · ∼= Extn−1
R (K0, A) ∼= ExtnR(M,A).

Second proof: From the definition, ExtnR = Ker dn/ Im dn−1 where the differentials
dj appear in the cochain complex

Hom(Pn−1, N)
dn−1−−−→ Hom(Pn, N) → Hom(Pn+1, N)

↘ ↗ ↘ ↗
Hom(Kn−1, N) Hom(Kn, N)

↗ ↗
0 0

.

Left exactness of Hom gives Hom(Kn−1, N) = Ker dn. This produces an exact sequence
Hom(Pn−1, N) → Hom(Kn−1, N) → Extn(M,N) → 0. We supply the kernel of the
map at the left using the left exactness of Hom.

We now show that Ext groups are well-defined by proving a uniqueness result for
projective resolutions.

Theorem 2.4.7. Let P →M and Q → N be complexes of R-modules, where the mod-
ules in P are projective and Q → N → 0 is an acyclic complex. Every homomorphism
φ : M → N lifts to a map of chain complexes

P −→ My yφ
Q −→ N

and any two such mappings of complexes P → Q that lift φ are chain homotopic.
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Proof. We construct by induction on n a commutative diagram of the following form,
for each n:

Pn
dn−→ Pn−1

dn−1−→ Pn−2
dn−2−→ · · · → P0 → M → 0yφn−1

yφn−2

yφ0 yφ
Qn

en−→ Qn−1
en−1−→ Qn−2

en−2−→ · · · → Q0 → M → 0

We start the induction at n = 0 using projectivity of P0 and the fact that Q0 →M is
an epimorphism. For the induction step, suppose that φ0, . . . , φn−1 have been defined.
Now en−1φn−1dn = φn−2dn−1dn = 0, so Imφn−1dn ⊆ Ker en−1 = Im en. We may now
define φn by the projectivity of Pn.

To show that any two families of maps (φn) and (ψn) lifting φ are chain homotopic,
we construct mappings Tn : Pn → Qn+1 so that φn − ψn = en+1Tn + Tn−1dn for all
n ≥ 0, with the understanding that T−1 = 0. We define φ−1 = ψ−1 = φ. Suppose that
Tn−1 has been constructed. We calculate

en(φn − ψn − Tn−1dn) = φn−1dn − ψn−1dn − enTn−1dn

= (φn−1 − ψn−1 − enTn−1)dn

= Tn−2dn−1dn

= 0.

Therefore Im(φn − ψn − Tn−1dn) ⊆ Im en+1 and so there exists Tn with

(φn − ψn − Tn−1dn) = en+1Tn,

by projectivity of Pn. Rearranging this equation, it is φn − ψn = en+1Tn + Tn−1dn, as
required.

Corollary 2.4.8. Let P1 →M and P2 →M be two projective resolutions of M .
(1) P1 →M and P2 →M are chain homotopy equivalent.
(2) If F is any R-linear functor from R-modules to abelian groups, then

H∗(F (P1) ∼= H∗(F (P2)

by a canonical isomorphism.
(3) ExtnR(M,N) is functorial in both variables.

We remark also that ExtnR(M,N) can also be defined by taking an injective resolu-
tion N → I of N and forming Hn(HomR(M, I)). It is a theorem that we get a group
that is naturally isomorphic to the group defined by a projective resolution of M . We
say that Ext is balanced to indicate that it has this property.

Definition 2.4.9. Let M be a left R-module, N a right R-module, and P → N a
resolution of N by projective right modules. We put

TorRn (N,M) = Hn(P ⊗RM),
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which is the nth homology of the complex

· · · → P2 ⊗RM → P1 ⊗RM → P0 ⊗RM → 0.

Tor has properties analogous to those of Ext and we list them below. They are proved
in a similar manner to the corresponding results for Ext, using that ⊗RM is right
exact instead of left exact.

Proposition 2.4.10. TorR0 (N,M) ∼= N ⊗RM .

Theorem 2.4.11. If 0 → A → B → C → 0 and 0 → L → M → N → 0 are short
exact sequences of right and left modules respectively there are long exact sequences

(i)
· · · → TorR2 (C,L)→ TorR1 (A,L)→ TorR1 (B,L)→ TorR1 (C,L)

→ A⊗R L→ B ⊗R L→ C ⊗R L→ 0

and

(ii)
· · · → TorR2 (A,N)→ TorR1 (A,L)→ TorR1 (A,M)→ TorR1 (A,N)

→ A⊗R L→ A⊗RM → A⊗R N → 0.

Remark 2.4.12. One can view Tor as a measure of the failure of ⊗ to be left exact.

Proposition 2.4.13. TorRn (N,M) = 0 if either of M or N is flat and n > 0.

It follows that TorRn (N,M) = 0 if M or N is projective, because projective modules
are flat. This allows a process of ‘dimension shifting’ analogous to that for Ext.

In the next result we let

· · · → P2
d2−→ P1

d1−→ P0 → N → 0

↘ ↗ ↘ ↗

K1 K0

be the resolution of N , so that Kn = dn+1(Pn+1).

Proposition 2.4.14. There is an exact sequence

0→ TorRn (N,M)→ Kn−1 ⊗RM → Pn−1 ⊗RM → Kn−2 ⊗RM → 0

for n ≥ 1. (Here we take K−1 = N .)

Remark 2.4.15. We can also calculate TorRn (N,M) by taking a projective resolution of
M by left modules, applying N ⊗R − and taking homology of the resulting complex.
In this way one obtains a sequence of functors that turn out to be naturally isomorphic
to the functors we have defined.

2.5 Pushouts, pullbacks and Schanuel’s lemma

For this see section 10.5 of Dummit and Foote, Exercises 27 and 28.
Include pages 19-23 of my original notes about the correspondence of Ext1(M,N)

with module extensions, and properties of pushouts.



Chapter 3

Group cohomology

3.1 Group representations

This section is extracted from P.J. Webb, A course in finite group representation theory,
Cambridge 2016.

Let G denote a finite group, and let R be a commutative ring with a 1. If V is an
R-module we denote by GL(V ) the group of all invertible R-module homomorphisms
V → V . In case V ∼= Rn is a free module of rank n this group is isomorphic to the group
of all non-singular n × n matrices over R, and we denote it by GL(n,R) or GLn(R),
or in case R = Fq is the finite field with q elements by GL(n, q) or GLn(q). We point
out also that unless otherwise stated, modules will be left modules and morphisms will
be composed reading from right to left, so that matrices in GL(n,R) are thought of as
acting from the left on column vectors.

A (linear) representation of G (over R) is a group homomorphism

ρ : G→ GL(V ).

In a situation where V is free as an R-module, on taking a basis for V we may write
each element of GL(V ) as a matrix with entries in R and we obtain for each g ∈ G
a matrix ρ(g). These matrices multiply together in the manner of the group and we
have a matrix representation of G. In this situation the rank of the free R-module
V is called the degree of the representation. Sometimes by abuse of terminology the
module V is also called the representation, but it should more properly be called the
representation module or representation space (if R is a field).

To illustrate some of the possibilities that may arise we consider some examples.

Example 3.1.1. For any group G and commutative ring R we can take V = R and
ρ(g) = 1 for all g ∈ G, where 1 denotes the identify map R → R. This representation
is called the trivial representation, and it is often denoted simply by its representation
module R. Although this representation turns out to be extremely important in the
theory, it does not at this point give much insight into the nature of a representation.

21
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Example 3.1.2. A representation on a space V = R of rank 1 is in general determined
by specifying a homomorphism G → R×. Here R× is the group of units of R, and it
is isomorphic to GL(V ). For example, if G = 〈g〉 is cyclic of order n and k = C is the
field of complex numbers, there are n possible such homomorphisms, determined by

g 7→ e
2rπi
n where 0 ≤ r ≤ n−1. Another important example of a degree 1 representation

is the sign representation of the symmetric group Sn on n symbols, given by the group
homomorphism which assigns to each permutation its sign, regarded as an element of
the arbitrary ring R.

Example 3.1.3. Let R = R, V = R2 and G = S3. This group G is isomorphic to the
group of symmetries of an equilateral triangle. The symmetries are the three reflections
in the lines that bisect the equilateral triangle, together with three rotations.

1

2

3

Positioning the center of the triangle at the origin of V and labeling the three vertices
of the triangle as 1, 2 and 3 we get a representation

() 7→
[
1 0
0 1

]
(1, 2) 7→

[
0 1
1 0

]
(1, 3) 7→

[
−1 0
−1 1

]
(2, 3) 7→

[
1 −1
0 −1

]
(1, 2, 3) 7→

[
0 −1
1 −1

]
(1, 3, 2) 7→

[
−1 1
−1 0

]
where we have taken basis vectors in the directions of vertices 1 and 2, making an
angle of 2π

3 to each other. In fact these matrices define a representation of degree 2
over any ring R, because although the representation was initially constructed over
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R the matrices have integer entries, and these may be interpreted in every ring. No
matter what the ring is, the matrices always multiply together to give a copy of S3.

At this point we have constructed three representations of S3: the trivial represen-
tation, the sign representation and one of dimension 2.

Example 3.1.4. Let R = Fp, V = R2 and let G = Cp = 〈g〉 be cyclic of order p
generated by an element g. We see that the assignment

ρ(gr) =

[
1 0
r 1

]
is a representation. In this case the fact that we have a representation is very much
dependent on the choice of R as the field Fp: in any other characteristic it would not
work, because the matrix shown would no longer have order p.

We can think of representations in various ways. One of them is that a represen-
tation is the specification of an action of a group on an R-module, as we now explain.
Given a representation ρ : G→ GL(V ), an element v ∈ V and a group element g ∈ G
we get another module element ρ(g)(v). Sometimes we write just g · v or gv for this
element. This rule for multiplication satisfies

g · (λv + µw) = λg · v + µg · w
(gh) · v = g · (h · v)

1 · v = v

for all g ∈ G, v, w ∈ V and λ, µ ∈ R. A rule for multiplication G × V → V satisfying
these conditions is called a linear action of G on V . To specify a linear action of G on V
is the same thing as specifying a representation of G on V , since given a representation
we obtain a linear action as indicated above, and evidently given a linear action we
may recover the representation.

Another way to define a representation of a group is in terms of the group algebra.
We define the group algebra RG (or R[G]) of G over R to be the free R-module with
the elements of G as an R-basis, and with multiplication given on the basis elements
by group multiplication. The elements of RG are the (formal) R-linear combinations
of group elements, and the multiplication of the basis elements is extended to arbitrary
elements using bilinearity of the operation. What this means is that a typical element of
RG is an expression

∑
g∈G agg where ag ∈ R, and the multiplication of these elements

is given symbolically by

(
∑
g∈G

agg)(
∑
h∈G

bhh) =
∑
k∈G

(
∑
gh=k

agbh)k.

More concretely, we exemplify this definition by listing some elements of the group
algebra QS3. We write elements of S3 in cycle notation, such as (1, 2). This group
element gives rise to a basis element of the group algebra which we write either as
1 · (1, 2), or simply as (1, 2) again. The group identity element () also serves as the
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identity element of QS3. In general, elements of QS3 may look like (1, 2) − (2, 3) or
1
5(1, 2, 3) + 6(1, 2)− 1

7(2, 3). Here is a computation:

(3(1, 2, 3) + (1, 2))(()− 2(2, 3)) = 3(1, 2, 3) + (1, 2)− 6(1, 2)− 2(1, 2, 3)

= (1, 2, 3)− 5(1, 2).

An (associative) R-algebra is defined to be a (not necessarily commutative) ring A with
a 1, equipped with a (unital) ring homomorphism R→ A whose image lies in the center
of A. The group algebra RG is indeed an example of an R-algebra.

Example 3.1.5. If G = 〈x〉 is an infinite cyclic group then ZG = Z[x, x−1] is the ring
of Laurent polynomials in x.

Example 3.1.6. If p is a prime number it follows from some algebraic number theory
that the ring of integers Z[e2πi/p] has rank p − 1 as a free abelian group. If G =〉x〈
is cyclic of order p, there is a surjective ring homomorphism ZG → Z[e2πi/p] specified
by x 7→ e2πi/p]. Its kernel is ZN , where N =

∑
g∈G g. Notice that N2 = |G|N . This

relationship shows that Z[e2πi/p]-modules may be regarded as ZG modules.

Having defined the group algebra, we may now define a representation of G over
R to be a unital RG-module. The fact that this definition coincides with the previous
ones is the content of the next proposition. Throughout this text we may refer to group
representations as modules (for the group algebra).

Proposition 3.1.7. A representation of G over R has the structure of a unital RG-
module. Conversely, every unital RG-module provides a representation of G over R.

Proof. Given a representation ρ : G→ GL(V ) we define a module action of RG on V
by (

∑
agg)v =

∑
agρ(g)(v).

Given an RG-module V , the linear map ρ(g) : v 7→ gv is an automorphism of V
and ρ(g1)ρ(g2) = ρ(g1g2) so ρ : G→ GL(V ) is a representation.

The group algebra gives another example of a representation, called the regular
representation. In fact for any ring A we may regard A itself as a left A-module with
the action of A on itself given by multiplication of the elements. We denote this left
A-module by AA when we wish to emphasize the module structure, and this is the (left)
regular representation of A. When A = RG we may describe the action on RGRG by
observing that each element g ∈ G acts on RGRG by permuting the basis elements in
the fashion g · h = gh. Thus each g acts by a permutation matrix, namely a matrix in
which in every row and column there is precisely one non-zero entry, and that non-zero
entry is 1. The regular representation is an example of a permutation representation,
namely one in which every group element acts by a permutation matrix.

Regarding representations of G as RG-modules has the advantage that many def-
initions we wish to make may be borrowed from module theory. Thus we may study
RG-submodules of an RG-module V , and if we wish we may call them subrepresen-
tations of the representation afforded by V . To specify an RG-submodule of V it is
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necessary to specify an R-submodule W of V that is closed under the action of RG.
This is equivalent to requiring that ρ(g)w ∈W for all g ∈ G and w ∈W . We say that
a submodule W satisfying this condition is stable under G, or that it is an invariant
submodule or invariant subspace (if R happens to be a field). Such an invariant submod-
ule W gives rise to a homomorphism ρW : G → GL(W ) that is the subrepresentation
afforded by W .

Example 3.1.8. 1. Let C2 = {1,−1} be cyclic of order 2 and consider the represen-
tation

ρ : C2 → GL(R2)

1 7→
[
1 0
0 1

]
−1 7→

[
1 0
0−1

]
There are just four invariant subspaces, namely {0}, 〈

(
1
0

)
〉, 〈
(

0
1

)
〉, R2 and no others. The

representation space R2 = 〈
(

1
0

)
〉 ⊕ 〈

(
0
1

)
〉 is the direct sum of two invariant subspaces.

Example 3.1.9. In Example 3.1.4 above, an elementary calculation shows that 〈
(

0
1

)
〉

is the only 1-dimensional invariant subspace, and so it is not possible to write the
representation space V as the direct sum of two non-zero invariant subspaces.

We make use of the notions of a homomorphism and an isomorphism of RG-
modules. Since RG has as a basis the elements of G, to check that an R-linear
homomorphism f : V → W is in fact a homomorphism of RG-modules, it suffices
to check that f(gv) = gf(v) for all g ∈ G — we do not need to check for every x ∈ RG.
By means of the identification of RG-modules with representations of G (in the first
definition given here) we may refer to homomorphisms and isomorphisms of group rep-
resentations. In many books the algebraic condition on the representations that these
notions entail is written out explicitly, and two representations that are isomorphic are
also said to be equivalent.

If V and W are RG-modules then we may form their (external) direct sum V ⊕W ,
which is the same as the direct sum of V and W as R-modules together with an action
of G given by g(v, w) = (gv, gw). We also have the notion of the internal direct sum
of RG-modules and write U = V ⊕ W to mean that U has RG-submodules V and
W satisfying U = V + W and V ∩W = 0. In this situation we also say that V and
W are direct summands of U . We just met this property in Example 3.1.8, which
gives a representation that is a direct sum of two non-zero subspaces; by contrast,
Example 3.1.9 provides an example of a subrepresentation that is not a direct summand.

3.2 Fixed points, fixed quotients, and the augmentation
ideal

When M is a left ZG-module the algebraic definition of group (co)homology of G
with coefficients in M , in degree n, is Hn(G,M) := ExtnZG(Z,M) and Hn(G,M) :=
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TorZGn (Z,M). If M is a right ZG-module we also put Hn(G,M) := TorZGn (M,Z).
In general we have to deal with left and right modules in describing tensor products

and Tor, but in the case of group rings there is a way round this that allows us to get
by with considering only left modules. The group ring ZG has an antiautomorphism
a : ZG → ZG specified on the basis elements by g 7→ g−1. Thus a is an isomorphism
of abelian groups and a(xy) = a(y)a(x). Given a right module N we may make it
into a left module N ` by x · n = na(x) for x ∈ ZG and n ∈ N . We check that
(xy) · n = na(xy) = na(y)a(x) = x · (na(y)) = x · (y · n). Intuitively, because we can
turn left modules M back into right modules M r by a similar procedure, reversing the
previous construction, we lose no information in this process. As a matter of notation
we may now refer to right modules N and resolutions P → N by writing down the
corresponding left modules N ` and P` → N `. Thus if we have two left ZG-modules
A and B, the tensor product A⊗ZG B really means Ar ⊗ZG B and TorZGn (A,B) really
means TorZGn (Ar, B). The outcome is that we only write down left modules, which is
a simplification of notation. Note that we do not define the tensor product of two left
modules by this, it is just notation.

At a deeper level, it is the case that P is a projective right ZG-module if and only if
P ` is a projective left ZG-module. This follows from the facts that projective modules
are the summands of free modules, and that ZG` ∼= ZG as left ZG-modules (the first
copy of ZG being a right module). The isomorphism is g 7→ g−1. Thus if P → N is a
projective resolution of right modules, P` → N ` will be a projective resolution of left
modules. Finally, the trivial module has the property that Z` = Z.

We now start to explore these cohomology groups by identifying them in low degrees
and by construction of some particular resolutions of Z. We define a mapping ε : ZG→
Z by the assignment g 7→ 1 for every g ∈ G, extended by linearity to the whole of ZG.
Thus the effect of ε on a general element of ZG is

ε(
∑
g∈G

λgg) =
∑
g∈G

λg.

This is the augmentation map and it is a ring homomorphism, and also a homomor-
phism of ZG-modules. We write IG := Ker ε and this 2-sided ideal is called the
augmentation ideal of ZG. Because ε is surjective we may always use it to start a
projective ZG-resolution of Z, and evidently Z ∼= ZG/IG. If G is finite we will also
consider the element N =

∑
g∈G g ∈ ZG, which is sometimes called the norm element.

If M is a ZG-module we write MG := {m ∈ M
∣∣ gm = m for all g ∈ G} for the

fixed points of G on M and MG := M/〈gm−m
∣∣ m ∈M, g ∈ G〉 for the fixed quotient

or cofixed points of G on M , where the submodule being factored out is the span of all
elements gm−m, m ∈M , g ∈ G.

Proposition 3.2.1. Let M be a ZG-module.

1. The set {g − 1
∣∣ 1 6= g ∈ G} is a Z-basis for IG.

2. H0(G,M) = HomZG(Z,M) ∼= MG. The fixed point set MG coincides with the
set of elements of M annihilated by IG.
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3. H0(G,M) = Z⊗ZGM ∼= M/(IG ·M) = MG is the largest quotient of M on which
G acts trivially.

4. (ZG)G = ZG/IG ∼= Z. If G is finite then (ZG)G = Z · N ∼= Z, while if G is
infinite then (ZG)G = 0.

5. If G = 〈g1, . . . , gn〉 then g1 − 1, . . . , gn − 1 generate IG as a ZG-module.

Proof. (1) The set is independent and is contained in Ker ε. To show that it spans Ker ε,
suppose that

∑
g∈G λgg ∈ Ker ε where λg ∈ Z. This means that

∑
g∈G λg = 0. Thus∑

g∈G λgg =
∑

g∈G λgg−
∑

g∈G λg =
∑

g∈G λg(g−1), showing that {g−1
∣∣ 1 6= g ∈ G}

spans Ker ε.
(2) The first equality is a standard result about Ext groups. The map that sends

a ZG-module homomorphism φ : Z→ M to φ(1) is an isomorphism HomZG(Z,M)→
MG. An element m ∈M is fixed by G if and only if (g − 1)m = 0 for all g ∈ G, which
happens if and only if IGm = 0, by part (1).

(3) The first equality is a standard result about Tor groups. Since Z ∼= ZG/IG
and tensor product with a quotient of a ring is the same as factoring out the action
of the quotienting ideal, the next isomorphism follows. From part (1) we have that
IG ·M is the span of elements (g − 1)m with g ∈ G and m ∈ M and this gives the
identification with MG. If N is a submodule of M then G acts trivially on M/N if and
only if (g − 1)m ∈ N for all g ∈ G, and this shows that MG is the largest quotient of
M on which G acts trivially. What about the

symbol N? It is
used for a
submodule and
also the group
element sum.

(4) The first statement is a particular case of (3). If
∑

x∈G λxx ∈ ZG is fixed by
G it equals g

∑
x∈G λxx for all g ∈ G. The coefficients of gx in these two expressions

are λgx in the first and λx in the second, so λgx = λx for all g in G since the group
elements form a basis of ZG. If G is infinite and some λx is non-zero this group ring
element must have infinite support on the basis, which is not possible, so in this case
(ZG)G = 0. If G is finite all the coefficients of group elements must be equal, so the
fixed element is a scalar multiple of N .

(5) Any group element can be expressed as a product u1u2 · · ·ut where each ui is
either one of the given generators or its inverse. Now

u1u2 · · ·ut − 1 = u1u2 · · ·ut−1(ut − 1) + u1u2 · · ·ut−2(ut−1 − 1) + · · ·+ (u1 − 1)

and also g−1
i − 1 = −g−1

i (gi− 1). Applying these two formulas allows us to express any
basis element g− 1 of IG as an element of the ZG-submodule generated by the gi − 1.
We deduce that the elements gi − 1 generate IG as a ZG-module.

Class Activity. Let G = {1, x} = C2 be a cyclic group of order 2.

1. What is rankZ(IG)?

2. Is IG ∼= Z, the trivial ZG-module, as abelian groups?

3. Is IG ∼= Z, the trivial ZG-module, as ZG-modules?
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4. Is N ∈ IG?

5. Is ZG/(N) ∼= Z as ZG-modules? Is ZG/(N) ∼= IG as ZG-modules? (Warning:
one of these is true for cyclic groups. In general neither of them is true.)

3.3 Resolutions for group rings and first (co)homology
Insert something!

Proposition 3.3.1. H1(G,Z) ∼= IG/(IG)2 ∼= G/G′, the abelianization of G.

Proof. We compute H1(G,Z) by applying Z⊗ZG − to the sequence

0→ IG→ ZG→ Z→ 0,

getting an exact sequence

0 = H1(G,ZG)→ H1(G,Z)→ Z⊗ZG IG→ Z⊗ZG ZG→ Z⊗ZG Z→ 0.

The left term is zero since ZG is projective and hence flat. The two right terms identify
as Z→ Z via the identity map, so we deduce that H1(G,Z) ∼= Z⊗ZG IG ∼= IG/(IG)2.

We now construct an isomorphism G/G′ → IG/(IG)2. We will write elements
of G/G′ multiplicatively as cosets gG′ and elements of IG/(IG)2 additively as cosets
x + IG2. Consider the mapping G → IG/(IG)2 specified by g 7→ (g − 1) + IG2. It
sends a product gh to

gh− 1 + IG2 = (g − 1)(h− 1) + (g − 1) + (h− 1) + IG2

= (g − 1) + (h− 1) + IG2,

so that it is a group homomorphism. Because the target group is abelian it vanishes
on the commutator subgroup G′. We therefore obtain a homomorphism G/G′ →
IG/(IG2). An inverse homomorphism is constructed as follows. First consider the
homomorphism of abelian groups IG → G/G′ specified on the basis elements of IG
by (g − 1) 7→ gG′. It sends a product (g − 1)(h − 1) = (gh − 1) − (g − 1) − (h − 1)
to (gh)(g−1)(h−1)G′ = G′ and hence induces a homomorphism IG/(IG2) → G/G′.
Evidently these two mappings are mutually inverse.

3.3.1 Resolutions for free groups and for cyclic groups

Example 3.3.2. We now consider some examples of resolutions for group rings. Let
G be a free group of rank d. Then G acts freely on its Cayley graph Γ with respect to
a set of free generators, which we know to be a tree. Its vertices are in a single regular
orbit, and its edges lie in d regular orbits, one for each generator. We see from this
that the augmented simplicial chain complex of this tree is an acyclic complex

0→ ZGd → ZG→ Z→ 0

so that this is a projective resolution of Z. Apart from Z, these are free abelian groups of
infinite rank. If we apply either Z⊗ZG− or HomZG(−,Z) we get either the augmented
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cellular chain complex 0 → Zd → Z → Z → 0 or the augmented cellular cochain
complex 0 → Z → Z → Zd → 0 of the quotient graph G\Γ. This quotient consists
of d loops joined at a single vertex, and it is an Eilenberg-MacLane space for G. Its
homology and cohomology is the same as that computed algebraically:

H0(G,Z) ∼= H0(G,Z) ∼= Z
H1(G,Z) ∼= H1(G,Z) ∼= Zd

H i(G,Z) ∼= Hi(G,Z) = 0 otherwise.

We see various things from this:

Proposition 3.3.3. When G is a free group of rank d, Hn(G,M) = Hn(G,M) = 0 if
n > 1. Also, IG ∼= (ZG)d is a free ZG-module of rank d.

Notice that when G = Z is free of rank 1 we have ZG ∼= Z[x, x−1], the ring of
Laurent polynomials in the generator x of G. A group is said to have cohomological
dimension d if there is a projective resolution

0→ Pd → Pd−1 → · · · → P0 → Z→ 0

and d is the smallest integer for which this happens. It is equivalent to require that
Hn(G,M) = 0 for all modules M and for all n ≥ d + 1. We see (as an exercise)
that the identity group is the only group of cohomological dimension 0, and that free
groups have cohomological dimension 1. The converse, that groups of cohomological
dimension 1 are free, is a theorem of Stallings (1968) in the case of finitely generated
groups and Swan (1969) in general.

In the above example we see the connection between the topological approach to
group (co)homology as the (co)homology of an aspherical space with fundamental group
G, and the algebraic approach that is computed via a projective resolution. Given such
an aspherical space its universal cover is a contractible space on which G acts freely.
It follows that G acts on the chain complex of the universal cover (for example, the
simplicial chain complex if the space is a simplicial complex) and the free action means
that the chain complex is an acyclic complex of free ZG-modules, or in other words
a projective resolution of Z. Applying Z ⊗ZG − to this resolution converts each copy
of ZG spanned by a regular orbit of simplices into a single copy of Z and produces
a complex that may be identified with the chain complex of the aspherical space. Its
homology is H∗(G,Z). From this viewpoint we see that the interpretation of H1(G,Z)
as the abelianization of G exemplifies the theorem of Hurewicz that the first homology
is the abelianization of the fundamental group.

We present another example: finite cyclic groups.

Theorem 3.3.4. Let G = 〈g〉 be a finite cyclic group. There is a periodic resolution

· · · → ZG d2−→ ZG d1−→ ZG → Z → 0

↗ ↘ ↗ ↘ ↗

IG Z ·N IG
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in which d1(1) = g − 1 and d2(1) = N .

Proof. Since G is generated by the single element g, so IG is generated as a ZG-module
by g − 1 and so d1 maps surjectively to IG. An element x ∈ ZG lies in the kernel of
d1 if and only if x · (g − 1) = 0, which happens if and only if x ∈ ZGG, if and only if
x = λN for some λ ∈ Z. Thus Ker d1 = Z · N ∼= Z. We now iterate this start of the
resolution.

Corollary 3.3.5. Let G = 〈g〉 be a finite cyclic group and M a ZG-module. Then for
all n ≥ 1 we have

H2n−1(G,M) ∼= H1(G,M) ∼= Ker(M
N→M)/(IG ·M)

and
H2n(G,M) ∼= H2(G,M) ∼= MG/(N ·M).

Proof. We apply HomZG(−M) to the resolution in Theorem 3.3.4 to get a complex

0 −→M
g−1−→M N−→M g−1−→M N−→M −→ · · ·

where N and g − 1 denote the maps that are multiplication by these elements. We
take homology to obtain the result, using the fact that the kernel of g − 1 is the fixed
points, by Proposition 3.2.1(2).

Example 3.3.6. If G is cyclic of order r and M = Z then for every n ≥ 1 we have
H2n−1(G,Z) = 0 and H2n(G,Z) = Z/rZ.

Maybe include
here the bar
resolution?Class Activity. If G is cyclic of order r and M = Z/rZ find H i(G,M). Answers:

A: for all i ≥ 1, H2i−1(G,Z/rZ) = Z/rZ and H2i(G,Z/rZ) = 0; B: for all i ≥ 1,
H2i−1(G,Z/rZ) = 0 and H2i(G,Z/rZ) = Z/rZ; C: H i(G,Z/rZ) = Z/rZ for all i ≥ 1;
D: None of the above.

Proposition 3.3.7. Let H be a subgroup of G.

1. If the cohomological dimension cd(G) = d then cd(H) ≤ d, and

2. groups of finite cohomological dimension are torsion free.

Proof. (1) A finite resolution of Z by projective ZG-modules is also, by restriction, a
finite resolution of Z by projective ZH-modules, because projective ZG-modules restrict
to projective ZH-modules. If there is a resolution over ZG of length d, then there is a
resolution over ZH of length at most d.

(2) If cd(G) = d and G has an element g of finite order, then cd〈g〉 ≤ d. However,
we have seen in Example 3.3.6 that cyclic groups of order bigger than 1 have non-
zero cohomology groups in arbitrarily high degrees, so cannot have finite resolutions of
Z.

As a partial converse to the above result, Serre has shown that if G is a torsion-free
group with a subgroup H of finite index, then cd(G) = cd(H).

Exercise: Show that G is a torsion free group with a cyclic subgroup of finite index
then G is cyclic.
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3.3.2 Derivations and first cohomology

We next examine the first degree cohomology and for this we introduce derivations.

Definition 3.3.8. Let M be a ZG-module. A mapping d : G → M is a derivation
if and only if d(gh) = gd(h) + d(g). We write Der(G,M) := {derivations G → M}
for the set of derivations of G into M . It is a group with respect to the addition
(d1 + d2)(g) = d1(g) + d2(g). Observe that the defining equation for a derivation looks
more symmetric if we regard M as having the trivial G-action from the right, in which
case d(gh) = gd(h) + d(g)h. We can always construct a derivation from G to M for
any element M ∈ M by putting d(g) = (g − 1)m for each g ∈ G. We check that such
map is indeed a derivation. A derivation arising in this way is called principal, and we
write P (G,M) for the set of all principal derivations from G into M . It is a subgroup
of Der(G,M).

We will use the facts that if d is a derivation then d(1) = 0 and d(g−1) = −g−1d(g),
and we may take these as an exercise.

Lemma 3.3.9. Given any mapping d : G → M we may define an abelian group
homomorphism δ : IG→M by specifying δ(g−1) = d(g) for each non-identity element
g ∈ G, using the fact that the g − 1 with 1 6= g ∈ G form a basis for the free abelian
group IG. Then d is a derivation if and only if δ is a module homomorphism. Thus
Der(G,M) ∼= HomZG(IG,M).

Proof. In the calculation that follows we will use the fact that h(g−1) = (hg−1)−(h−1)
We check that δ is a module homomorphism ⇔ δh(g − 1) = hδ(g − 1) for all g, h ∈ G
⇔ d(gh)− d(h) = hd(g) for all g, h ∈ G ⇔ d(hg) = hd(g) + d(h) for all g, h ∈ G. Thus
every derivation determines a module homomorphism IG→M and, conversely, every
module homomorphism gives a derivation, by the same formula.

Given a short exact sequence of groups 1 → M → E
p−→G → 1 we say that

a mapping of sets s : G → E is a section if ps = idG. If the section is a group
homomorphism we call it a splitting. We will consider the semidirect product E =
M o G which we take to be the set M × G with multiplication (m1, g1)(m2, g2) =
(m1 + (g1m2), g1g2).

Lemma 3.3.10. Let s : G → E = M o G be a section, so that s(g) = (d(g), g) for
some mapping d : G → M . Then s is a group homomorphism if and only if d is a
derivation. Thus Der(G,M) is in bijection with the set of splittings G→ E.

Proof. We know that s is a homomorphism if and only if s(gh) = s(g)s(h) for all
g, h ∈ G, which happens if and only if (d(gh), gh) = (d(g) + gd(h), gh) for all g, h ∈ G.
This, in turn, happens if and only if d(gh) = d(g) + gd(h) for all g, h ∈ G, which is the
condition that d should be a derivation.

As a consequence of this we obtain an algebraic proof that the augmentation ideal
of a free group is a free module.
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Corollary 3.3.11. Let F be a free group, freely generated by a set of generators X.
Then the augmentation ideal IF is freely generated as a ZF -module by the elements
{x− 1

∣∣ x ∈ X}.
Proof. Let M be any ZF -module. We first claim that any mapping f : X → M
extends uniquely to a derivation d : F →M . This is because the mapping X →M oF
given by x 7→ (f(x), x) extends uniquely to a group homomorphism F → M o F of
the form g 7→ (d(g), g) for some uniquely specified derivation d. We deduce that the
mapping (x−1) 7→ f(x) where x ∈ X extends uniquely to a ZF -module homomorphism
IF →M , by Lemma 3.3.9. It follows that IF satisfies the universal property of a free
ZF -module with generating set as claimed.

We will compute H1(G,M) using the following exact sequence that comes by ap-
plying HomZG(−,M) to the short exact sequence 0→ IG→ ZG→ Z→ 0:

HomZG(Z,M) → HomZG(ZG,M) → HomZG(IG,M) → H1(G,M) → 0

‖ ‖ ‖

MG M Der(G,M)

This is a special case of Proposition 2.4.6.

Lemma 3.3.12. A derivation d ∈ Der(G,M) is principal if and only if the correspond-
ing map δ : IG → M lies in the image of HomZG(ZG,M) → HomZG(IG,M). Hence
H1(G,M) ∼= Der(G,M)/P (G,M).

Proof. Any φ : ZG → M has the form φ(g) = g · φ(1) = gm where m = φ(1) ∈ M .
Its restriction to IG is φ(g − 1) = (g − 1)m and such maps are exactly the maps in
the image of HomZG(ZG,M) → HomZG(IG,M). The corresponding derivations are
P (G,M).

We define two splittings s1, s2 : G→ E = M oG to be M -conjugate if there is an
element m ∈M so that (m, 1)s1(g)(m, 1)−1 = s2(g) for all g ∈ G.

Theorem 3.3.13. Let M be a ZG-module. The M -conjugacy classes of splittings of
1→M →M oG→ G→ 1 biject with H1(G,M).

Proof. Splittings si(g) = (di(g), g), i = 1, 2 are M -conjugate if and only if (m+d1(g)−
gm, g) = (d2(g), g) for all g ∈ G, if and only if m+ d1(g)− gm = d2(g) for all g ∈ G, if
and only if (d1− d2)(g) = (g− 1)m for all g ∈ G, if and only if d1− d2 ∈ P (G,M).

Example 3.3.14. Let G = {1, g} be cyclic of order 2 and let Z̃ be the ZG-module
that is an infinite cyclic group on which g acts as multiplication by −1. We have
already seen that IG ∼= Z̃ as ZG-modules, so that Der(G, Z̃) ∼= HomZG(IG, Z̃) ∼= Z
as abelian groups, generated by the derivation d(g) = 1 ∈ Z̃. The semidirect product
Z̃oG is the infinite dihedral group, and every element of it outside the normal infinite
cyclic subgroup Z̃ has order 2, providing a splitting. The principal derivations G→ Z̃
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have the form d(g) = (g − 1)m = −2m for each m ∈ Z̃, so that P (G,M) = 2Z and
H1(G, Z̃) ∼= Z/2Z. We see that the infinite dihedral group has two conjugacy classes
of splittings (conjugate under the normal infinite cyclic group).

Example 3.3.15. Let G = {1, g} be cyclic of order 2. Then H1(C2,ZC2) = 0. The
semidirect product ZC2 o C2 is isomorphic to the wreath product Z o C2, and can be
realized as the group of rigid motions of R2 that preserve the pattern

/ / /
/ /

/ / /
/ /

/ / /
/ /

All subgroups of order 2 of this group are conjugate by a translation.

Example 3.3.16. Both H1(C2,Z) = 0 and H1(C2, Z̃/3Z̃) = 0 and the semidirect
products are Z×C2 in the first case and the symmetric group S3 in the second case. In
the first case, there is a unique element of order 2, and with S3 all subgroups of order
2 are conjugate by the Sylow 3-subgroup.

3.4 Second homology and cohomology

3.4.1 Extending a resolution to degree 2

Having identified the first homology and cohomology in terms of group theoretical
properties we now do the same in degree 2. For this we need to extend the resolution
of Z, and we will do this using the information in a presentation of the group G.

Proposition 3.4.1. Let 1→ K → E → G→ 1 be an exact sequence of groups, where
K is a normal subgroup of E. Then Ker(ZE → ZG) = ZE · IK, the left ideal of ZE
generated by IK. This kernel is in fact a 2-sided ideal also equal to IK · ZE, and we
will denote it by IK. If [E/K] is a set of representatives for the cosets of K in E then
IK =

⊕
t∈[E/K] tIK as abelian groups.

Proof. Taking a set of left coset representatives forK in E we can write E =
⊔
t∈[E/K] tK,

so that a typical element of ZE may be written x =
∑

t∈[E/K]

∑
k∈K λtktk. Let us write

π for both the homomorphism E → G and the corresponding ring homomorphism
ZE → ZG and observe that the elements π(t) where t ∈ [E/K] are independent in
ZG. We have π(x) =

∑
t∈[E/K]

∑
k∈K λtkπ(t), so if π(x) = 0 then

∑
k∈K λtk = 0 for

all t. This means that the element yt :=
∑

k∈K λtkk lies in IK. We also have that
x =

∑
t∈[E/K] tyt which shows that Ker(ZE → ZK) =

⊕
t∈[E/K] t · IK = ZE · IK.

Being the kernel of a ring homomorphism, this kernel is a 2-sided ideal. We could have
argued with right coset representatives in the above, and this would have given us that
the kernel also equals IK · ZE.
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With the notation of the proposition, there is an action of G on the abelianization
K/K ′ determined by conjugation within E as follows. First E acts onK by conjugation,
and hence on K/K ′. Now K is contained in the kernel of this action, so we obtain an
action of G on K/K ′. Example? Class

activity? This
construction is so
fundamental I
should express it
that way.

Proposition 3.4.2. Let 1→ K → E → G→ 1 be an exact sequence of groups, where
K is a normal subgroup of E. Then there is an exact sequence of ZG-modules

0→ IK/(IK · IE)→ IE/(IK · IE)→ IG→ 0

in which IK/(IK · IE) ∼= K/K ′ as ZG-modules.

Observe that the isomorphism IG/IG2 ∼= G/G′ is a special case of this on consid-
ering the exact sequence 1→ G→ G→ 1→ 1.

Proof. We note that IK · IE = IK ·ZE · IE = IK · IE and we can also write IK · IE
for the term we are factoring out. The exact sequence arises from the sequences in the
diagram

0 → IK → ZE → ZG → 0

‖
x x

0 → IK → IE → IG → 0,

where the lower sequence is exact by the snake lemma. Since IK · IE ⊆ IK, we
can factor it out from the two left terms to get our exact sequence, using the third
isomorphism theorem.

If M is a ZE-module then

ZG⊗ZE M ∼= (ZE/IK ⊗ZE M ∼= M/(IK ·M)

is a ZG-module, so that all the terms in the claimed exact sequence are ZG-modules.
We construct inverse isomorphisms

IK/(IK · IE) ∼= K/K ′

φ : (k − 1)t+ IK · IE → kK ′

(k − 1) + IK · IE ← kK ′ : ψ

We have to check this assignments are well defined and that they preserve the ZG-
module action. They are evidently mutually inverse.

Corollary 3.4.3. Let 1→ R→ F → G→ 1 be a presentation of G, i.e. a short exact
sequence of groups in which F is free. There is an exact sequence of ZG-modules

0→ R/R′ → ZGd(F ) → IG→ 0
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where d(F ) is the minimum number of generators of F . Hence there is a resolution of
Z by free ZG-modules that starts

d2−→ ZGd(F ) d1−→ ZG → Z → 0.

↗ ↘ ↗

R/R′ IG

Proof. We identify the left term in the short exact sequence

0→ IR/(IR · IF )→ IF/(IR · IF )→ IG→ 0

as R/R′ by Proposition 3.4.2. The middle term is isomorphic to ZG ⊗ZF ZF d(F ) ∼=
ZGd(F ).

We recover the rank formula for subgroups of free groups of finite index in the case
that the subgroup is normal.

Corollary 3.4.4. Let 1 → R → F → G → 1 be a presentation of a finite group G.
Assuming that R is a free group, its rank d(R) satisfies d(R) = |G|(d(F )− 1) + 1.

Proof. The short exact sequence 0 → R/R′ → ZGd(F ) → IG → 0 splits as a sequence
of abelian groups because IG is a free abelian group. Furthermore the rank of R/R′ is
d(R). Thus the ranks satisfy d(R) + |G| − 1 = |G|d(F ), which rearranges to give the
claimed rank formula.

Definition 3.4.5. The ZG-module R/R′ arising from the presentation of G is called
the relation module associated to the presentation.

If the presentation is determined by generators G = 〈g1, . . . , gn〉 with free generators
x1, . . . , xn of F mapping to them, we have already seen that IF is a free ZF -module,
freely generated by the xi − 1. In the construction of the short exact sequence, xi − 1
maps to gi − 1, and so the mapping ZGd(F ) → IG sends the ith free generator to
gi − 1. We deduce again that the elements gi − 1 generate IG, as already shown in
Proposition 3.2.1.

Example 3.4.6. If G is itself a free group and the presentation has R = 1 we de-
duce that R/R′ = 0 and ZF d(F ) → IF is an isomorphism, thereby confirming Corol-
lary 3.3.11.

Example 3.4.7. Let G = 〈g〉 be cyclic of order n, and let 1 → R → F → G → 1 be
the presentation where F = 〈x〉 and R = 〈xn〉 with x mapping to g. Here R′ = 1 and
the generator xn of the relation module R/R′ maps to xn−1+IR ·IF in IF/(IR ·IF ),
which is a free ZG-module with basis {x− 1) + IR · IF . Now

xn − 1 = (1 + x+ x2 + · · ·+ xn−1)(x− 1),

so that identifying IF/(IR ·IF ) with ZG, the generator xn of the relation module maps
via the differential d2 to the norm element 1+x+ · · ·+xn−1. We have already observed
that d1 maps the generator of ZG to g − 1, so we obtain the start of the resolution
described in Theorem 3.3.4.
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3.4.2 Second cohomology and extensions

We use the start of the resolution we have just constructed to interpret the second coho-
mology and homology in group theoretic terms. Second cohomology may be computed
using the next proposition.

Proposition 3.4.8. Let 1 → R → F → G → 1 be a presentation of G and M a
ZG-module. There is an exact sequence

Der(F,M)→ HomZG(R/R′,M)→ H2(G,M)→ 0.

The map on the left is given by restriction of derivations to R.

Proof. We use the start of the resolution given in Corollary 3.4.3 together with the
sequence of Proposition 2.4.6 that computes Ext groups. We also use the identification
of the term ZGd(F ) that appears in 3.4.3 as the module IF/(IR · IF ). Thus we have
an exact sequece

HomZG(IF/(IR · IF ),M)→ HomZG(R/R′,M)→ H2(G,M)→ 0.

It remains to observe that HomZG(IF/(IR · IF ),M) = HomZF (IF,M) = Der(F,M) if
M is a ZG-module (by Proposition 3.2.1 and because IR acts as zero on M), and also
that under this identification the first map in the sequence is given by restriction.

Theorem 3.4.9. Let M be a ZG-module. There is a bijection

ψ : H2(G,M)→ {equivalence classes of extensions of G by M}.

Proof. We use the short exact sequence of Proposition 3.4.8 to compute H2(G,M).
Thus any element θ̄ ∈ H2(G,M) may be represented by a ZG-module homomorphism
θ : R/R′ →M . Two homomorphisms θ, θ′ : R/R′ →M represent the same element of
H2(G,M) if and only if they differ by the restriction of a derivation from F to M . Put this

construction
separately, before
this theorem.
Comment that it
describes the
functoriality of
H2.

We construct an extension ψ(θ̄) that appears as the lower sequence in the following
diagram:

(∗)

1 → R/R′ → F/R′ → G → 1

θ

y η

y ‖

1 → M → E → G → 1

where E = M o (F/R′)/{(−θ(rR′), rR′)
∣∣ r ∈ R}. The map η is determined by

x 7→ (0, x) and the map M → E is determined by m 7→ (m, 1). We check that the left This sentence is
strange.hand square commutes. We now exploit the fact that in any two such commutative

diagrams with the same map θ and the same top row, the bottom row is determined
up to equivalence.

We must also check that ψ is well defined on cohomology classes. Let d ∈ Der(F,M).
We show that ψ(θ̄) and ψ(θ + d) are the same. This is so because the mapping F/R′ →
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M o F/R′ given by x 7→ (dx, x) is a homomorphism (by Lemma 3.8) and it induces a
homomorphism η̃ : F/R′ → E. We check that the diagram

1 → R/R′ → F/R′ → G → 1

θ+d

y η̃

y ‖

1 → M → E → G → 1

commutes.
We next define a mapping

φ : {equivalence classes of extensions of G by M} → H2(G,M)

as follows. Given an extension E : 1→M → E → G→ 1 lift the identity map on G to
a commutative diagram

1 → R → F → G → 1y y ‖

1 → M → E → G → 1

using that fact that F is free. Since M is abelian we have R′ ⊆ Ker(R → M), so we
get a diagram of the form (*) whose left hand vertical arrow represents φ(E). We check
that the left hand vertical arrow is indeed a ZG-module homomorphism.

We must also check that φ is well-defined, independently of the lifting of homomor-
phisms. Suppose we lift the identity on G in two ways

1 → R → F → G → 1

αi

y βi

y ‖

1 → M → E → G → 1

i = 1, 2.

For each x ∈ F let d(x) ∈ M be defined by β2(x) = d(x)β1(x). We check that
d ∈ Der(F,M), so that α2 = α1 +d and these two liftings give rise to the same element
in cohomology.

Evidently φ and ψ are mutually inverse.

Remark 3.4.10. (1) We leave it as an exercise to verify that ψ(0) is the split extension
and that the group operation in cohomology corresponds to the Baer sum of extensions.

(2) Theorem 3.15 can also be done for non-abelian groups M , replacing the module
action of G on M by a ‘coupling’ - a homomorphism from G to the outer automorphism
group of M . Now H2(G,Z(M)) classifies extensions (provided there are any, which
there might not be), where Z(M) denotes the center.

(3) We might expect H1 to classify extensions, since this is what happens for exten-
sions of modules. In fact by dimension shifting we have H2(G,M) ∼= Ext1

ZG(IG,M),
so that group extensions of G correspond to module extensions of IG. This correspon-
dence is the one we have already seen in Proposition 3.4.2.
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(4) The construction of a commutative diagram such as (*) above is analogous to
the construction of a pushout for modules, but it is not the pushout in the category of
groups (the pushout is the free product with amalgamation). The construction of (*)
is the one that is relevant in this situation and we may call it the explicit pushout.

Example 3.4.11. We compute H2(C2 × C2,F2) and identify the extensions. In this
case there are several ways to compute the cohomology, one of the fastest being to
use the Künneth theorem (which is not available to us at this stage). We will do the
computation using a presentation, to illustrate the theory just developed. The method
we shall describe may be programmed on a computer — it is really just linear algebra
— and it yields presentations of the group extensions corresponding to the cohomology
classes.

We start with the presentation G = 〈a, b
∣∣ a2, b2, [a, b]〉, which we also write as an

extension 1→ R→ F → G→ 1, and we use the exact sequence of Proposition 3.16:

Der(F,F2)→ HomZG(R/R′,F2)→ H2(G,F2)→ 0.

Let us write ā, b̄ for the images of a and b in G.
We show that Der(F,F2) has zero image in HomZG(R/R′,F2). If d ∈ Der(F,F2)

then
d(a2) = ad(a) + d(a) = 2d(a) = 0,

d(b2) = 0 similarly, and

d(aba−1b−1) = aba−1d(b−1) + abd(a−1) + ad(b) + d(a)

= −d(b)− d(a) + d(b) + d(a) = 0

using the fact that F2 has the trivial action and d(b−1) = −b−1d(b). We conclude that
H2(G,F2) ∼= HomZG(R/R′,F2). Furthermore we have

HomZG(R/R′,F2) ∼= HomZG(F2⊗Z (R/R′)/(IG ·R/R′),F2) = HomZ(F2⊗ZGR/R′,F2)

since we are now dealing with modules with trivial action.
At this point we need a good description of R/R′ in order to compute F2⊗ZGR/R′.

One approach to finding such a description is to obtain a set of free generators of R
using Schreier’s method, from which we can get matrices for the action of G on R/R′.
We will follow a different approach.

As a ZG-module, R/R′ is generated by a2R′, b2R′, [a, b]R′. This is because R is
generated as a normal subgroup of F by a2, b2 and [a, b], so that R is generated by
these elements and their F -conjugates. From this it follows that R/R′ is generated by
a2R′, b2R′, [a, b]R′ and their conjugates, which are the images under G in the module
action on R/R′.

From the exact sequence 0 → R/R′ → ZG2 → IG → 0 we may identify R/R′

as a submodule of the free module ZG2, and we express its generators in terms of
coordinates with respect to the basis

{a− 1 + IR · IF, b− 1 + IR · IF}
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of IF/(IR · IF ) ∼= ZG2. We have

a2 − 1 = (a+ 1)(a− 1)

b2 − 1 = (b+ 1)(b− 1)

aba−1b−1 − 1 = aba−1(b−1 − 1) + ab(a−1 − 1) + a(b− 1) + a− 1

= (1− aba−1)(a− 1) + (a− aba−1b−1)(b− 1).

So
a2R′ ↔ (ā+ 1, 0)

b2R′ ↔ (0, b̄+ 1)

[a, b]R′ ↔ (1− āb̄ā−1, ā− āb̄ā−1b̄−1) = (1− b̄, ā− 1)

gives the correspondence with elements of ZG2. Thus R/R′ is isomorphic to the ZG-
submodule of ZG2 generated by these last three elements on the right.

We will now compute F2 ⊗ZG R/R′, and so we will work with coefficients mod 2.
We write +1 instead of −1. Now IG · (F2 ⊗Z R/R′) is the F2G-submodule of (F2G)2

generated by the multiples ā + 1 and b̄ + 1 of the generators of F2 ⊗Z R/R′. Since
(ā+ 1)2 = 0 = (b̄+ 1)2 and (ā+ 1)(b̄+ 1) =

∑
g∈G g we obtain that

IG · (F2 ⊗Z R/R′) = 〈(
∑
g∈G

g, 0), (0,
∑
g∈G

g)〉

= (F2G
2)G

which has dimension 2. From the rank formula in Corollary 3.4.4 we have that dimF2⊗
R/R′ = 5. Therefore dim(F2⊗R/R′)/(IG · (F2⊗R/R′)) = 5− 2 = 3. Thus H2(G,F2)
is a 3-dimensional vector space over F2. We conclude that the images of the three
generators a2R′, b2R′ and [a, b]R′ form a basis for this space, since they span it.

We now construct extensions corresponding to the elements of H2(G,F2). Any
cohomology class is represented by a homomorphism φ : R/R′ → F2, and there are 8
possibilities given by the values of φ on the generators. Given such a φ the correspond-
ing extension is 1 → F2 → F/R′

/
Kerφ → G → 1. This is because this extension

appears in a commutative diagram

1 → R/R′ → F/R′ → G → 1yφ y ∥∥∥
1 → F2 → F/R′

/
Kerφ → G → 1

and the bottom row of such a diagram is determined up to equivalence by the rest
of the diagram. We give examples of homomorphisms φ and presentations for the
corresponding extension groups:

φ :


a2R′ 7→ 1

b2R′ 7→ 1

[a, b]R′ 7→ 1

E = 〈a, b
∣∣ a2 = b2 = [a, b], a4 = 1〉 ∼= Q8
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φ :


a2R′ 7→ 1

b2R′ 7→ 0

[a, b]R′ 7→ 1

E = 〈a, b
∣∣ b2 = 1, a2 = [a, b], a4 = 1, [a2, b] = 1〉 ∼= D8.

In general a presentation for an extension 1 → M → E → G → 1 is obtained
by taking a presentation of M as a group, adjoining generators for G and imposing
relations that define the module action of G on M , and finally adjoining relators that
set the relators of G equal to the elements of M to which they are mapped by φ. In
the above examples we have suppressed some of the generators and relations that arise
in this general procedure, because there are many of them. To see that the mappings
φ give extensions with the claimed presentations we observe that the relations given
are satisfied in the extension group, and we then prove that the presentation defines a
group of order 8, so must be the extension group. Insert picture.

Continuing with these calculations we find that the zero element of H2(C2×C2,F2)
is an extension with middle group C2 ×C2 ×C2, there are three elements with groups
C2×C4 forming a 2-dimensional subspace, three extensions have middle group D8 and
the remaining one has middle group Q8. This describes the structure of the group
considered by Baer with the operation of Baer sum, described in the introduction.

3.4.3 The Schur multiplier

We turn our attention to the Schur multiplier of G, which we may define to be H2(G,Z).
In other sources we find a number of different definitions of the Schur multiplier. When
G is finite there are isomorphisms (that we have not yet encountered):

H2(G,Z) ∼= H3(G,Z) ∼= H2(G,Q/Z) ∼= H2(G,C×).

Sometimes one of these other groups is taken as the definition. Neither Schur nor Hopf
had group cohomology available to them to define the multiplier. It is also possible to
define it in group theoretic terms using the next theorem (although we would then have
to deal with the question that the isomorphism type of the group defined is independent
of the choices made). After this next result we give an account of the role of the Schur
multiplier in purely group theoretic terms.

When H and K are subgroups of a group G we write [H,K] for the subgroup
generated by all commutators [h, k] where h ∈ H and k ∈ K.

Theorem 3.4.12 (Hopf formula). Let 1 → R → F → G → 1 be a presentation of G.
Then H2(G,Z) ∼= (R ∩ F ′)/[R,F ].

Write something
about the history
and what it was
that Hopf
proved.

The quotient group in the statement of the theorem is illustrated in the following
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diagram.
• F

H1(G,Z) = G/G′ { |
• 〈R,F ′〉

� �
R • • F ′

� �
• R ∩ F ′

H2(G,Z) { |
• [R,F ]
|
• R′

|
• 1

We see two homology groups identified as quotients of subgroups of F . In fact all
integral homology groups may be interpreted in this way, as has been observed by
Gruenberg (insert reference).

Proof. We use the short exact sequence 0→ IR/(IR · IF )→ IF/(IR · IF )→ IG→ 0
to compute H2(G,Z). By Corollary 3.4.3 this sequence identifies as 0 → R/R′ →
ZGd(F ) → IG→ 0. After applying Z⊗ZG − to it we obtain

H2(G,Z) = Ker(Z⊗ZG (IR/(IR · IF ))→ Z⊗ZG (IF/(IR · IF ))).

This map is induced by inclusion IR → IF . In identifying these groups we observe
that ⊗ZG is the same as ⊗ZF because the action of IR has been factored out, and also
that Z ∼= ZF/IF , so that

Z⊗ZG IF/(IR · IF ) = Z⊗ZF IF/(IR · IF ) ∼= IF/(IF 2 + IR · IF ) = IF/IF 2 ∼= F/F ′.

Also
Z⊗ZG IR/(IR · IF ) ∼= Z⊗ZG R/R′ ∼= R/[R,F ]

since this is the largest quotient of R/R′ on which G (or F ) acts trivially. From this
we obtain that

H2(G,Z) = Ker(R/[R,F ]→ F/F ′)

where the map is induced by inclusion of R in F . Evidently this kernel is R∩F ′/[R,F ].

Corollary 3.4.13. The isomorphism type of (R ∩ F ′)/[R,F ] is independent of the
choice of presentation of G.

Proof. This comes from the fact that homology groups are well defined.

A central extension 1 → M → E → G → 1 is a group extension in which M is
contained in the center Z(E). Equivalently, [M,E] = 1.
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Lemma 3.4.14. Let 1→M → E → G→ 1 be a central group extension and consider
a commutative diagram of groups

1 −→ L −→ J −→ G −→ 1yφ yψ ‖

1 −→ M −→ E −→ G −→ 1.

Then

1. the restricted vertical maps J ′ → E′ and L ∩ J ′ →M ∩ E′ are surjective, and

2. the group M ∩ E′ is a homomorphic image of H2(G,Z).

Proof. (1) We show that every commutator [e, f ] ∈ E′ is in the image of J ′. We
can write these elements of E as e = ψ(ê)me and f = ψ(f̂)mf for some elements

me,mf ∈M and ê, f̂ ∈ J . Then

= [ψ(ê)me, ψ(f̂)mf ]

= [ψ(ê), ψ(f̂)]

= ψ([ê, f̂ ])

and this shows surjectivity J ′ → E′. By considering the commutative diagram

1 −→ L ∩ J ′ −→ J ′ −→ G′ −→ 1yφ yψ ‖

1 −→ M ∩ E′ −→ E′ −→ G′ −→ 1

a similar argument to that used to prove the snake lemma shows that L∩J ′ →M ∩E′
is surjective. Specifically, if g ∈ M ∩ E′ then g = ψ(h) for some h ∈ J ′. The image of
h in G′ equals the image of g in G′, which is 1, so h lies in L∩ J ′ and so the restriction
of φ to L ∩ J ′ is surjective.

(2) There is a diagram

1 −→ R/[R,F ] −→ F/[R,F ] −→ G −→ 1yφ yψ ‖

1 −→ M −→ E −→ G −→ 1.

This comes from first producing a similar diagram without the terms [R,F ] factored
out, using the free property of F , and then observing that [R,F ] lies in the kernel of
the vertical maps because M is central in E. From part (1) we have that M ∩ E′ is a
homomorphic image of (R/[R,F ]) ∩ (F/[R,F ])′ = (R ∩ F ′)/[R,F ].

We say that a central extension 1 → M → E → G → 1 is a stem extension if
M ⊆ E′ (or, equivalently, if the induced map E/E′ → G/G′ is an isomorphism).
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Class Activity. How many times was the central property used in the last proof?
Is the equivalence with E/E′ → G/G′ being an isomorphism easy to see, or difficult?
Which of the group extensions 1→ C2 → E → C2×C2 → 1 that we considered before
are stem extensions? What can we deduce about H2(C2 × C2,Z)?

A group G is said to be perfect if and only if G = G′. For example, simple non-
abelian groups are perfect, and so are other groups such as SL(2, 5) of order 120, which
has a unique element of order 2 with quotient A5. The theory of central extensions is
most easily described for perfect groups, which is why we focus on them.

Proposition 3.4.15. Let G be a perfect group. A central extension 1 → M → E →
G→ 1 is stem if and only if E is perfect.

Proof. In one direction, if E is perfect then certainly M ⊆ E′. Conversely, suppose
that M ⊆ E′. The commutator subgroup E′ maps surjectively to G′ = G, so by the
correspondence between subgroups of G and subgroups of E that contain M , we deduce
that E′ = E.

The next result describes all central stem extensions of a given perfect group.

Theorem 3.4.16. Suppose that G is a perfect group. There exists a central stem
extension 1→ A→ Ĝ→ G→ 1 with the property that whenever 1→M → E → G→
1 is a central stem extension there exists a unique commutative diagram

1 → A → Ĝ → G → 1y yφ ‖

1 → M → E → G → 1

Moreover A ∼= H2(G,Z) and all group extensions 1→ A→ Ĝ→ G→ 1 satisfying the
above property are isomorphic.

The notion of isomorphism of extensions just used is as follows. We may form a
category whose objects are extensions of G and in which the morphisms are commuta-
tive diagrams of the kind in this theorem, with the identity map on G as the right hand
vertical morphism. An isomorphism of extensions of G is an invertible such morphism,
and is characterized by the fact that all its vertical morphisms are isomorphisms.

Proof. Let 1 → R → F → G → 1 be a presentation of G. The extension with the
special property we seek is 1 → (R ∩ F ′)/[R,F ] → F ′/[R,F ] → G′ = G → 1. We
saw in the proof of Lemma 3.4.14 also that there is always a commutative diagram of
extensions with this sequence as the top row and with bottom row 1 → M ∩ E′ →
E′ → G′ → 1, but in this case both G and E are perfect and M ∩ E′ = M , so there
is a commutative diagram as claimed. We must show that Ĝ := F ′/[R,F ] is perfect.
Since G = G′ = F ′R/R we have F ′R = F so F ′ = [F ′R,F ′R] ⊆ [F ′R,F ′R][R,F ] ⊆
[F ′, F ′][R,F ] = F ′′[R,F ] ⊆ F ′ because R is central modulo [R,F ]. Thus

(F ′/[R,F ])′ = F ′′[R,F ]/[R,F ] = F ′/[R,F ]
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and F ′/[R,F ] is perfect. It follows from Proposition 3.4.15 that this extension is stem.
We show that in any commutative diagram as in the statement of the theorem where

the bottom row is prescribed, the vertical homomorphisms are uniquely determined.
If there were two homomorphisms φ, say φ1 and φ2, then for all x ∈ Ĝ we would have
φ2(x) = mxφ1(x) for some mx ∈M . Now

φ2([x, y]) = [mxφ1(x),myφ1(y)] = [φ1(x), φ1(y)] = φ1([x, y])

since mx and my are central. Since Ĝ = Ĝ′ is generated by commutators, φ1 = φ2.
It follows that any two extensions satisfying the property of the theorem are iso-

morphic, since we would have two commutative diagrams

1 → A1 → Ĝ1 → G → 1xy φ2

xyφ1 ‖

1 → A2 → Ĝ2 → G → 1

and the composites must be the identity by uniqueness of the lift of the identity.

The group Ĝ is called the universal cover or stem cover of the perfect group G. It
is a maximal stem extension of G, in the sense that all others are images of it, and Ĝ is
a perfect group. When G is not perfect there may be several maximal stem extensions
of G. They are all central extensions of G by H2(G,Z) and are constructed by factoring
out from F/[R,F ] the various complements to (R∩F ′)/[R,F ] in R/[R,F ] obtained by
splitting the surjection R/[R,F ]→ R/(R ∩ F ′).

We continue with the theory for perfect groups. The next result will be useful in a
subsequent example.

Proposition 3.4.17. Let G be a perfect group and 1 → M → E → G → 1 a central
stem extension of G. Then E is the universal cover of G if and only if H2(E,Z) = 0.

Proof. We will use Witt’s identity (analogous to the Jacobi identity for Lie algebras)

b[a, [b−1, c]] · c[b, [c−1, a]] · a[c, [a−1, b]] = 1,

which holds in all groups. We prove this by expanding the terms and cancelling.
“⇒” Let E be the universal cover of G and Ê the universal cover of E (noting that

E is perfect). Let K be the kernel of the composite Ê → E → G. An argument similar
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in spirit to the snake lemma applied to the diagram

1y
H2(E,Z)y

1 −→ K −→ Ê −→ G −→ 1y yα ∥∥∥
1 −→ M −→ E −→ G −→ 1∥∥∥ y

H2(G,Z) 1

shows that K is an extension 1→ H2(E,Z)→ K →M → 1 where M = H2(G,Z).
We show that K ≤ Z(Ê). Let k ∈ K, g, h ∈ Ê. Then [g−1, k] ∈ H2(E,Z)

since M ≤ Z(E), and now [h, [g−1, k]] = 1 in Ê since H2(E,Z) ≤ Z(Ê). Similarly
[g, [k−1, h]] = 1. Therefore by Witt’s identity [k, [h−1, g]] = 1 for all g, h ∈ Ê and
k ∈ K. But Ê is generated by commutators [h−1, g], so [k, Ê] = 1 and k ∈ Z(Ê). We
conclude that 1→ K → Ê → G→ 1 is a central stem extension of G.

Now by universality of E we have a commutative diagram

1 −→ M −→ E −→ G −→ 1y yβ ∥∥∥
1 −→ K −→ Ê −→ G −→ 1

in which the vertical homomorphisms are surjections. We have seen before that the
composite αβ = 1E so β is also a monomorphism. Therefore α is an isomorphism, and
its kernel H2(E,Z) must be trivial.

“⇐” Suppose that H2(E,Z) = 0 and let 1 → H2(G,Z) → Ẽ → G → 1 be the
universal cover of G. Then there is a commutative diagram

1 −→ H2(G,Z) −→ Ẽ −→ G −→ 1y yβ ∥∥∥
1 −→ M −→ E −→ G −→ 1

with surjective vertical maps, and 1→ Kerβ → Ẽ → E → 1 is a stem central extension,
because E is perfect and Kerβ is contained in the central subgroup H2(G,Z) of Ẽ.
Now Kerβ is a homomorphic image of H2(E,Z), so it is the identity group, and β is
an isomorphism.
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We conclude this treatment of the Schur multiplier with a connection with presen-
tations of groups, providing a way to calculate it, and also giving an application of the
theory.

Proposition 3.4.18. Let G be a finite group with a presentation using d generators and
r relators. Then the minimum number of generators of the Schur multiplier satisfies
d(H2(G,Z)) ≤ r − d.

Proof. Because R/[R,F ] is a homomorphic image of R and the action of F on it
induced by conjugation is trivial, it can be generated by generated by the images of
the r relators, so that d(R/[R,F ]) ≤ r. It has as a quotient R/(R ∩ F ′), which is
isomorphic to RF ′/F ′ by the second isomorphism theorem. This group is free abelian,
because it is a subgroup of the free abelian group F/F ′. Thus the extension of abelian
groups

1→ (R ∩ F ′)/[R,F ]→ R/[R,F ]→ R/(R ∩ F ′)→ 1

is split. This means

R/[R,F ] ∼= (R ∩ F ′)/[R,F ]⊕R/(R ∩ F ′)

and
d(R/[R,F ]) = d((R ∩ F ′)/[R,F ]) + d(R/(R ∩ F ′))

because the last group on the right is free abelian. In fact, d(R/(R∩F ′)) = d(RF ′/F ′) =
d(F ) because R/(R ∩ F ′) = RF ′/F ′ is a subgroup of finite index in the free abelian
group F/F ′ of rank d. Recall that (R ∩ F ′)/[R,F ] ∼= H2(G,Z) is Hopf’s formula.
Putting this together gives the result.

Example 3.4.19. There are presentations Put the first two
presentations
earlier?S3 = 〈x, y

∣∣ x2 = 1, xyx−1 = y2〉,
Q8 = 〈x, y

∣∣ x2 = y2, xyx = y〉,
SL(2, 5) = 〈x, y

∣∣ x2 = y3 = (xy)5〉.

In the first presentation we deduce that y = x2yx−2 = x(xyx−1)x−1 = xy2x−1 = y4, so
y3 = 1, giving a familiar presentation of S3. In the second presentation we deduce that
xyx−1 = yx−2 = y−1 and also yxy−1 = x−1, so that yx−1y−1 = x. From this we may
deduce that the commutator xyx−1y−1 = x2 = y−2 = x−2, so that x4 = 1, and this
gives a familiar presentation of Q8. For the third presentation we may deduce from a
computer algebra system that the presentation is of a group of order 120 with a unique
element of order 2.

Because these presentations have the same number of relators as generators, we
conclude that the Schur mulitpliers of these groups are 0, by Proposition 3.4.18. Fur-
thermore, we may compute from the presentation that the group labeled SL(2, 5) is
perfect. To do this, impose the relators on a free abelian group of rank 2 and put them
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into Smith normal form to compute the abelianization. We can find generators of A5

satisfying those relations, so there is a short exact sequence

1→ C2 → SL(2, 5)→ A5 → 1.

We deduce that H2(A5,Z) = C2 by Proposition 3.4.17. It follows from this that in any
presentation of A5 the number of relators must exceed the number of generators by at
least 1, by Proposition 3.4.18.

The extension 1 → C2 → Q8 → C2 × C2 → 1 is stem, and so we deduce that
H2(C2×C2,Z) has C2 as an image. Furthermore, Q8 admits no further stem extension,
because its multiplier is trivial. A refinement of the argument for perfect groups shows Refinement?

Draw a picture of
the stem
extensions,
including SD2n

etc.

that, in fact, H2(C2 × C2,Z) is a group of order 2. There is also a maximal stem
extension 1 → C2 → D8 → C2 × C2 → 1, but in this case H2(D8,Z) 6= 0 because
there is a further stem extension 1 → C2 → D16 → D8 → 1, applying Lemma 3.4.14.
Thus, without the hypothesis that a group be perfect, it need not be the case that its
maximal stem extensions are characterized by having trivial multiplier, in the manner
of Proposition 3.4.17.

We have seen that if a finite group G has a presentation with the same number
of generators as relators then the Schur multiplier must be 0. In 1955 B.H. Neumann
asked the converse question: whether H2(G,Z) = 0 for a finite group G implies that
G has a presentation with the same number of generators and relations. This was
answered in the negative by Swan in 1965 (Topology 4, pages 193-208), who showed
that for the groups (C7 × · · · ×C7)oC3 with an arbitrary number of cyclic factors C7

and where C3 acts on each C7 factor by squaring, the Schur multiplier is 0, but r − d
increases without bound.

3.5 Special properties of the cohomology of finite groups

We collect some special properties of homology and cohomology that only hold when
G is finite.

Proposition 3.5.1. If G is a finite group and M is a finitely generated ZG-module
then Hn(G,M) and Hn(G,M) are finitely generated for all n.

Proof. The arguments we shall give all depend on the fact that subgroups (and quotient
groups) of finitely generated abelian groups are finitely generated; in other words, Z
is Noetherian. Observe that a ZG-module is finitely generated as a ZG-module if and
only if it is finitely generated as an abelian group, because G is finite. We start by
constructing a ZG-projective resolution of Z in which all the modules and kernels are
finitely generated as abelian groups (or as ZG-modules). Assuming that the kernel
at some stage in the resolution is finitely generated, we map a finitely generated ZG-
projective module onto it and the kernel is again finitely generated as an abelian group,
hence as a ZG-module. We repeat the process.
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We next apply the functors HomZG(−,M) and M⊗ZG− to this projective resolution
and again obtain complexes of finitely generated abelian groups because HomZG(P,M) ⊆
HomZ(P,M), which is a finitely generated abelian group if P and M are, and M⊗ZGP
is an image of M ⊗Z P which is finitely generated. The homology groups of these
complexes are again finitely generated by the structure of finitely generated abelian
groups.

Proposition 3.5.2. Suppose that G is a finite group. Let A and B be left ZG-module,
C a right ZG-module and suppose that A is free as an abelian group. Then |G| ·
ExtnZG(A,B) = 0 and |G| · TorZGn (C,A) = 0 for all n ≥ 1.

Proof. Let

· · · → P2
d2−→ P1

d1−→ P0 → A → 0

↘ ↗ ↘ ↗

K1 K0

be a projective resolution of A, so that

HomZG(Pn−1, B)→ HomZG(Kn−1, B)→ ExtnZG(A,B)→ 0

is exact if n ≥ 1. Given a ZG-module homomorphism θ : Kn−1 → B we show that
|G|·θ lies in the image of HomZG(Pn−1, B). Since the kernels Kn are submodules of free
modules they are free abelian groups, so that the exact sequence 0→ Kn−1 → Pn−1 →
Kn−2 → 0 is split as a sequence of abelian groups, and Pn−1

∼= Kn−1⊕Kn−2 as abelian
groups. We extend θ to a map η : Pn−1 → B of abelian groups in any way we choose,
for example, η = (θ, 0) : Kn−1 ⊕Kn−2 → B. Then η̃ =

∑
g∈G gηg

−1 : Pn−1 → B is a
ZG-module homomorphism by a familiar argument in representation theory, and with
η̃|Kn−1 = |G|θ because η commutes with the action of G on Kn−1.

The argument for Tor is similar.

The argument we have just given works without the hypothesis that A is free as
an abelian group, provided n ≥ 2. It is not always true that |G| · Ext1

ZG(A,B) = 0
for arbitrary modules A and B. For example, if we take A = B = Z/mZ with the
trivial ZG-action we have Ext1

ZG(A,B) ∼= Z/mZ, and in fact 0→ Z/mZ→ Z/m2Z→
Z/mZ→ 0 is a non-split extension of order m in the Ext group. There is no restriction
on m here, and it does not have to be a divisor of |G|. Also, if k is a field and A and
B are kG-modules then |G| · ExtnkG(A,B) = 0 for all n ≥ 1.

The special case that |G| annihilates Hn(G,M) and Hn(G,M) when n ≥ 1 is often
proved using the properties of the restriction and corestriction maps (which we have
not yet defined). It is a quick proof, but so is the one we have given. The proof here is
more elementary because there is no need to define restriction and corestriction, and
it applies more generally.
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Corollary 3.5.3. If G is a finite group and M is a finitely generated ZG-module then
for all n ≥ 1, Hn(G,M) and Hn(G,M) are finite abelian groups of exponent dividing
|G|.

We say that the abelian group A is uniquely divisible by an integer n if for all
a ∈ A there exists a unique b ∈ A with a = nb. This happens if and only if the
homomorphism n : A→ A is an isomorphism. We say that A is uniquely divisible if it
is uniquely divisible by every positive integer n. For example, Q and R are uniquely
divisible; Q/Z is divisible, but not uniquely. If A is finite and g.c.d(|A|, n) = 1 then A
is uniquely divisible by n.

Corollary 3.5.4. If G is a finite group and M is a ZG-module that is uniquely divisible
by |G| as an abelian group, then Hn(G,M) = 0 and Hn(G,M) = 0 for all n ≥ 1.

Proof. Since multiplication |G| : M → M is an isomorphism, so is |G| : Hn(G,M) →
Hn(G,M) by functoriality of cohomology. This map is zero if n ≥ 1, by Proposi-
tion 3.5.2, so it follows that Hn(G,M) = 0 if n ≥ 1. The argument with Hn(G,M) is
similar.

The vanishing of homology and cohomology on a class of modules allows us to do
‘dimension shifting’ in the same way as we have seen using projective and injective
modules.

Corollary 3.5.5. Let G be a finite group. Then

Hn(G,Z) ∼= Hn−1(G,Q/Z) ∼= Hn−1(G,C×)

for all n ≥ 2, with similar isomorphisms in homology.

Proof. For the first isomorphism we use the long exact sequence in cohomology asso-
ciated to the short exact sequence 0 → Z → Q → Q/Z → 0. Because Q is uniquely
divisible, the terms Hn(G,Q) are all zero when n ≥ 1, and this gives the result.

In the second isomorphism C× denotes the multiplicative group of nonzero complex
numbers, which is isomorphic to R×>0×S1 via the correspondence z ↔ (|z|, arg(z)). We
thus have a short exact sequence 1→ Z→ R×>0 × R+ → C× → 1. Because R×>0

∼= R+

via the natural logarithm, the term in the middle of this sequence is uniquely divisible
and now the long exact sequence associated to the exact sequence gives the result.

Example 3.5.6. Several apparently different definitions of the Schur multiplier can be
found in the literature, and we now explain how they are connected. We need a result
that we have not yet considered, known as the integral duality theorem. This states, for Do integral

duality
somewhere.

a finite group G, that Hn+1(G,Z) ∼= Hn(G,Z) when n ≥ 1. Putting this together with
Corollary 3.5.5, we have H2(G,Z) ∼= H3(G,Z) ∼= H2(G,C×) ∼= H2(G,Q/Z). These
groups are all isomorphic to the Schur multiplier when G is finite. When G is not finite
we need to use the definition H2(G,Z).

The following theorem was introduced by Zassenhaus in his book of 1937, where he
attributes the result to Schur. We will give the first step in the proof
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Theorem 3.5.7 (Schur-Zassenhaus). Let 1 → M → E → G → 1 be a short exact
sequence of finite groups where g.c.d.(|M |, |G|) = 1. Then the extension is split, so
that E ∼= M o G. Under the further assumption that one of M or G is solvable, all
subgroups of E of order |G| are conjugate.

The last statement is still correct without the assumption that one of M or G is
solvable, because one of these groups must have odd order and so be solvable by the
Feit-Thompson theorem, but this is a much harder result.

Proof. We only give the proof in the case where M is abelian. Here H2(G,M) =
H1(G,M) = 0 by Corollary 3.5.4, so the result follows from our interpretation of
second and first cohomology.

Let C be an abelian group. We will call any module of the form ZG⊗ZC an induced
module, and any module of the form HomZ(ZG,C) a coinduced module. The latter is
made into a left ZG-module using the right action on ZG. Thus if φ : ZG → C and
g, x ∈ ZG then (gφ)(x) := φ(xg).

Lemma 3.5.8. If M is coinduced then Hn(G,M) = 0 for all n ≥ 1. If M is induced
then Hn(G,M) = 0 for all n ≥ 1.

There is no restriction on G for this result.

Proof. Let M = HomZ(ZG,C) for some abelian group C. We compute cohomology
with coefficients in M by applying the functor HomZG(−,HomZ(ZG,C)) to a projective
resolution and taking cohomology of the resulting cochain complex. For any module
P we have a natural isomorphism HomZG(P,HomZ(ZG,C)) ∼= HomZ(ZG⊗ZG P,C) ∼= Make sure this

adjoint
isomorphism is
somewhere in the
text.

HomZ(P,C). Applying the functor HomZ(−, C) to a projective resolution of Z, we get
an acyclic complex (meaning that it has zero homology) because, as abelian groups,
the projective resolution splits. This means that each term in the resolution is the
direct sum of the image of one differential and the kernel of the next, so that the
complex obtained by applying HomZ(−, C) has the same property, so is acyclic. Thus
Hn(G,M) = 0 for n ≥ 1. Similarly to compute homology we consider terms P ⊗ZG
ZG ⊗Z C ∼= P ⊗Z C, and again applying − ⊗Z C to the projective resolution gives an
acyclic complex for the same reason.

Proposition 3.5.9. If G is finite then induced and coinduced modules coincide. Hence
cohomology vanishes on induced modules in degrees ≥ 1, as does homology. If P is a
projective RG-module for some commutative ring R then Hn(G,P ) = 0 for all n ≥ 1.

Proof. For any abelian group C we define a mapping ZG ⊗Z C → HomZ(ZG,C) by
g ⊗ c 7→ φ(g,c) where φ(g,c) : ZG→ C is the homomorphism determined by

φ(g,c)(h) =

{
c if g = h−1,

0 otherwise.

We check that this is a homomorphism of ZG-modules that is always injective, and is Write out the
check? Class
activity? Write
something about
using R.
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surjective if G is finite.
For the final statement about projective RG-modules, observe that RG = ZG⊗ZR

is an induced module left ZG-module, so that cohomology vanishes on it when n ≥ 1.
Projective modules are direct summands of sums of such modules, so cohomology also
vanishes on them.

Remark 3.5.10. There is another left action of G on HomZ(ZG,C) that is often seen
where, for each element g ∈ G, we use the left action of g−1 on ZG. Thus for a
homomorphism φ we take (gφ)(x) = φ(g−1x), as distinct from gφ(x) = φ(xg). The two
ZG-modules HomZ(ZG,C) obtained in this way are isomorphic, with an isomorphism
being given on morphisms φ by composing with the anti-automorphism of ZG that
inverts the group elements. We chose to use the right action on ZG in the definition
of the left action on a coinduced module because this is available for every ring and
because it fits well with the adjunction of Hom and tensor product.

Corollary 3.5.11. Let C be an abelian group. Any group extension

1→ ZG⊗Z C → E → G→ 1

with G finite must split, giving a wreath product E ∼= C oG. Furthermore, all comple-
ments in E to the base group C |G| are conjugate.

Proof. The group C o G is the wreath product with G permuting copies of C in the
regular action, and we simply observe that the base group in this wreath product is
the induced module ZG⊗ZC. The vanishing of first and second cohomology proves all
the statements.



Chapter 4

Crystallography

4.1 Groups associated to Rn

We start by introducing notation for groups associated to the vector space Rn, which
we take to be the set of column vectors of length n with entries in R. We will also put
the standard inner product on Rn, so that it has a notion of distance, and it becomes
Euclidean space En. The only difference between Rn and En is that the latter comes
equipped with the inner product.

Definition 4.1.1. • The general linear group GL(n) is the group of invertible lin-
ear transformations Rn → Rn. It can be identified as the group of invertible
n× n-matrices.

• We write T (n) for the group of all mappings tw : Rn → Rn of the form tw(v) =
v+w, for some vector w ∈ Rn. This mapping tw is translation through the vector
w.

• The set of all distance-preserving linear maps En → En is the group O(n) of
orthogonal transformations. It can be identified as the group of all n×n-matrices
A with the property that ATA = I is the identity matrix, and its elements have
determinant ±1. When n = 2 the elements of determinant +1 are rotations, and
those with determinant −1 are reflections.

• Given α ∈ GL(n) and w ∈ Rn, let φw,α : Rn → Rn be the mapping specified by
φw,α(v) = α(v) + w. Such a mapping is called an affine transformation of Rn.
The translations tw are the special case that arises when α is the identity. The
set

Aff(n,R) = {φw,α
∣∣ w ∈ Rn, α ∈ GL(n)}

is the affine group in dimension n.

• Let R(n) be the group of distance preserving transformations, or rigid motions
of En.

52
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Rigid motions of En are also called isometries of En.

Example 4.1.2. We describe all the rigid motions of E2. A rigid motions of E2 is one
of the following:

• a translation tw,

• a rotation about some point in E2,

• a reflection in some (affine) line of E2, or

• a glide reflection.

Glide reflections are transformations φw,α(v) = α(v) + w where w is a nonzero vector
in E2 and α is reflection in the line determined by w. To see that this is a complete
list of rigid motions, take an arbitrary rigid motion θ of E2 and consider the composite
η = t−θ(0)θ. This is a rigid motion that fixes 0, so it is an orthogonal transformation
of E2, hence a reflection or a rotation. Now θ = tθ(0)η and by examining the possible
maps that can arise in this way we see that it is one of the four kinds of rigid motion
listed.

Proposition 4.1.3. 1. The sets GL(n), T (n), O(n), Aff(n) and R(n) are all groups
under composition of mappings.

2. T (n) ∼= Rn.

3. Aff(n) = T (n)oGL(n). This group is isomorphic to the group of (n+1)×(n+1)

block matrices of the form

[
α w
0 1

]
where w ∈ Rn and α ∈ GL(n).

4. R(n) = T (n) o O(n). This group is a subgroup of Aff(n), isomorphic to the

group of (n+ 1)× (n+ 1) block matrices of the form

[
α w
0 1

]
where w ∈ Rn and

α ∈ O(n).

Proof. To see that Aff(n) is closed under composition and taking inverses, we compute
that φu,βφw,α = φu+β(w),βα and φ−1

w,α = φ−α−1(w),α−1 . We see that R(n) ∼= T (n)oO(n),
because any rigid transformation is the product of a translation and an element of O(n),
clearly T (n) / R(n) and O(n) ∩ T (n) = 1. To be completed.

Is it obvious that
every rigid
transformation is
a product of a
translation and
an orthogonal
transformation?

The set of (n+ 1)× (n+ 1)-matrices is a metric space, with the distance between
two matrices being the usual distance between vectors in R(n+1)2 . Thus Aff(n,R)
becomes a metric space by restriction of the distance function in its realization as a set
of (n + 1) × (n + 1)-matrices, as do all of the groups GL(n), T (n), O(n), and R(n),
which are subgroups of Aff(n). Notice that the distance function this defines on the
translation group T (n), which identifies with (n + 1) × (n + 1) matrices of the form[
I w
0 1

]
, is the same as the distance function obtained by identifying T (n) with En: the
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length of a translation tw is the same as the length of the vector w. We will use the
fact that O(n) is compact: it consists of matrices A with ATA = I so it is closed and
bounded.

Theorem 4.1.4. Let H be a subgroup of R(n). The following are equivalent.

1. H is discrete in the induced topology as a subset of R(n),

2. H ∩ T (n) is discrete in the induced topology as a subset of R(n),

3. there exists a number d > 0 such that every non-identity element of H ∩T (n) has
length at least d.

4. there exists a number d > 0 such that, for every vector w ∈ En and every non-
identity element of t ∈ H ∩ T (n), the distance from w to tw at least d.

5. there exists a number d > 0 such that, for every vector w ∈ En and every non-
identity element of g ∈ H, either w = gw or the distance from w to tw at least
d.

Proof missing.
Part of it is in
Prop 4.3.1Definition 4.1.5. We say that a subgroup H of Aff(n,R) is discrete if its induced

topology is discrete. Equivalently, this means that, for all h ∈ H, there exists d > 0 so
that the ball Bd(h) of radius d has Bd(h) ∩H = {h}.

Proposition 4.1.6. Let H be a subgroup of the group T (n) of all translations of Rn.
The following are equivalent.

1. H is discrete.

2. H is generated by r independent translations for some r ≤ n. Thus H ∼= Zr.

Proof. The implication (2) implies (1) is immediate.
To prove that (1) implies (2), assume condition (1). We show that H ∼= Zr for some

r ≤ n by induction on n. When n = 0 evidently H must be the trivial group, so the
result holds, and this starts the induction.

Now suppose that n > 0 and the result is true for smaller values of n. It is convenient
for the notation to let X := H · 0 be the set of translates of the zero vector under the
action of H, so that a translation tw ∈ H corresponds to the vector w ∈ X, and X is
a discrete subset of Rn.

We can find a non-zero vector v ∈ X that cannot be expressed as v = λw for
any w ∈ X with λ > 1. To do this, start with any non-zero vector u ∈ X. By
discreteness of X, the closed ball center 0 with ‖u‖ as radius only contains finitely
many elements of X, and we may let v be such an non-zero element of minimal length.
We see that the subgroup generated by v is 〈v〉 = X ∩ Rv, because if X ∩ Rv were
larger than this we could find a vector w in it with v = λw and λ > 1. We claim that
X/〈v〉 ∼= (X + Rv)/Rv is a discrete subgroup of Rn−1. To see this, we show that if
w ∈ X − Rv then the distance from w to any point on Rv is greater than some fixed
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ε > 0. The justification for this is that the possible distances from points in X to the
line segment between 0 and v are the same as the possible distances from points in X
to the line segment between nv and (n+ 1)v for every n, since addition of v preserves
these distances. Since this line segment is compact, there is a closest point w to it, and
we can take ε to be smaller than the distance between w and the line segment.

Now, by induction, (X + Rv)/Rv is isomorphic to Zr−1 for some r ≤ n, generated
by certain vectors v1 +〈v〉, . . . , vr−1 +〈v〉. We see that v1, . . . , vr−1, v generate X, which
is a torsion free abelian group, so it is isomorphic to Zr.

We remark that finitely generated subgroups of T (n) are always free abelian, being
torsion free, but there are many of these subgroups that are not discrete and their rank
may be larger than n. For instance, if we take non-zero real numbers a and b for which
a/b is not rational then the subgroup generated by a and b is dense in R.

There is an action of GL(n) on T (n) given by conjugation within Aff(n), which
restricts to an action of O(n) on T (n) given by conjugation within R(n). After iden-
tifying T (n) with En, these are the same as the usual action of GL(n) on Rn, and of Put this

somewhere else.O(n) on En. That is to say, if α ∈ GL(n) and tw ∈ R(n) is translation by the vector
w ∈ Rn then αtwα

−1 = tαw ∈ Aff(n). In the case of the action of O(n), the action is
by orthogonal transformations of T (n), after it is identified with En.

4.2 Crystal structures and their space groups

One notion of a crystalline substance in the real (3-dimensional) world is that it is
a substance whose molecules are positioned in a pattern that repeats itself, in each
of three independent directions. This is suggested by the property that a crystal will
break cleanly along certain planes of cleavage when struck by a blow from a sharp edge
parallel to that plane, and that the normal vectors to such planes of cleavage can be
chosen to be in three independent directions. Such a property is not shared by glass,
for example, which tends to be amorphous, and will shatter into unorganized pieces no
matter how it is struck.

The symmetry properties of such a crystal are the most important part of the
information obtained in examining the crystal by means of X-ray crystallography. For
these practical applications a classification of the possible crystals that can arise, in
terms of their symmetry, is crucial. This is a mathematical problem, and it starts with
an abstract formulation of what we mean by a crystal. We give it a different name to
make the distinction between the object seen in real life and its mathematical model.

Definition 4.2.1. A crystal structure in dimension n is a subset C of n-dimensional
real Euclidean space En such that

• Among the rigid motions of En that send C → C, there exist n linearly independent
translations, and

• there exists a number d > 0 such that every non-identity translation preserving
C has magnitude at least d.
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We let S(C) denote the group of rigid motions En → En that preserve C. This is
the space group corresponding to C. We will say that a group G is a space group in
dimension n if it is the space group of some crystal structure in dimension n.

The subgroup

T = {t ∈ S(C)
∣∣ t is a translation} = S(C) ∩ T (n)

is called the translation subgroup. It is a normal subgroup of S(C), and the quotient
P = S(C)/T is called the point group.

Class Activity. At this point some examples are presented where point groups are
calculated. Insert examples.

It is tempting to think that in the action of S(C) on En, the point group is a group
of orthogonal transformations fixing some point, but this need not be the case. In
fact it will happen precisely when the extension 1 → T → S(C) → P → 1 is split,
because then the realization of P as a subgroup of S(C) provides a splitting. In general
this subtle point means that one genuinely has to work with quotient groups in the
definition and calculation of the point group.

There is, however, a module action of P on T given by conjugation within S(C).
This comes about because conjugation T by of elements of S(C) make T into a module
for S(C). Because T acts trivially in this action, it gives rise to an action of the quotient
group P . By considering the embedding

P = S(C)/(S(C) ∩ T (n)) ∼= (T (n) · S(C))/T (n) ↪→ R(n)/T (n) = O(n)

we see that the conjugation action on T is by orthogonal transformations. We reiterate
that this action does not come from the initial action of S(C) on En.

Lemma 4.2.2. Let S(C) be a space group in dimension n. Then T ∼= Zn, P acts
faithfully on T in the action given by conjugation, and P is finite.

Proof. By Theorem 4.1.4, T is a discrete subgroup of T (n), and it contains n indepen-
dent elements. It follows by Proposition 4.1.6 that T ∼= Zn.

Because P embeds in O(n), which acts faithfully on T (n), P also acts faithfully on
T (n). But now T (n) ∼= R⊗Z T and so P must act faithfully on T by conjugation. since
any element that acted trivially would also act trivially on T (n).

Let T = 〈t1, . . . , tn〉. Consider the set P{t1, . . . , tn} of all images of these generators
under the conjugation action of P . This is a subset of T , which is discrete. This set
is permuted faithfully by P and its elements lie inside a closed ball of finite radius,
because P acts as a subgroup of O(n), preserving lengths of vectors. Since the closed
ball is compact, the set is finite, and so P is finite.

4.3 Characterizations of space groups

In this section we present two further equivalent characterizations of space groups.
One reason for doing this is that in consulting the literature on these groups different
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definitions are encountered and the theory is developed from that standpoint, without
showing that it is the equivalent to theory developed from a different standpoint. The
main reason, for our purposes, is that we will use the algebraic characterization that
we obtain as part of the approach to classifying space groups.

Theorem 4.3.1. Let G be a subgroup of R(n). Then G is a space group in dimension
n if and only if G is a discrete subgroup of R(n) that contains n linearly independent
translations.

Proof. If G is a space group then we know it is a discrete subgroup of R(n) by Theo-
rem 4.1.4, and it contains n linearly independent translations.

Conversely, suppose that G is a discrete subgroup of R(n) that contains n linearly
independent translations. Then G∩T (n) is a discrete subgroup of T (n) and it contains
n independent translations, so G∩ T (n) ∼= Zn is a lattice, generated by n independent
translations, by Proposition 4.1.6. Furthermore, G/(G ∩ T (n)) embeds as a discrete
subgroup of O(n) under the mapping R(n)→ O(n), which is projection onto the second
factor under the identification R(n) = T (n)oO(n). The image of G under this map is
discrete because the projection is an open map, and the cosets in G of G∩T (n) are all This argument is

nonsense. The
cosets are open
in G, but not in
R(n). Projection
need not send a
discrete subgroup
to a discrete
subgroup, e.g.
Z2 to a line with
slope

√
2 has

kernel 1
(discrete) and
the image is not
discrete.

open sets, so their images in O(n) are all open. It follows that G/(G ∩ T (n)) is finite
because O(n) is compact.

We now produce a crystal structure C for G. To do this, we show that there is an
open subset U of En for which U ∩ gU = ∅ for all non-identity g ∈ G. We examine
the fixed points of elements of G. For elements in a coset (G∩ T (n))g the fixed points
are the translates under the translation subgroup of the fixed points of g, which are an
affine subspace of dimension less than n. There are finitely many such cosets, so the
union of all these affine subspaces is a proper closed subset of En. Choose a vector w
not in this union, so it is fixed by no non-identity element of G. There exists d > 0 so
that for all h ∈ G, the distance from w to hw is ≥ x. This is because we can find such
d for the elements in each coset of G ∩ T (n), because these differ by translations, and
we can take the minimum d that arises with the finitely many cosets. Taking U to be
the open ball center w, radius d/2, this open set has the desired property.

Take an unsymmetric pattern contained in U , and let C be the orbit of the pattern
under G. Then C is a crystal structure. We show that its space group S(C) is G.
Certainly S(C) contains G; it can be no larger than G because any element s ∈ S(C)
sends the unsymmetric pattern to the same place as some g ∈ G, and now g−1s stabilizes
the pattern, so equals 1 by its asymmetry. Hence s = g ∈ G.

Theorem 4.3.2. Let G be an abstract group with a normal subgroup T ∼= Zn such that
the quotient P = G/T is finite and acts faithfully on T by conjugation. Then G is
isomorphic to a space group of dimension n.

Proof. Embed T in T (n) by a homomorphism φ in any way as a discrete subgroup
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containing n independent translations, and form the explicit pushout

1 −→ T
θ−→ G −→ P −→ 1

φ

y y ∥∥∥
1 −→ T (n) −→ E −→ P −→ 1

where E = T (n)oG/{(−φt, θt)
∣∣ t ∈ T}. Since T (n) ∼= Rn is uniquely divisible by |P |

we have H2(P, T (n)) = 0 and the lower extension splits.
Because P is finite we may put an inner product on Rn that is preserved by P .

This may be done by taking any inner product 〈 , 〉1 and defining

〈u, v〉 =
∑
g∈P
〈gu, gv〉1.

Now P acts orthogonally, so there exists a map τ : P → O(n) expressing the orthogonal
action of P using this inner product. The diagram

1 −→ T (n) −→ T (n)o P −→ P −→ 1∥∥∥ τ

y
1 −→ T (n) −→ T (n)oO(n) −→ O(n) −→ 1∥∥∥

R(n)

may thus be completed to a commutative diagram by a map T (n)o P → R(n), which
must necessarily be a monomorphism. Then the composite G ↪→ T (n) o P ↪→ R(n)
embeds G as a discrete subgroup of R(n) with G∩T (n) ∼= Zn, by Proposition 4.1.4.

Lemma 4.3.3. Let G be any group that is an extension 1 → T → G → P → 1 where
T ∼= Zn, |P | < ∞ and P acts faithfully on T , Then T is a maximal abelian subgroup
of G, and is the unique such subgroup isomorphic to Zn.

Proof. If T < H ≤ G and h ∈ H−T then h acts non-trivially on T , so H is non-abelian.
Thus T is a maximal abelian subgroup of G.

Suppose X ∼= Zn is any subgroup isomorphic to Zn. Then

1→ X ∩ T → X → X/(X ∩ T ) ∼= XT/T → 1

is exact and XT/T is a subgroup of the finite group P , so X/(X ∩ T ) is finite and
hence X ∩ T ∼= Zn so X ∩ T ∼= Zn has finite index in T . If there were x ∈ X − T then
x would act non-trivially on T and hence on X ∩ T , so X would be non-abelian – a
contradiction. Therefore X = X ∩ T ⊆ T . This shows that T is the unique maximal
subgroup isomorphic to Zn.
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We will show how to classify crystal structures in terms of their symmetries, and
before doing this we introduce an equivalence relation so that crystal structures are
regarded as the same under certain circumstances. One way to describe the equivalence
of crystal structures is to say that the space group of one may be identified with the
space group of the other after applying an affine transformation. Such transformations
are composites of linear (vector space) transformations and translations and form the
affine group, which has the structure En o GL(n,R). Thus we will not distinguish
crystal structures if one is scaled up from the other, or is a skewed version of the other,
or is translated, provided they have the same symmetries. Since we are only interested
in the symmetries a crystal structure has, we work with its space group.

Definition 4.3.4. Two space groups are equivalent if they are conjugate as subgroups
of the affine group. Sometimes the term affinely equivalent is also used. We also say
that two crystal structures are equivalent if their space groups are equivalent.

Proposition 4.3.5. Let 1 → T1 → G1 → P1 → 1 and 1 → T2 → G2 → P2 → 1
be space groups acting on En with translation subgroups T1 and T2. The following are
equivalent.

1. The space groups are equivalent.

2. There exists a commutative diagram

1 → T1 → G1 → P1 → 1

∼=
y ∼=

y ∼=
y

1 → T2 → G2 → P2 → 1

in which the vertical arrows are isomorphisms.

3. G1
∼= G2 as abstract groups.

Proof. 1. ⇒ 3. is clear.
3. ⇒ 2: If φ : G1 → G2 is an isomorphism then φ(T1) must be the unique maximal

abelian subgroup of G2 isomorphic to Zn. Hence φ(T1) = T2 by Lemma 4.3.3, and φ
provides a commutative diagram as in condition 2.

2. ⇒ 1: Suppose we are given a commutative diagram in which the vertical arrows
are isomorphisms

1 → T1 → G1 → P1 → 1

α

y β

y γ

y
1 → T2 → G2 → P2 → 1.

These extensions are both embedded in R(n) = Rn o O(n) because they are assumed
to be space groups, so we have containments for i = 1, 2:

1 → Ti → Gi → Pi → 1y y y
1 → Rn → Rn oGL(n,R) → GL(n,R) → 1.
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In this manner we may assume that Ti ≤ Rn and Pi ≤ GL(n,R) for i = 1, 2. Since both
T1 and T2 contain bases of Rn they are conjugate by an element x ∈ GL(n,R), so that
xT1 = T2. After conjugating the whole group G1 by x we may assume T1 = T2 = T , say.
Now γ : P1 → P2 must be the identity, because for any element g ∈ P1, g−1γ(g) must
act as the identity on T , and hence also on Rn. This cannot happen unless g = γ(g)
because GL(n,R) acts faithfully on Rn. We write P for the group P1 = P2. Let E
denote the preimage of P in Rn o GL(n,R), so that β extends to an automorphism
β̃ : E → E as follows:

E
↗ ↘

1 → Rn β̃

y P → 1

↘ ↗
E

We show that β̃ is conjugation by some translation in Rn. Firstly, both extensions
here split, because H2(P,Rn) = 0; and now β̃ is conjugation by an element of Rn since
H1(P,Rn) = 0. Since β is the restriction of β̃ it is also given by conjugation by an
element of Rn. Earlier, when we assumed that T1 and T2 contain a common basis,
we modified β by conjugation by a an element of GL(n,R). Putting this together, we
have shown that G1 and G2 are conjugate in the affine group Rn o GL(n,R), so this
completes the proof that 2. ⇒ 1.

Remark 4.3.6. It is possible to give a geometric argument for the conjugation by an
element of Rn in the last paragraph, assuming splitting of the extensions. If C is a
complement to Rn in E then β̃(C) is another complement, and both may be regarded
as groups of orthogonal transformations with different vectors u, v ∈ En taken to be
the origin. Now conjugation by the translation from u to v induces β̃, and hence β.

As a summary of the results so far, we have now shown that to classify space
groups of dimension n up to affine equivalence it is equivalent to classify extensions
1→ T → G→ P → 1 where T ∼= Zn and P is a finite group acting faithfully on T , up
to equivalence by diagrams as in Proposition 4.3.5 part 2.

Theorem 4.3.7. The following are equivalent.

1. G is (isomorphic to) a space group in dimension n.

2. G is a discrete subgroup of R(n) containing n independent translations.

3. G has a normal subgroup T isomorphic to Zn so that P := G/T is finite and acts
faithfully on T by conjugation.

4.4 Classification of 2-dimensional spacegroups

We go through this classification explicitly in dimension 2, but the same approach
works in every dimension. We must determine:
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• the finite groups P with a faithful action on Z2, i.e. the finite subgroups of
GL(2,Z),

• for each such P the different faithful ZP -modules T with T ∼= Z2 as abelian
groups. We need only determine T up to ZP -isomorphism since if T ∼= T ′ we
obtain isomorphic extensions using either T or T ′,

• the possible extensions for each P and T . We calculate H2(P, T ).

• the equivalence of extensions given by diagrams as in Proposition 4.3.5

As in Theorem 4.3.2 we may assume that T is a subgroup of E2 and that P acts
as a group of orthogonal transformations of E2 preserving T . The next result may
be proved in various ways: one approach is to use a description of the structure of
SL(2,Z) as a free product with amalgamation. We give a proof that is elementary and
geometric.

Lemma 4.4.1. Let T ∼= Z2 be a 2-dimensional lattice. Any automorphism of T (i.e.
an element of GL(2,Z)) of finite order has order 1, 2, 3, 4, or 6.

Proof. Let g be an automorphism of T . We may assume that T is embedded in E2 and
that g acts orthogonally on E2, preserving T . Now g is either a rotation or a reflection.
If it is a reflection, it has order 2. Suppose instead that g is a rotation and choose
a non-zero translation u ∈ T of minimal length. If g is rotation through an angle θ
consider the vector g−1(−u). Now the vector gu− g−1(−u) lies in T and is parallel to
u. By minimality of u, gu− g−1(−u) is an integer multiple of u. That integer can only
be 0, 1 or 2 and so θ = 0, π3 ,

π
2 ,

2π
3 , or π.

0 u−u

gug−1(−u)

θ−θ

Corollary 4.4.2. Every element of finite order in GL(3,Z) has order 1, 2, 3, 4, or
6. There is no crystal structure in E3 having a point group with 5-fold symmetry and,
in particular, there is no crystal structure in E3 having a point group with icosahedral
symmetry.

Proof. As we have done before, we let g be an element of finite order in GL(3,Z). We
may assume that it acts orthogonally on E3 preserving a lattice T ∼= Z3. Because the
eigenvalues of g are either real or occur in complex conjugate pairs a basis can be chosen

so that the matrix of g has the form

[
±1 0
0 A

]
where A a 2× 2-matrix that is either a Explain why.
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rotation matrix or a diagonal matrix with entries ±1 having order 1 or 2. Matrices of
this form have order 2 unless A is a rotation matrix, so we assume that A is a rotation
matrix, so that g either has an axis X of rotation, or an axis X that it reverses. We
claim that there are nonzero elements of T lying on X. To see this, take any point of
T not perpendicular to X. Then the sum of the images of this point under the powers Why is there

such?of g is a point 0 6= v ∈ X ∩ T . It now follows that the projection of T to X⊥ is a
discrete subgroup of X⊥. To see this, suppose to the contrary that, for each n, we can
find a point an 6= 0 in the projection of T to X⊥ with ‖an‖ < 1

n . We can find λn ∈ R
so that an + λnv lies in T and also lies in the compact region that is the product of an
interval of length ‖v‖ in X with a closed unit disc in X⊥. This gives infinitely many
distinct points of T lying in that compact region, which is a contradiction. Therefore
the projection of T to X⊥ is discrete and so it is isomorphic to Z2 by 5.1. Now g
preserves this 2-dimensional lattice in E2, so acts on it as a rotation of order 1, 2, 3,
4, or 6 by Lemma 5.6. It follows that the order of g is also one of these numbers. We
see that 5-fold symmetry is not possible, hence neither is the group of the icosahedron,
since it contains elements of order 5.

Expand on the
argument about
a discrete
subgroup quoted
from 5.1, or
maybe state
separately that a
discrete group of
translations is
Zr.

As a stepping stone in the determination of all possible faithful actions of a finite
group on a n-dimensional lattice we introduce the notion of a Bravais lattice. We define
a Bravais lattice in dimension n to be a subgroup Zn ∼= T ≤ En together with its full
orthogonal automorphism group Q = {g ∈ O(n)

∣∣ gT = T} acting on it. Thus a Bravais
lattice really consists of a pair (T,Q), but we may refer to just T as the lattice. We will
refer to Q as the Bravais point group. We consider two of these pairs (Ti, Qi), i = 1, 2
equivalent if there is an automorphism α ∈ GL(n,R) so that T2 = gT1 and Q2 = gQ1.
Since every finite group subgroup of GL(n,R) is conjugate to a subgroup of O(n) we
have immediately the following result.

Proposition 4.4.3. Any faithful ZP -module T with T ∼= Zn and P finite is ZP -
isomorphic to one of the Bravais lattices with P acting as a subgroup of the Bravais
point group.

It follows from this that to obtain all finite groups acting faithfully on lattices Zn
up to module isomorphism of the lattices, we get a complete list by enumerating the
Bravais lattices (T,Q) and listing all subgroups of Q. We only need list these subgroups
up to conjugacy, since conjugate subgroups will give isomorphic lattices. Even then we Why? Give an

isomorphism of
such.

may obtain more than once the same group with an isomorphic lattice, so we should
inspect our list to make sure such repetitions do not occur.

Proposition 4.4.4. The Bravais lattices in dimension 2 are given in the accompanying
list.

Center the
words.
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P contains T embeds in E2 as: Maximum P

rotation π
3 or 2π

3 D12

rotation π
2 D8

rotation π C2

reflection
generators of T

can be chosen along
reflection lines

C2 × C2

reflection
generators of T

cannot be chosen along
reflection lines

C2 × C2

The Bravais Lattices in 2 dimensions.

Proof. We let P be a Bravais point group, assume that P contains either a certain
rotation or a reflection and reconstruct the embedding of T in En. We start with
rotations. Every lattice is preserved by rotation through π, so all lattices will be
accounted for by this approach. Choose a non-zero element of T that is closest to the
origin. After base change, we can assume this is the first standard basis vector. Now if
P contains a rotation through π

3 or 2π
3 we recover a triangular lattice, and if P contains

a rotation through π
2 we recover a square lattice. We continue the argument in this

way, assuming P contains a rotation through π, and finally that P contains a reflection.
With these last possibilities an inappropriate choice of embedding for T would allow a
larger automorphism group than that shown in the list, but then this Bravais lattice
would have to be one of the earlier ones given on the list. Note that the two lattices The argument for

the last case of
C2×C2 is tricky.
Write something.

with automorphism group C2 × C2 are non-isomorphic for the reason that on one of
them generators of T may be chosen along the reflection lines, and in the other this is
not possible.
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The only possible point groups of Bravais lattices in dimension 2 are cyclic and
dihedral, and this is no surprise in view of the following result, attributed by Weyl in
his book ‘Symmetry’ to Leonardo da Vinci.

Theorem 4.4.5 (Leonardo da Vinci). Any finite group of real 2× 2 matrices is either
cyclic or dihedral.

Proof. Every finite group of matrices preserves a positive definite bilinear form and so
may be regarded as a subgroup of the orthogonal group. Elements of O(2) are rotations
or reflections. In any group of these operations, the rotations form a normal subgroup
that must be cyclic if it is finite, and it is of index 1 or 2. If there is a reflection in
the group, it inverts the rotations under conjugation. From this we see that they only
possibilities are cyclic and dihedral.

Theorem 4.4.6. The possible faithful actions of a finite group P on Z2 up to ZP -
isomorphism and up to equivalence under Aut(P ) are given in the accompanying table.

Put in vertical
space.

P Matrices giving action non-isomorphic extensions

1

[
1 0
0 1

]
p1

C2

[
−1 0
0 −1

]
= T1 p2[

−1 0
0 1

]
= T2 pm,pg[

0 1
1 0

]
= T3 cm

C3

[
−1 1
−1 0

]
p3

C4

[
0 1
−1 0

]
p4

C6

[
0 1
−1 1

]
p6

C2 × C2

[
−1 0
0 1

] [
1 0
0 −1

]
= T1 p2mm, p2mg, p2gg[

−1 0
−1 1

] [
1 0
1 −1

]
= T2 c2mm

D6

[
−1 1
−1 0

] [
1 0
1 −1

]
= T1 p31m[

−1 1
−1 0

] [
0 1
1 0

]
= T2 c2mm

D8

[
0 1
−1 0

] [
−1 0
0 11

]
p4mm, p4gm

D12

[
0 1
−1 1

] [
1 0
1 −1

]
p6mm
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Proof. We examine all the subgroups of the Bravais point groups. If P acts faithfully
on T then the image of P in Aut(T ) is a subgroup of the Bravais point group of T . If
we take such an embedding of P up to equivalence under Aut(P ), we obtain all actions
of P by listing subgroups of the Bravais point groups. The possible subgroups are
cyclic of orders 1, 2, 3, 4 or 6, and dihedral of orders 4, 6, 8 or 12. Isomorphism of the
module action on T is the same thing as conjugacy of the action in GLn(Z)

At this point we mention a further piece of terminology, that we shall not have
occasion to use. For each point group P and each ZP -isomorphism class of lattices T
there may be several space groups that are extensions of P by T . We call the collection
of such space groups an arithmetic crystal class. There is a weaker equivalence relation
on space groups that arises by grouping together all those space groups with the same
point group P and such that the QP -modules Q ⊗Z T are isomorphic. We obtain in
this way a geometric crystal class of space groups. For example in dimension 2, pm and
pg constitute an arithmetic crystal class, and cm is also in the same geometric crystal
class, because the lattice on which P acts has the same character in each of these three
cases.

4.5 Computation of H2(P, T )

We turn now to the final ingredient in the classification of crystal structures. Having
determined the possibilities for the point group and the translation lattice, we compute
the possible extensions that there may be.

In the case of wallpaper patterns we have seen that the point group is either cyclic
or dihedral, and as far as the cyclic groups are concerned we may quote a formula for
the cohomology: H2(P, T ) = TP /

∑
g∈P g · T . In case P is C3, C4 or C6 it is clear that

there are no non-zero fixed points on T , so TP = 0, and the only extension of P by T
is split. In case P = C2 there are three possible actions, giving lattices T1, T2 and T3

listed in the table of possible actions. These lattices have the structure

T1 = Z̃⊕ Z̃, T2 = Z⊕ Z̃, T3 = ZC2

as ZC2-modules, where Z̃ denotes a copy of Z with the generator of C2 acting as −1.
Since TP1 = 0 and T3 is the regular representation we get zero cohomology in these
cases. By direct calculation H2(C2, T2) = Z/2Z. We conclude that for all the cyclic
point groups in two dimensions H2(P, T ) = 0, except H2(C2, T2) = Z/2Z, and there is
one non-split extension in this case.

Class Activity. Give a reason why T3 6∼= T2.

For the remaining point groups we apply an algorithm due to Zassenhaus. The
algorithm computes H2(G,M) when M is a ZG-module that is free abelian of finite
rank as a group. As a preliminary, we recall the following theorem of H.J.S. Smith from
1861, that is equivalent to the structure theorem for finitely generated abelian groups. Put Smith

Normal Form
somewhere else.
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Theorem 4.5.1 (Smith normal form). Let A ∈ Mm,n(Z). There exist matrices P ∈
GL(m,Z) and Q ∈ GL(n,Z) such that PAQ is a diagonal matrix

b1
b2

. . .

bu
0

. . .

0


with b1

∣∣ b2 ∣∣ · · · ∣∣ bu 6= 0. The bi are called the invariant factors of A.

Theorem 4.5.2. Let P be a finite group given by a presentation

P = 〈g1, . . . , gd
∣∣ r1, . . . , rt〉.

This presentation corresponds to an exact sequence 1 → R → F → P → 1 where F is
the free group on g1, . . . , gd and R is generated as a normal subgroup by r1, . . . , rt. Let
T be a ZP -module such that T ∼= Zn as an abelian group, and let ρ : P → GL(n,Z) be
the corresponding representation of P . Form the nd×nt matrix given in block form by In Cor 3.4.3 the

matrix with Fox
derivatives was
not explicitly
given. Refer to
the exercise that
does this?

Λ = (ρ

(
∂rj
∂gi

)
) ∈Mnd,nt(Z)

where the elements
∂rj
∂gi
∈ ZF are defined by

rj − 1 =

d∑
i=1

∂rj
∂gi

(gi − 1), j = 1, . . . , t.

Then H2(P, T ) ∼= Z/b1Z ⊕ · · · ⊕ Z/buZ where b1, . . . , bu are the non-zero invariant
factors of Λ.

Proof. We compute second cohomology using the resolution of Corollary 3.4.3, obtained
from the presentation. It looks as follows.

ZP t
(
∂rj
∂gi

)
−−−−→ ZP d → ZP → Z → 0

↘ ↗ ↘ ↗
R/R′ IP

We embed T in the n-dimensional real vector space T (n) = R ⊗Z T , which becomes
a ZP -module through the action on T . Because R is uniquely divisible, we have
H2(P, T (n)) = 0. From this we obtain the following commutative diagram. The
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rows are the sequences used to calculate H2(P, T ) and H2(P, T (n)) = 0 in the manner
of Proposition 3.4.8.

0 0 0y y y
0→ Hom(IP, T ) −→ Hom(ZP d, T ) −→ Hom(R/R′, T ) → H2(P, T )→ 0y y y y
0→ Hom(IP, T (n))

β−→ Hom(ZP d, T (n))
α−→ Hom(R/R′, T (n))→ 0.

All the rows and columns here are exact, so β is injective and α is surjective. Let

X = {φ : ZP d → T (n)
∣∣ φ(R/R′) ⊆ T}.

Then
0→ Hom(IP, T (n))→ X → Hom(R/R′, T )→ 0

is exact, and so the composite surjection X → Hom(R/R′, T ) → H2(P, T ) has kernel
β(Hom(IP, T (n)))+Hom(ZP d, T ). These constructions are shown in the following pic-
ture of sections of Hom(ZP d, T (n)) and Hom(R/R′, T (n)). All the modules mentioned
are quotients of submodules of Hom(ZP d, T (n)).

Hom(ZP d, T (n))

X
H2(P, T )

{

Hom(ZP d, T )

β(Hom(IP, T ))

β(Hom(IP, T (n)))

0

Hom(R/R′, T (n))

Hom(R/R′, T )

H2(P, T )
{

α(Hom(ZP d, T ))

0

−→

Now ZP d is a free module, so homomorphisms φ : ZP d → T (n) biject with d-tuples
[v1, . . . , vd] of elements of T (n), where vi is the image of the ith basis vector of ZP d,
and we regard the d-tuple as a 1× d-matrix. The generators of R/R′ have coordinates

in ZP d that are the columns of the matrix
(
∂rj
∂gi

)
, and so the images of the generators
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of R/R′ under such a homomorphism φ form a t-tuple of vectors in T (n) that are the
columns of

[v1, . . . , vd]Λ ∈ T (n)t.

From this we see that

X ∼= {[v1, . . . , vd] ∈ T (n)d
∣∣ [v1, . . . , vd]Λ ∈ T t}.

In a similar way

Hom(IP, T (n)) ∼= {φ : ZP d → T (n)
∣∣ φ(R/R′) = 0}

= {[v1, . . . , vd] ∈ T (n)d
∣∣ [v1, . . . , vd]Λ = 0}

= Ker Λ

where this means the left kernel. With these identifications, Hom(ZP d, T ) ∼= T d is the
integer lattices of row vectors with entries in T . We conclude that

H2(P, T ) ∼= {[v1, . . . , vd] ∈ T (n)d
∣∣ [v1, . . . , vd]Λ ∈ T t}/(Ker Λ + T d).

At this stage we observe that our calculation will be independent of the choice of
basis for the domain T d and codomain T t of Λ, so we will choose bases such that Λ
is in Smith normal form. The result is now immediate because, for a diagonal matrix
diag(b1, . . . , bq), we have

{x ∈ Zq
∣∣ bixi ∈ Z for all i}/Zq = (

⊕ 1

bi
Z)/Zq ∼=

⊕
Z/biZ

and the zeros on the diagonal of Λ simply contribute to the kernel.

Example. Let P = 〈x, y
∣∣ x2 = y2 = (xy)2 = 1〉 acting on T = Z2 via A =

[
−1 0
0 1

]
and B =

[
1 0
0 −1

]
. We have

x2 − 1 = (x+ 1)(x− 1)

y2 − 1 = (y + 1)(y − 1)

(xy)2 − 1 = (xy + 1)(xy − 1)

= (xy + 1)x(y − 1) + (xy + 1)(x− 1).

So

Λ =

[
x+ 1 0 xy + 1

0 y + 1 (xy + 1)x

]
x 7→A
y 7→B

=


0 0
0 2

0 0

0
0 0
0 2

0
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and H2(C2 × C2, T ) = Z/2Z ⊕ Z/2Z. The following are homomorphisms R/R′ → T
that represent the elements of this group:

x2

y2

(xy)2

7→
7→
7→


[0, 0]
[0, 0]
[0, 0]


[0, 1]
[0, 0]
[0, 0]


[0, 0]
[1, 0]
[0, 0]︸ ︷︷ ︸

isomorphic extensions


[0, 1]
[1, 0]
[0, 0]

where the vectors are shown as row vectors. For example, the second extension has a
presentation

〈x, y, e1, e2

∣∣ x2 = e2, y
2 = (xy)2 = [e1, e2] = 1, xe1 = e−1

1 , xe2 = e2,
ye1 = e1,

ye2 = e−1
2 〉

and the third has the same presentation but with x and y interchanged and e1 and e2

interchanged, so is isomorphic.
When do two elements of H2(P, T ) give extensions that are equivalent as space

groups? It happens if and only if there is a commutative diagram

E : T −→ G1 −→ Pyα y∼= yβ
αE : T −→ G2 −→ P

where α ∈ GL(T ). Since T is the same P -module in the top and bottom extension
we have, for all g ∈ P , for all t ∈ T , β(g)(αt) = α(gt) so that β(g)(t) = αg(α−1t).
We see from this that β has the same effect as conjugation by α within GL(T ), and
since βP = P we have α ∈ NGL(T )(P ). We may formalize this by observing that
NGL(T )(P ) acts on equivalence classes of extensions, and hence on H2(P, T ) in the

following way. Given α ∈ NGL(T )(P ) and an extension E : T
φ→G1

θ→P we obtain an

extension αE : T
φα−1

−→G1
βθ−→P where β denotes conjugation by α within GL(T ). Using

this action we may now state the following result, which we have already proved. I must sort out
what is really
going on with
the conjugation
action: it should
send an
extension by T
to an extension
by αT . Also, in
listing the
ZP -lattices I
have ignored
non-isomorphic
lattices that
differ by an
automorphism of
P .

Proposition 4.5.3. Two space groups that are extensions of P by T are affine equiva-
lent if and only if their cohomology classes in H2(P, T ) belong to the same orbit in the
action of NGL(T )(P ).

We now express this in a fashion that is compatible with our previous description
of H2(P, T ) in terms of the relation module. Let α ∈ NGL(T )(P ) and let β : P → P
be conjugation by α. Let 1 → R → F → P → 1 be a presentation of P and suppose
the extension E is represented by a homomorphism f : R/R′ → T , continuing with the
previous notation. Lift β−1 to a homomorphism F → F , and hence to a homomorphism
γ as shown:

R −→ F −→ Pyγ y yβ−1

R −→ F −→ P.

Define αf : R/R′ → T by αf(rR′) = f(γ(r)R′). Then we have
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Proposition 4.5.4. If E is an extension represented by f : R/R′ → T then the exten-
sion αE is represented by αf . Check on

whether αE is
defined.Proof. Consider the diagram

R/R′ −→ F/R′ −→ Pyγ y yβ−1

R/R′ −→ F/R′ −→ Pyf y ‖

E : T −→ G −→ Pyα ‖
yβ

αE : T −→ G −→ P.

The morphism of extensions between the middle rows of the diagram shows that E is
represented by f , and the composite morphism from the top row to the bottom row
shows that αE is represented by αf .

This last result enables us to determine the action of NGL(T )(P ) on H2(P, T ) by
computer. It completes the description of the method of determining the equivalence
classes of space groups in a given dimension n, known as the Zassenhaus algorithm. In
summary, its steps are:

• Determine the isomorphism classes of finite subgroups P of GLn(Z) and obtain
presentations for them.

• For each such P determine all ZP -lattices T of rank n up to ZP -isomorphism.
For each T determine NGL(T )(P ).

• Compute H2(P, T ).

• Compute the orbits of NGL(T )(P ) on H2(P, T ).

The 18th problem in Hilbert’s list of problems presented to the International Congress
of Mathmaticians in 1900 was to show that there are only finitely many space groups
in any given dimension. His problem was stated in German, and it translates as fol-
lows: “Is there in n-dimensional Euclidean space . . . only a finite number of essentially
different kinds of groups of motions with a [compact] fundamental region?”

The fact that this is so was proved by Bieberbach between 1910 and 1912. We could
prove it now by showing that each of the sets indicated as the first three of the four
items above is finite. There are only finitely many isomorphism types of subgroups of
GL(n,Z) as a consequence of a result of Minkowski, stating that if p is an odd prime
then Ker(GL(n,Z) → GL(n,Z/pZ) is torsion free. This deals with the first set. For
the second set, The Jordan-Zassenhaus theorem states that if P is a finite group, there



CHAPTER 4. CRYSTALLOGRAPHY 71

are only finitely isomorphism types of ZP -lattices T of any given rank n. This deals
with the second set. Finally, if P is finite and T is finitely generated then H2(P, T ) is
finite, by Corollary 3.5.3. Insert numbers

of space groups
in different
dimensions, page
6/19 of the
original notes.



Chapter 5

An application of the Burnside
ring

5.1 The Burnside ring

We start by following the treatment in volume 1 of Benson’s book.
Let G be a finite group.

Definition 5.1.1. The Burnside ring of G is the quotient b(G) = A/B where A is the
free abelian group with symbols Ω in bijection with a set of representatives of the finite
G-sets as a basis, and B is the subgroup generated by expressions Θ−Ω−Ψ whenever
Θ ∼= ΩtΨ as G-sets. We write [Ω] for the image of Ω in b(G). Thus [ΩtΨ] = [Ω]+ [Ψ]
and [Ω] = [Ψ] if Ω ∼= Ψ. There is a multiplication defined on b(G) by [Ω] · [Ψ] = [Ω×Ψ]
where Ω×Ψ is made into a G-set using the diagonal action: g(ω, ψ) := (gω, gψ).

Proposition 5.1.2. Let G be a finite group. As an abelian group, b(G) is a free abelian
group with basis the symbols [G/H] where H ranges over subgroups of G taken up to
conjugacy. As a ring, b(G) has multiplicative identity the one-point set [G/G].

Definition 5.1.3. Let cc(G) denote the set of conjugacy classes of subgroups of G.
We define the marks homomorphism m : b(G) → Zcc(G) by m([Ω]) = (|ΩH |)H∈cc(G).

The matrix with entries (|(G/K)H |)(K,H) is known as the table of marks. The rows
and columns of the table of marks are usually placed in non-decreasing order of size of
subgroups.

Proposition 5.1.4 (Burnside). 1. m is a ring homomorphism.

2. m is one-to-one.

3. The table of marks is the transpose of the matrix of m with respect to the standard
bases of b(G) and Zcc(G). When subgroups are placed in non-decreasing order, it
is lower triangular, with diagonal entries |NG(H)/H|.

72
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Proof. 1. For each subgroup H we have (Ω×Ψ)H = ΩH ×ΨH because, in the diagonal
action, an element (ω, ψ) is fixed byH if and only if each of ω and ψ is. Thusm(Ω×Ψ) =
m(Ω) ·m(Ψ).

2. Suppose that m(
∑

i ni[G/Hi]) = 0. Then m(
⊔
i(G/Hi)

ai) = m(
⊔
i(G/Hi)

bi) for
some integers ai, bi. Pick a subgroup Hi that is maximal among all the stabilizers that
appear. Then (G/J)Hi 6= ∅ if and only if Hi ⊆G J so we deduce that G/Hi occurs with
the same multiplicity on both sides. Canceling this term, we repeat with the shorter
expression.

3. The triangular property follows because mH(G/K) = |(G/K)H | = 0 unless H is
conjugate to a subgroup of K.

Corollary 5.1.5. Let K be a field of characteristic 0. Then K ⊗Z b(G) ∼= Kcc(G) as
rings, which is semisimple.

Definition 5.1.6. For each subgroup H of G let εH ∈ Qcc(G) be the primitive idem-
potent that is 1 in the position of the conjugacy class of H and 0 elsewhere. We define
eH to be the primitive idempotent of B(G) := Q ⊗Z b(G) that is the preimage of
εH . Thus, writing m for the extension of the marks homomorphism to B(G) we have
eH = m−1(εH .

Corollary 5.1.7. The elements eH of B(G) are characterized by the properties

1. e2
H = eH is a primitive idempotent,

2. eH = eK if and only if H and K are conjugate,

3. eHeK = 0 if H and K are not conjugate,

4. 1 =
∑

H∈cc(G) eH ,

5. eH lies in the span of the [G/K] with K conjugate to a subgroup of H.

Proof. The first properties come about because the εH are a complete system of prim-
itive idempotents of Qcc(G). The last property arises because the matrix of the marks
homomorphism is triangular. We leave it as an exercise that these properties charac-
terize the idempotents.

Definition 5.1.8. If H and K are subgroups of G we define the transporter of H into
K to be

NG(H,K) := {g ∈ G
∣∣ gH ⊆ K}.

When H = K this is the normalizer of H.

Proposition 5.1.9. 1. NG(H,K) is a union of left cosets gNG(H) and also a union
of right cosets NG(K)g.

2.
|NG(H,K)| = |{G-conjugates of H contained in K}| · |NG(H)|

= |{G-conjugates of K containing H}| · |NG(K)|.
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Draw a picture
to illustrate the
bipartite graph
given by
containment of
conjugates of H
in conjugates of
K. The total
number of edges
is the number in
part 2.

Proof. 1. Exercise.
2. We define a mapping NG(H,K) → {gH

∣∣ g ∈ G, gH ⊆ K} by g 7→ gH and
examine the fibers. And so on.

Definition 5.1.10. The Möbius function on a poset P is the function µ : P × P → Z
satisfying equations ∑

a≤x≤b
µ(x, b) = δa,b

for all a, b ∈ P. Here δa,b is the Kronecker delta. We are only interested in the values
of µ(u, v) when u, v are comparable, so if they are not comparable we might as well set
µ(u, v) = 0.

The Möbius function also satisfies (and is defined by) the equations∑
a≤x≤b

µ(a, x) = δa,b.

Example 5.1.11. The lattice of subgroups of the symmetric group S3 and its Möbius
function.

Theorem 5.1.12 (Gluck, Yoshida (1981)). Let µ be the Möbius function on the poset
of subgroups of the finite group G. Then

eH =
1

|NG(H)|
∑
K≤H

µ(K,H) · |K| · [G/K].

Proof. We verify that, applying the marks homomorphism m to the right hand side
of this equation, we get the function that is 1 on H and 0 on other subgroups not
conjugate to H. That is, for each subgroup L we verify

1

|NG(H)|
∑
K≤H

µ(K,H) · |K| · |(G/K)L| =

{
1 if L ∼G H
0 otherwise.

Now
(G/K)L = {gK

∣∣ L ⊆ gK} because the stabilizer of gK is gK

= {g−1K
∣∣ gL ⊆ K}

and, under the map that sends g to g−1, this bijects with the set of cosets

{Kg
∣∣ gL ⊆ K} = K\NG(L,K).

This has size

|NG(L,K)|
|K|

=
|{G-conjugates of L contained in K}| · |NG(L)|

|K|
.
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The sum is

1

|NG(H)|
∑
K≤H

µ(K,H) · |K| · |{G-conjugates of L contained in K}| · |NG(L)|
|K|

=
|NG(L)|
|NG(H)|

∑
L∼GL1≤K≤H

µ(K,H) summing over L1 and K

=
|NG(L)|
|NG(H)|

∑
L∼GL1

∑
L1≤K≤H

µ(K,H) where the second sum is over K

=
|NG(L)|
|NG(H)|

∑
L1∼GL

δL1,H

=

{
1 if L ∼G H
0 if L 6∼G H.

Example 5.1.13. When G = S3 is the symmetric group of degree 3,

e1 =
1

6
[S3/1],

eC2 = [S3/C2]− 1

2
[S3/1]

eC3 =
1

6
(3[S3/C3]− [S3/1])

=
1

2
[S3/C3]− 1

6
[S3/1]

eS3 =
1

6
(6[S3/S3]− 3[S3/C3]− 6[S3/C2] + 3[S3/1])

= [S3/S3]− 1

2
[S3/C3]− [S3/C2] +

1

2
[S3/1].

5.2 The Green ring

Definition 5.2.1. Let R be a field or a complete discrete valuation ring. The Green
ring a(RG) is the quotient A/B where A is the free abelian group with symbols M as a
basis whenever M is a finitely generated RG-module, and B is the subgroup generated
by expressions M −M1 −M2 whenever M ∼= M1 ⊕M2 as RG-modules. We write [M ]
for the image of M in a(G). Thus [M1 ⊕M2] = [M1] + [M2] and [M ] = [N ] if M ∼= N .
There is a multiplication defined on a(G) by [M ] · [N ] = [M ⊗ N ] where M ⊗ N is
made into an RG-module using the diagonal action: g(m ⊗ n) := (gm ⊗ gn). We put
A(RG) = Q⊗Z a(RG).

We have ring homomorphisms φ : b(G)→ a(G) and φ : B(G)→ A(G), both given
by [Ω] 7→ [RΩ] where RΩ is the permutation module determined by Ω. Under such a
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ring homomorphism, idempotents are sent to idempotents or zero, and the one point
G-set [G/G] is sent to the trivial module [R]. Linear combinations of G-sets are sent to
the same linear combination of permutations modules. We may use this idea to obtain
expressions in A(RG) for the trivial module as a linear combination of induced modules.
We will see that this is useful in computing cohomology. The following theorem is a
key ingredient.

Theorem 5.2.2 (Conlon). Let R be a field of characteristic p or a complete discrete
valuation ring with residue field of characteristic p. If φ(eH) 6= 0 then H has a normal
p-subgroup with cyclic quotient.

We do not prove this theorem for the moment.

Definition 5.2.3. If a group H has a normal p-subgroup with cyclic quotient we call
H cyclic mod p.

Corollary 5.2.4. In A(RG) we have the following expression for the trivial module:

[R] =
∑

H cyclic mod p

φ(eH).

Substituting the explicit expressions for the Burnside ring idempotents, we get an ex-
plicit expression for the trivial module as a linear combination of induced modules from
subgroups that are cyclic mod p. If G is not cyclic mod p the equation φ(eG) = 0 also
gives an expression for the trivial module as a linear combination of properly induced
modules.

We will see also that linear combinations of permutation modules in the Green ring
provide isomorphisms between direct sums of permutation modules.

Example 5.2.5. Let G = S3 and p = 2. We take R to be the field F2 with 2 elements.
The subgroups of S3 that are cyclic mod 2 are 1, C2 and C3 and there is one conjugacy
class of each of these. The image of a coset space [S3/H] in A(F2S3) is the induced
(permutation) module F2 ↑S3

H . These modules decompose into indecomposable modules
as follows:

F2 ↑S3
1 = P1 ⊕ P2 ⊕ P2

F2 ↑S3
C2

= F2 ⊕ P2

F2 ↑S3
C3

= P1

F2 ↑S3
S3

= F2

where F2 denotes the trivial module, P1 is the projective module with 2 trival composi-
tion factors, and P2 is the 2-dimensional simple projective module. From the calculation
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in Example 5.1.13 we see that

φ(e1) =
1

6
F2 ↑S3

1 =
1

6
P1 +

1

3
P2,

φ(eC2) = F2 ↑S3
C2
−1

2
F2 ↑S3

1 = F2 −
1

2
P1

φ(eC3) =
1

2
F2 ↑S3

C3
−1

6
F2 ↑S3

1 =
1

3
P1 −

1

3
P2

φ(eS3) = F2 −
1

2
F2 ↑S3

C3
−F2 ↑S3

C2
+

1

2
F2 ↑S3

1

= F2 −
1

2
P1 − F2 − P2 +

1

2
P1 + P2 = 0.

We verify that

F2 = φ(e1) + φ(eC2) + φ(eC3) = F2 ↑S3
C2

+
1

2
F2 ↑S3

C3
−1

2
F2 ↑S3

1

and this is an expression for F2 in terms of properly induced modules. The same
expression is obtained by rearranging the terms in the equation φ(eS3) = 0. The
equation holds in the Green ring. After multiplying by 2 to clear denominators and
taking the negative term on the right over to the left with a + sign, it is equivalent to
stating that we have an F2S3-module isomorphism

F2 ⊕ F2 ⊕ F2 ↑S3
1
∼= F2 ↑S3

C2
⊕F2 ↑S3

C2
⊕F2 ↑S3

C3
.

We used the coefficient ring R = F2 to obtain the explicit descriptions of the induced
modules, but the expressions such as

φ(eS3) = R− 1

2
R ↑S3

C3
−R ↑S3

C2
+

1

2
R ↑S3

1

hold over any coefficient ring R. Taking, for instance, the 2-adic integers R = Z2, we
obtain again that φ(eS3) = 0 by Conlon’s theorem, and a corresponding isomorphism
of permutations modules over Z2.

Example 5.2.6. This time let G = S4 with p = 2 and R = F2. We may do similar
computations with the Möbius function on the poset of subgroups of S4, computing the
Burnside ring idempotents, and so on. To get the concluding expression for the trivial
module in terms of induced modules from subgroups that are cyclic mod p, we may take
the expression over S3 and inflate it to an isomorphism of S4-modules, via the surjective
homomorphism S4 → S3 with kernel the Klein 4-group V = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉.
We obtain

F2 = F2 ↑S4
D8

+
1

2
F2 ↑S4

A4
−1

2
F2 ↑S4

V .

We also get such an expression by computing eS4 and rearranging the equations φ(eS4) =
0. For this we need the values of µ(H,S4), and it helps to use the fact about the Möbius
function that these are non-zero only on intersections of maximal subgroups of S4. Picture needed

of subgroups of
S4 with values of
the Möbius
function.
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5.3 Computation of cohomology using cyclic mod p sub-
groups

To make the notation easier, let us write uH for the permutation module R ↑GH , using
the same notation for this module as an element of the Green ring. Thus at the end of
the last section we established an identity for F2S4-modules

uS4 = uD8 +
1

2
uA4 −

1

2
uV .

Such identities give rise to isomorphisms between direct sums of cohomology groups

Theorem 5.3.1. Let R be a field or a complete discrete valuation ring, and let G be a
finite group. Suppose that uG =

∑
K≤G λKuK is an equation in the Green ring A(RG).

Then for each finitely generated RG-module M we have

Hn(G,M) =
∑
K≤G

λKH
n(K,M ↓GK).

for each n, this equation holding in the Green ring of finitely generated abelian groups.
A similar result holds for homology.

Proof. We start by tensoring the equation uG =
∑

K≤G λKuK by M to get

M = M · uG =
∑
K≤G

λKM · uK =
∑
K≤G

λKM ↓GK↑GK

in A(RG). The additive functor Hn(G,−) gives rise to a homomorphism A(RG) →
A(Z). We apply it to both sides of the equation and use the Eckmann-Schapiro lemma.
This implies that Hn(G,M ↓GK↑GK) ∼= Hn(K,M ↓GK).

Equations such as this are sufficient to determine the additive structure of coho-
mology.

Example 5.3.2. Let G = S4 with p = 2 and R = F2 or Z2. From the equation

uS4 = uD8 +
1

2
uA4 −

1

2
uV .

in A(RS4) we obtain

Hn(S4, R) = Hn(D8, R) +
1

2
Hn(A4, R)− 1

2
Hn(V,R).

In case R = Z2 it is a fact that Hn(G,Z2) ∼= Hn(G,Z)2 is the Sylow 2-subgroup of Include
something up
extending
through a flat
coefficient ring in
the homological
algebra section.

Hn(G,Z), and similarly with homology. Applying this to the abelianization H1(S4,Z)
we obtain

H1(S4,Z)2 = H1(D8,Z)2 +
1

2
H1(A4,Z)2 −

1

2
H1(V,Z)2 = C2 ⊕ C2 + 0− C2 = C2

in A(Z), which is the correct answer. We may compute the Sylow 2-subgroup of the
Schur multiplier of S4, using the fact that the Schur multipliers of D8, A4, C2 ×C2 are
all C2. We get

H2(G,Z)2 = H2(D8,Z)2 +
1

2
H2(A4,Z)2 −

1

2
H2(V,Z)2 = C2 +

1

2
(C2 − C2) = C2.
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5.4 Euler characteristics and the Möbius function

We now introduce topological ideas into the combinatorics we have been using. From
each poset we obtain a topological space, and we make the connection between the
Möbius function on the poset and the Euler characteristic of this space.

Definition 5.4.1. A chain of length n in P is a list of comparable elements x0 < x1 <
· · · < xn, no two of which are equal.

Example 5.4.2. When a = b there is only one chain: a = x0 = b starting at a and
ending at b. Also µ(a, a) = 1. When a < b with no elements between them, there is
one chain a = x0 < x1 = b between a and b. In this case µ(a, b) = −1.

Proposition 5.4.3 (Hall). Let a, b be elements of a poset P. Then

µ(a, b) =

∞∑
n=0

(−1)n|{chains a = x0 < x1 < · · · < xn = b}|.

Proof. Define

g(a, b) :=
∞∑
n=0

(−1)n|{chains a = x0 < x1 < · · · < xn = b}|.

We check that g satisfies the defining property of the Möbius function as follows. We
have

∑
a≤c≤b g(c, b) = 0 if a < b because each chain a = x0 < x1 < · · · < xn = b

determines a chain x1 < · · · < xn = b contributing to g(x1, b) with opposite sign.

Corollary 5.4.4 (Hall).
∑

a≤c≤b µ(a, c) = δa,b

Proof. The function defined by these equations also satisfies the equation with chains.

Definition 5.4.5. Given a poset P there is a simplicial complex |P| (also written
∆(P)) where the n-simplices are the strictly increasing chains x0 < x1 < · · · < xn.
The faces of such a chain are the subchains. This simplicial complex is called the order
complex or nerve of the poset.

The definition tells us how to fasten simplices together in abstract without relying
on an embedding in space, and this approach is analogous to defining a graph by
specifying abstractly the sets of vertices and edges, as well as which vertices are at the
ends of which edge.

Examples 5.4.6. Some pictures of posets. Some pictures of
posets.

Definition 5.4.7. The Euler characteristic of a finite simplicial complex ∆ is

χ(∆) :=

∞∑
n=0

(−1)n|∆n|



CHAPTER 5. AN APPLICATION OF THE BURNSIDE RING 80

where ∆n is the set of n-simplices of ∆. This time the lines |X| mean the size of the
set X. The reduced Euler characteristic is χ̃(∆) := χ(∆) − 1. When we apply this to
a poset P we may write χ(P) instead of χ(|P|).

Given a poset P we will write ]a, b[ to denote the open interval ]a, b[= {x ∈ P
∣∣ a <

x < b}.

Proposition 5.4.8. In a poset, if a < b then µ(a, b) = χ̃(|]a, b[|). Is it also true
when a = b?

Proof. The chains in the expression for µ(a, b) biject with chains in ]a, b[, except for
the chain a < b.

We now apply these ideas to idempotents of the Burnside ring using the geometry
of the poset of subgroups.

Proposition 5.4.9. Let H be a set of subgroups of G, closed under conjugation and
under taking subgroups. Regarding H as a poset, adjoin an artificial element ∗ larger
than everything else. Then in B(G) the idempotent

∑
H∈[G\H] eH has the expression

∑
K∈H

1

|G : K|
(−χ̃(]K, ∗[)) · [G/K].

Notice that this expression also equals∑
K∈[G\H]

1

|NG(K) : K|
(−χ̃(]K, ∗[)) · [G/K]

where the sum is over a set of representatives for the orbits of G on H (the conjugacy
classes).

Proof. ∑
H∈[G\H]

eH =
∑

H∈[G\H]

1

|NG(H)|
∑
K≤H

µ(K,H) · |K| · [G/K]

=
∑
H∈H

1

|G|
∑
K≤H

µ(K,H) · |K| · [G/K]

=
∑
K∈H

1

|G : K|
∑
K≤H

µ(K,H) · |K| · [G/K]

=
∑
K∈H

1

|G : K|
(−µ(K, ∗)) · [G/K]

=
∑
K∈H

1

|G : K|
(−χ̃(]K, ∗[)) · [G/K].
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As a corollary we obtain a theorem of K.S. Brown. For a subgroup K of a finite
group G and a prime p we define

S>Kp := {H ≤ G
∣∣ p ∣∣ |H|, H >G K}.

Theorem 5.4.10. Let G be a finite group and p a prime. Let K be a p-subgroup of G.
Then χ(S>Kp ) ≡ 1 (mod |NG(K) : K|p).

Proof. Take H to be the set of all p-subgroups of G. Then
∑

H∈[G\H] eH ∈ b(G)(p) so
the denominators in the coefficients of the G-sets [G/K] are prime to p. The coefficient
of [G/K] is −χ̃(]K, ∗[)/|NG(K) : K| from which the result follows.

We obtain a set of congruences from this result, one of which is the numerical part of
Sylow’s theorem. To show how this arises, we include it in the next theorem, assuming
a proof of the rest of Sylow’s theorem.

Theorem 5.4.11. Let G be a finite group and p a prime.

1. If p
∣∣ |G| then the number of Sylow p-subgroups is congruent to 1 modulo p.

2. (Brown) χ(S>1
p (G)) ≡ 1 (mod |G|p)

Proof. 1. Let K be a maximal subgroup of a Sylow p-subgroup and assume that all
Sylow p-subgroups are conjugate. Then S>Kp (G) consists of the Sylow p-subgroups of
G, and its Euler characteristic is the number of such subgroups, which is congruent to
1 modulo |NG(K) : K|p = p.

2. We take K = 1 in Theorem 5.4.10 and note that NG(K) = G.

Example 5.4.12.
Group A5 S5 S6 GL(3, 2)

χ̃(S>1
2 (G)) 4 16 16 8

We obtain formulas in group cohomology every time we get identities in the Green
ring between permutation modules, and Proposition 5.4.9 provides such an identity.

Corollary 5.4.13. Let p be a prime, and let H be a set of subgroups of G, closed under
conjugation and under taking subgroups. Let R be a field or complete discrete valuation
ring with residue field of characteristic p. Suppose that H contains all subgroups that
are cyclic mod p. Regarding H as a poset, adjoin an artificial element ∗ larger than
everything else.

1. In the Green ring of RG-modules we have an expression for the trivial module

[R] =
∑
K∈H

1

|G : K|
(−χ̃(]K, ∗[)) · [R ↑GK ].

2. For each n ≥ 0 and finitely generated ZG-module M we have an expression in
the Green ring of finitely generated abelian groups

Hn(G,M)p =
∑
K∈H

1

|G : K|
(−χ̃(]K, ∗[)) ·Hn(K,M)p.



CHAPTER 5. AN APPLICATION OF THE BURNSIDE RING 82

Proof. (1) Because H contains all subgroups that are cyclic mod p, the expression in
Proposition 5.4.9 provides a similar expression for the trivial module in the Green ring
as a sum of induced modules.

(2) Taking R = Zp and applying ExtnZpG(−,Zp⊗ZM) to the expression in (1) gives
the result.

5.5 Computation of cohomology using topology of the
subgroup poset

The origin of this material is Theorems A and A
′

of [17]. We describe a result slightly
weaker than Theorem A

′
.

What we describe fits into the context of using a group action on a topological space
to get information about the cohomology of the group, and the main construction from
these ingredients is often the equivariant cohomology of the group acting on the space.
We do not need to do this here, but point out that there is a connection. We will
consider a finite group G acting simplicially on a simplicial complex ∆. This means
that G permutes the simplices of ∆, preserving dimensions of simplices, and preserving
incidence between the simplices.

When considering such an action it is usual to impose the condition that, for each
simplex σ ∈ ∆, the stabilizer Gσ fixes σ pointwise. The sort of example excluded by
this condition is that of a group of order 2 acting on a graph with two vertices joined
by a single edge, fixing the edge but interchanging the two vertex. This example is also
excluded in the Bass-Serre theory of groups acting on trees, where a group acting on a
graph with this condition is said to act ‘without inversions’. The stabilizer condition
we impose is the higher dimensional version of acting without inversions. The technical
consequence of this condition (using terms that have not yet been introduced) is that
with it, if two G-simplicial complexes are G-equivariantly homotopy equivalent, then
their chain complexes are homotopy equivalent as complexes of ZG-modules. Much
of the time the kind of simplicial complex we will work with will be the nerve |P| of
a poset P, acted on by a group G of poset automorphisms. In this case G acts on
the chains giving a simplicial action on |P| and the stabilizer condition is necessarily
satisfied.

We fix a prime p and let R be either a field of characteristic p, or a complete discrete
valuation ring with residue field of characteristic p. We call such a ring R a complete
p-local ring. From group theory, we use the notation Op(G) for the largest normal
p-subgroup of G. The next result include a congruence in the Green ring, and it is
helpful to know that the sum of images of induction from p′-subgroups is exactly the
span of the projective modules.

Theorem 5.5.1. Let the finite group G act simplicially on a simplicial complex ∆, so
that for all simplices σ ∈ ∆ the stabilizer Gσ fixes σ pointwise. Let p be a prime and
R a complete p-local ring. Suppose that for all subgroups H ≤ G with Op(H) 6= 1 the
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Euler characteristic χ(∆H) = 1. Then in the Green ring of RG-modules,

[R] ≡
∑

σ∈[G\∆]

(−1)dimσ[R ↑GGσ ] modulo the image of induction from p′-groups.

It follows that, for all n ≥ 1 and finitely generated ZG-modules M ,

Hn(G,M)p =
∑

σ∈[G\∆]

(−1)dimσHn(Gσ,M)p

in the Green ring of finitely generated abelian groups.

Proof. We prove the congruence in the Green ring by expressing both sides in terms of
induced modules R ↑GH where H is cyclic mod p, using Corollary 5.4.13, which depends
on Conlon’s theorem, and show that the coefficient of [R ↑GH ] is the same on both sides
when p

∣∣ |H|. For each subgroup K of G let C(K) denote the set of subgroups of K
that are cyclic mod p, and let µK be the Möbius function on C(K) ∪∞. In the Green
ring of RK-modules,

[R] =
∑

H∈C(K)

−µK(H,∞)

|K : H|
[R ↑KH ]

so on inducing to G we get

[R ↑GK ] =
∑

H∈C(K)

−µK(H,∞)

|K : H|
[R ↑GH ]

in the Green ring of RG-modules. Noting that there are |G : Gσ| simplices in each
orbit of G on ∆, the right hand side of the expression to be proved becomes Put dots under

the active
symbols in the
summation.

∑
σ∈∆

(−1)dimσ

|G : Gσ|
[R ↑GGσ ] =

∑
σ∈∆

(−1)dimσ

|G : Gσ|
∑

H∈C(Gσ)

−µGσ(H,∞)

|Gσ : H|
[R ↑GH ]

=
∑

H∈C(Gσ)

[R ↑GH ]

|G : H|
∑

σ∈∆, Gσ⊇H
(−1)dimσ(−µGσ(H,∞)).

The left hand side of the expression to be proved is

∑
H∈C(G)

[R ↑GH ]

|G : H|
− µG(H,∞).

We show that if p
∣∣ |H| where H ∈ C(G), then

−µG(H,∞) =
∑
σ∈∆H

(−1)dimσ(−µGσ(H,∞)).
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The left side is defined by
∑

J≤H∈C(G)−µG(H,∞) = 1 for all J ∈ C(G). We show that
the right hand side satisfies this:∑
J≤H∈C(G)

∑
σ∈∆H

(−1)dimσ(−µGσ(H,∞)) =
∑
σ∈∆J

(−1)dimσ
∑

J≤H≤Gσ , H∈C(G)

(−µGσ(H,∞))

=
∑
σ∈∆J

(−1)dimσ

= χ(∆J)

= 1 if Op(J) 6= 1,

and because J ∈ C(G) the last condition happens if and only if p
∣∣ |J |. This shows that

the two sides of the equation in the Green ring are equal. The consequence for group
cohomology follows from the Eckmann-Schapiro lemma, and because the p-torsion part
of cohomology vanishes on subgroups of order prime to p

In looking for examples of how Theorem 5.5.1 applies, the main thing is to find
simplicial complexes ∆ for which the fixed point condition χ(∆H) = 1 for all subgroups
H with Op(G) 6= 1 is satisfied. It is the case that the order complex |S>1

p | satisfies this
condition, but before proving this we will develop some tools in combinatorial homotopy
theory. In the meantime we can verify that it holds in particular cases.

Example 5.5.2. Let p be a prime and G a finite group with cyclic Sylow p-subgroups of
order p. Let ∆ = S>1

p be the set of these subgroups, with G-action given by conjugation
of the subgroups. The subgroups H of G with Op(H) 6= 1 are the subgroups lying
between a Sylow p-subgroup and its normalizer in this example, and the fixed points
∆H is the single Sylow p-subgroup of H. This single point is contractible, with Euler
characteristic 1, so the hypotheses of of Theorem 5.5.1 are satisfied.

By Sylow’s theorem, G has a single orbit on ∆, and if σ = H is a Sylow p-subgroup
then the stabilizer Gσ = NG(H). The theorem says that [R] ≡ [R ↑GNG(H)] in the Green

ring, and that Hn(G,M) ∼= Hn(NG(H),M)p when n ≥ 1. This result for cohomology
is a special case of a result in the book of Cartan and Eilenberg [7].

In the particular case when G = S3 and p = 2 the Sylow 2-subgroup H = 〈(1, 2)〉
also has normalizer equal to H, and R ↑S3

H
∼= R⊕ V where V is projective, and induced

from the subgroup of order 3. We have Hn(S3,M)2
∼= Hn(〈(1, 2)〉,M) for all n ≥ 1.

5.6 Homotopy equivalences of posets and categories
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