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bound by αβ = 0. Then Γ(modA) is given by

1
1 0

1
0 1

↗ ↘ ↗ ↘
0

1 0
2

1 1
0

0 1

↘ ↗ ↘ ↗
1

/
1 1

1
\

1 1
↗ ↘ ↗ ↘

1
0 0

0
1 1

1
0 0

where modules are replaced by their dimension vectors and one must identify
the two copies of S(2) = 1

0 0, thus forming a cycle. Here, 1
/

1 1
represents the

indecomposable projective module P (3) =
K

0↙ ↖1
K ←−−− K

1
, while 1

\
1 1

represents

the indecomposable injective module I(1) =
K

1↙ ↖0
K ←−−− K

1
. It follows that

indecomposable modules are not uniquely determined by their dimension
vectors, because P (3) ̸∼= I(1) and dimP (3) = dim I(1).

5IV. . The first Brauer–Thrall conjecture

At the origin of many recent developments of representation theory are
the following two conjectures attributed to Brauer and Thrall.

Conjecture 1. A finite dimensional K-algebra is either representation–
finite or there exist indecomposable modules with arbitrarily large dimension.

Conjecture 2. A finite dimensional algebra over an infinite field K is
either representation–finite or there exists an infinite sequence of numbers
di ∈ N such that, for each i, there exists an infinite number of nonisomorphic
indecomposable modules with K-dimension di.

The first statement has now been shown to hold true, whenever the field
K is arbitrary (see [13], [14], [140], [147], [148], [151], [154], [170]), and the
second one when K is algebraically closed (see [26], [27], [124], [140], [162],
and for historical notes see [83]). Our objective in this section is to give a
simple proof of the first conjecture.

Let A be a finite dimensional K-algebra. A sequence of irreducible
morphisms in mod A of the form

M0
f1−→ M1

f2−→ · · ·
ft−→ Mt
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with all the Mi indecomposables is called a chain of irreducible mor-
phisms from M0 to Mt of length t.

5.1. Lemma. Let t ∈ N and let M and N be indecomposable right
A-modules with HomA(M, N) ̸= 0. Assume that there exists no chain of
irreducible morphisms from M to N of length < t.

(a) There exists a chain of irreducible morphisms

M = M0
f1−→ M1

f2−→ M2 −→ · · ·
ft−→ Mt

and a homomorphism g : Mt → N with gft . . . f2f1 ̸= 0.
(b) There exists a chain of irreducible morphisms

Nt
gt−→ Nt−1

gt−1
−→ · · · −→ N1

g1−→ N0 = N

and a homomorphism f : M → Nt with g1 . . . gtf ̸= 0.

Proof. We only prove (a); the proof of (b) is similar. We proceed by
induction on t. For t = 0, there is nothing to show. Assume thus that
M and N are given with HomA(M, N) ̸= 0 and that there is no chain of
irreducible morphisms from M to N of length < t + 1. By the induction
hypothesis, there exists a chain of irreducible morphisms

M = M0
f1−→ M1

f2−→ · · ·
ft−→ Mt

and a homomorphism g : Mt → N with gft . . . f1 ̸= 0. The induction
hypothesis implies that g cannot be an isomorphism. Because Mt and N
are indecomposable, g is not a section. We consider the left minimal almost
split morphism starting with Mt

h =

⎡

⎣
h1
...

h1

⎤

⎦ : Mt −−−−−−−−→
s⊕

j=1

Lj,

where the modules L1, . . . , Ls are indecomposable. Then g factors through

h, that is, there exists u = [u1, . . . , us] :
s⊕

j=1
Lj −−−−→ N such that g =

uh =
s∑

j=1
ujhj . Thus, because 0 ̸= gft . . . f1 =

s∑

j=1
ujhjft . . . f1, there exists

j such that 1 ≤ j ≤ s and ujhjft . . . f1 ̸= 0. Setting Mt+1 = Lj, ft+1 = hj

and g′ = uj, our claim follows from the fact that hj is irreducible. !

5.2. Lemma (Harada and Sai). For a natural number b, let

M1
f1−→ M2

f2−→ M3 → · · · → M2b−1

f
2b−1
−→ M2b
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be a chain of nonzero nonisomorphisms in modA, with all Mi indecompos-
ables of length ≤ b. Then f2b−1 . . . f2f1 = 0.

Proof. We show by induction on n that if

M1
f1−→ M2

f2−→ M3 → · · · → M2n−1
f2n−1
−→ M2n

is a sequence of nonzero nonisomorphisms between indecomposable modules
of length ≤ b, then the length of the image of the composite homomorphism
f2n−1 . . . f2f1 is ≤ b− n. This will imply the statement upon setting b = n.

Let n = 1. If the length ℓ(Im f1) of Im f1 is equal to b, then f1 is an
isomorphism, a contradiction that shows that ℓ(Im f1) ≤ b − 1. Assume
that the statement holds for n, and let

M1
f1−→ M2

f2−→ · · · → M2n−1
f2n−1
−→ M2n

f2n
−→ M2n+1

f2n+1
−→ · · ·

f
2n+1−1
−→ M2n+1

be a sequence of nonzero nonisomorphisms between indecomposable mod-
ules of length ≤ b. We consider the two homomorphisms f = f2n−1 . . . f2f1

and h = f2n+1−1 . . . f2n+1. By the induction hypothesis, ℓ(Im f) ≤ b − n
and ℓ(Im h) ≤ b − n. If at least one of these two inequalities is strict, we
are done. We may thus suppose that ℓ(Im f) = ℓ(Im h) = b − n > 0. Let
g = f2n . We must show that ℓ(Im hgf) ≤ b − n − 1.

We claim that if this is not the case, then g is an isomorphism, a contra-
diction that completes the proof. Assume thus that ℓ(Im hgf) > b− n− 1.
Because ℓ(Im hgf) ≤ ℓ(Im f) = b − n, this implies that ℓ(Im hgf) = b − n.
Now

ℓ(Im hgf) = ℓ(
Im f

Im f ∩ Kerhg
) = ℓ(Im f) − ℓ(Im f ∩ Kerhg).

This implies that ℓ(Im f ∩ Kerhg) = 0, hence Im f ∩ Kerhg = 0. On the
other hand, Imhgf ⊆ Im hg ⊆ Im h and ℓ(Im hgf) = ℓ(Im h) = b − n give
ℓ(Im hg) = b − n. Consequently,

ℓ(Kerhg) = ℓ(M2n) − ℓ(Im hg) = ℓ(M2n) − (b − n) = ℓ(M2n) − ℓ(Im f).

This shows that M2n = Im f ⊕ Kerhg. Because M2n is indecomposable
and f ̸= 0, we have Kerhg = 0. Therefore hg is a monomorphism. Hence
g itself is a monomorphism. Similarly, one shows that Im gf ∩ Kerh = 0,
hence that M2n+1 = Im gf ⊕Kerh. Because gf ̸= 0 and the module M2n+1

is indecomposable then we get M2n+1 = Im gf , so that gf and therefore g
are epimorphisms. This completes the proof that g is an isomorphism, and
hence of the lemma. !

The following example shows that the bounds given in the Harada–Sai

IV.5. The first Brauer–Thrall conjecture 141

lemma are the best bounds possible.

5.3. Example. Let A be given by the quiver

α ◦
1

β

consisting of two loops α and β, bound by α2 = 0, β2 = 0, αβ = 0, and
βα = 0.

We construct 7 indecomposable A-modules of length ≤ 3 and 6 nonisomor-
phisms between them with nonzero composition.

The algebra A admits a unique simple module SA and any A-module can
be written in a form of a triple (V, ϕα, ϕβ), where V is a finite dimensional
K-vector space and ϕα, ϕβ : V → V are K-linear endomorphisms satisfying
the conditions ϕ2

α = 0, ϕ2
β = 0, ϕαϕβ = ϕβϕα = 0, and a morphism

(V, ϕα, ϕβ) → (V ′, ϕ′
α, ϕ′

β) is a K-linear map f : V → V ′ such that ϕ′
αf =

fϕα and ϕ′
βf = fϕβ . Let thus

M1 = M5 = AA = (K3,
[
0 0 0
1 0 0
0 0 0

]
,
[
0 0 0
0 0 0
1 0 0

]
),

M2 = M6 = AA/S = (K2, [0 0
1 0], 0 ),

M3 = M7 = (DA)A = (K3,
[
0 1 0
0 0 0
0 0 0

]
,
[
0 0 1
0 0 0
0 0 0

]
),

M4 = SA = (K, 0, 0).

Each of these modules has a simple top or a simple socle and hence is
indecomposable. Let now

f1 = [1 0 0
0 0 1] : M1 −→ M2, f2 =

[
0 1
0 0
1 0

]
: M2 −→ M3,

f3 = [1 0 0] : M3 −→ M4, f4 =
[
0
0
1

]
: M4 −→ M5,

f5 = [1 0 0
0 0 1] : M5 −→ M6, f6 =

[
1 0
0 0
0 1

]
: M6 −→ M7.

It is easily checked that each of these matrices defines an A-module homo-

morphism, and f6f5f4f3f2f1 =
[
0 0 0
0 0 0
0 0 1

]
̸= 0.

We are now able to prove our criterion of representation–finiteness, which
was announced in the previous section and implicitly used in the construc-
tion of Auslander–Reiten quivers.

5.4. Theorem. Assume that A is a basic and connected finite di-
mensional K-algebra. If Γ(mod A) admits a connected component C whose
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modules are of bounded length, then C is finite and C = Γ(mod A). In
particular, A is representation–finite.

Proof. Let b be a bound for the length of the indecomposable modules
X with [X ] in C. Let M , N be two indecomposable A-modules such that
HomA(M, N) ̸= 0. If [M ] ∈ C0, there exists a chain of irreducible morphisms
from M to N of length smaller than 2b − 1 = t, and in particular [N ] ∈ C0.
Indeed, if this is not the case, there exists, by (5.1), a chain of irreducible
morphisms

M = M0
f1−→M1

f2−→M2 → · · · → Mt−1
ft−→Mt

and a homomorphism g : Mt → N with gft . . . f1 ̸= 0. However, (5.2) yields
ft . . . f1 = 0, a contradiction that shows our claim. Similarly, if [N ] ∈ C0,
we have [M ] ∈ C0.

Let now [M ] ∈ C0 be arbitrary. There exists an indecomposable projec-
tive module PA such that HomA(P, M) ̸= 0; hence we also have [P ] ∈ C0. It
follows from (II.3.4) and (I.5.17) that, for any other indecomposable projec-
tive P ′, there exists a sequence of indecomposable projective modules P =
P0, P1, . . . , Ps = P ′ such that HomA(Pi−1, Pi) ̸= 0 or HomA(Pi, Pi−1) ̸= 0
for each 1 ≤ i ≤ s, because the algebra A is connected, P ∼= eaA and
P ′ ∼= ebA for some primitive orthogonal idempotents ea, eb of A, and
(I.4.2) yields HomA(eaA, ebA) ∼= ebAea. Hence [P ′] ∈ C0. We deduce
that any indecomposable A-module X corresponds to a point [X ] in C,
because there exists an indecomposable projective A-module P ′ such that
HomA(P ′, X) ̸= 0. This shows that C = Γ(mod A).

On the other hand, for each indecomposable projective A-module P and
each indecomposable A-module M such that HomA(P, M) ̸= 0, we know
that there exists a chain of irreducible morphisms from P to M of length
smaller than t = 2b − 1. Because there are only finitely many nonisomor-
phic indecomposable projectives, there are only finitely many nonisomor-
phic indecomposable modules corresponding to points in C. Hence A is
representation–finite. !

As a consequence of (5.4) we get the validity of the first Brauer–Thrall
conjecture.

5.5. Corollary. Any algebra is either representation–finite or admits
indecomposable modules of arbitrary length. !

We end this section with the following corollary, which underlines the
importance of the irreducible morphisms and hence of the Auslander–Reiten
quiver, for the description of the module category of a representation–finite
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algebra.

5.6. Corollary. Let A be a representation–finite algebra. Any nonzero
nonisomorphism between indecomposable modules in mod A is a sum of com-
positions of irreducible morphisms.

Proof. Let M , N be indecomposable A-modules and t ≥ 1. Denote
by radt

A(M, N) the K-subspace of radA(M, N) consisting of the K-linear
combinations of compositions f1f2 . . . ft, where f1, f2, . . . , ft are nonisomor-
phisms between indecomposable A-modules. Because A is representation–
finite, the lengths of the indecomposable A-modules are bounded; hence, by
the Harada–Sai lemma (5.2), there exists m ≥ 1 such that radm+1

A (M, N) =
0 for all M and N .

Let g ∈ radA(M, N) be nonzero. If g ̸∈ rad2
A(M, N), then g is irreducible

and there is nothing to prove. If g ∈ rad2
A(M, N), there exists s such that

2 ≤ s ≤ m and g ∈ rads
A(M, N) \ rads+1

A (M, N).
We prove our statement by descending induction on s. If s = m, then

g is a sum of nonzero compositions g1 · g2 · . . . · gm of nonisomorphisms
g1, g2, . . . , gm between indecomposable modules. Because radm+1

A (M, N) =
0, the homomorphisms g1, . . . , gm do not belong to the square of the radical
and therefore are irreducible. This proves the statement for s = m. Sup-
pose that s ≤ m − 1. Then g is a sum of nonzero compositions g1g2 . . . gs

of nonisomorphisms between indecomposable modules. Let g′ denote the
sum of all the summands g1g2 . . . gs of g in which all the homomorphisms
g1, g2, . . . , gs are irreducible. Then g′′ = g − g′ ∈ rads+1

A (M, N). If g′′ = 0,
the statement is trivial. If g′′ ̸= 0, then, by the induction hypothesis, g′′ is a
sum of compositions of irreducible morphisms and therefore so is g = g′+g′′.
The proof is now complete. !

6IV. . Functorial approach to almost

split sequences

Let A be a finite dimensional K-algebra. We present in this section
an interpretation of the almost split sequences in mod A in terms of the
projective resolutions of the simple objects in the categories FunopA and
FunA of the contravariant, and covariant, respectively, K-linear functors
from the category modA of finitely generated right A-modules into the
category mod K of finite dimensional K-vector spaces. These categories are
defined in Section A.2 of the Appendix and are both seen to be abelian.
We recall that, given a pair of functors F and G in the category FunopA
(or in FunA), we denote by Hom(F, G) the set of functorial morphisms
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ϕ : F → G.
Of particular interest in our study is the following classical result.

6.1. Theorem (Yoneda’s lemma). Let C be an additive K-category
and X be an object in C.

(a) For any contravariant functor F : C −→ mod K, the correspondence
π : ϕ 1→ ϕX(1X) defines a bijection between the set Hom(HomC(−, X), F )
of functorial morphisms ϕ : HomC(−, X) −→ F and the set F (X).

(b) For any covariant functor F : C −→ mod K, the correspondence
π : ϕ 1→ ϕX(1X) defines a bijection between the set Hom(HomC(X,−), F )
of functorial morphisms ϕ : HomC(X,−) −→ F and the set F (X).

Proof. We only prove (a); the proof of (b) is similar. For a functorial
morphism ϕ : HomC(−, X) −→ F , we have ϕX(1X) ∈ F (X), so π defines a
map Hom(HomC(−, X), F ) −→ F (X). We now construct its inverse

σ : F (X) −−−−−−→ Hom(HomC(−, X), F ).

Let a ∈ F (X) and Y be an arbitrary object in C. We define the map
σ(a)Y : HomC(Y, X) −→ F (Y ) to be given by σ(a)Y (f) = F (f)(a), for
f ∈ HomC(Y, X).

To show that σ(a) : HomC(−, X) −→ F is a functorial morphism, we
must show that, for any morphism g : Y → Z, the following diagram is
commutative

HomC(Y, X)
σ(a)Y
−−−−→ F (Y )

HomC(g,X)

*⏐⏐
*⏐⏐F (g)

HomC(Z, X)
σ(a)Z
−−−−→ F (Z)

Let thus f ∈ HomC(Z, X); then F (g)σ(a)Z(f) = F (g)F (f)(a) = F (f◦g)(a),
while σ(a)Y HomC(g, X)(f) = σ(a)Y (f ◦ g) = F (f ◦ g)(a).

It remains to show that π and σ are mutually inverse.
(i) Let a ∈ F (X). To prove that πσ(a) = a, we note that

πσ(a) = σ(a)X(1X) = F (1X)(a) = 1F (X)(a) = a.

(ii) Let ϕ ∈ Hom(HomC(−, X), F ). To prove that σπ(ϕ) = ϕ, we show
that, for any object Y in C, we have σπ(ϕ)Y = ϕY . By definition, for any
f ∈ HomC(Y, X), we have

σπ(ϕ)Y (f) = F (f)(π(ϕ)) = F (f)ϕX(1X).

Because ϕ is a functorial morphism, the following diagram is commutative:
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HomC(X, X)
ϕX−−−−→ F (X)

HomC(f,X)

⏐⏐,
⏐⏐,F (f)

HomC(Y, X)
ϕY−−−−→ F (Y )

That is, F (f)ϕX = ϕY HomC(f, X). Thus we have

σπ(ϕ)Y (f) = ϕY HomC(f, X)(1X) = ϕY (f)

and the proof is complete. !

6.2. Corollary. Let C be an additive K-category and let X be an object
in C.

(a) Let F be a subfunctor of HomC(−, X). The map f 1→ HomC(−, f)
is a bijection F (X) ∼= Hom(HomC(−, X), F ). In particular, for any object
Y in C, the map HomC(X, Y ) −→ Hom(HomC(−, X), HomC(−, Y )) given
by f 1→ HomC(−, f) is a bijection.

(b) Let F be a subfunctor of HomC(X,−). The map f 1→ HomC(f,−)
is a bijection F (X) ∼= Hom(HomC(X,−), F ). In particular, for any object
Y in C, the map HomC(X, Y )−→Hom(HomC(Y,−), HomC(X,−)) given by
f 1→ HomC(f,−) is a bijection.

Proof. We only prove (a); the proof of (b) is similar. Let f ∈ F (X) ⊆
HomC(X, X). It was shown that the inverse of the bijection π in Yoneda’s
lemma 6.1 is given by σ(f) : HomC(−, X) −→ F . We show that σ(f) =
HomC(−, f). Indeed, let Y be an object in C and g ∈ HomC(Y, X); then
σ(f)Y (g) = F (g)(f) = f ◦g = HomC(Y, f)(g) because, by definition, F (g) ∈
F (Y ) ⊆ HomC(Y, X). This shows the first assertion. The second follows
from the first applied to the functor F = HomC(−, Y ). !

In particular, it follows from (6.2) that the categories FunopA and FunA
are not only abelian, they are also additive K-categories. As a second corol-
lary, we now show that a Hom functor uniquely determines the representing
object.

6.3. Corollary. Let C be an additive K-category and let X, Y be two
objects in C.

(a) X ∼= Y if and only if HomC(−, X) ∼= HomC(−, Y ).
(b) X ∼= Y if and only if HomC(X,−) ∼= HomC(Y,−).

Proof. We only prove (a); the proof of (b) is similar. Clearly, X ∼= Y
implies HomC(−, X) ∼= HomC(−, Y ). Conversely, assume that there is an
isomorphism HomC(−, X) ∼= HomC(−, Y ) of functors. By (6.2), there exist
morphisms f : X → Y and g : Y → X in C such that HomC(−, f) :
HomC(−, X)→HomC(−, Y ) and HomC(−, g) : HomC(−, Y )→HomC(−, X)
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are mutually inverse functorial isomorphisms. Thus the equalities
HomC(−, 1X) = 1HomC(−,X) = HomC(−, g) ◦HomC(−, f) = HomC(−, g ◦ f)
give g ◦ f = 1X , by (6.2) again. Similarly, f ◦ g = 1Y . !

An object P in FunopA (or in FunA) is said to be projective if for any
functorial epimorphism ϕ : F → G, the induced map of K-vector spaces
Hom(P, ϕ) : Hom(P, F ) −−→ Hom(P, G), given by ψ 1→ ϕψ, is surjective.

We now observe that Yoneda’s lemma also gives projective objects in
the categories FunopA and FunA.

6.4. Corollary. Let A be a K-algebra and M be a module in mod A.
(a) The functor HomA(−, M) is a projective object in FunopA.
(b) The functor HomA(M,−) is a projective object in FunA.

Proof. We only prove (a); the proof of (b) is similar. We must prove
that, for any functorial epimorphism ϕ : F → G, the induced map

Hom(HomA(−, M), ϕ) : Hom(HomA(−, M), F ) −→ Hom(HomA(−, M), G)

given by ψ 1→ ϕψ, is surjective. We claim that the following diagram

Hom(HomA(−, M), F )
Hom(HomA(−,M),ϕ)
−−−−−−−−−−−−−→ Hom(HomA(−, M), G)

πF

⏐⏐, ∼= ∼=
⏐⏐,πG

F (M)
ϕM−−−−−−−−−−−−−→ G(M)

is commutative, where πF and πG denote the bijection π in Yoneda’s lemma
6.1 applied to F and G, respectively. Indeed, let ψ ∈ Hom(HomA(−, M), F ),
then

ϕMπF (ψ) = ϕMψM (1M ) = (ϕψ)M (1M ) = πG(ϕψ)

= πGHom(HomA(−, M), ϕ)(ψ).

On the other hand, ϕM is surjective, because ϕ is a functorial epimorphism.
Hence so is Hom(HomA(−, M), ϕ). !

A functor F in FunopA (or in FunA) is called finitely generated
if F is isomorphic to a quotient of a functor of the form HomA(−, M)
(or HomA(M,−), respectively) for some A-module M , that is, there ex-
ists a functorial epimorphism HomA(−, M) −→ F −→ 0, (or a functorial
epimorphism HomA(M,−) −→ F −→ 0, respectively).

We now characterise the finitely generated projective objects in our func-
tor categories FunopA and FunA.

6.5. Lemma. (a) An object in FunopA is finitely generated projective
if and only if it is isomorphic to a functor of the form HomA(−, M), for
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M an A-module. Such a functor is indecomposable if and only if M is
indecomposable.

(b) An object in FunA is finitely generated projective if and only if it
is isomorphic to a functor of the form HomA(M,−), for M an A-module.
Such a functor is indecomposable if and only if M is indecomposable.

Proof. We only prove (a); the proof of (b) is similar. The projectivity of
the finitely generated functor HomA(−, M) follows from (6.4). Conversely,
let F be a finitely generated projective object in FunopA, then there ex-
ists a functorial epimorphism ϕ : HomA(−, X) −→ F , for some A-module
X . Because F is projective, ϕ is a retraction and so there exists a func-
torial monomorphism ψ : F −→ HomA(−, X) such that ϕψ = 1F . Let
π = ψϕ : HomA(−, X) −→ F −→ HomA(−, X) (thus, F = Im π). By
(6.2), there exists an endomorphism f of X such that π = HomA(−, f).
Because π is an idempotent, we have HomA(−, f2) = HomA(−, f)2 = π2 =
π = HomA(−, f) thus f2 = f , again by (6.2), that is, f is an idempotent.
Consequently, M = Im f is a direct summand of X . Because HomA(−, M)
is the image of HomA(−, f), we deduce that F ∼= HomA(−, M). The same
argument shows the last assertion. !

We now show that if M is an indecomposable module, the Hom functors
HomA(−, M) and HomA(M,−) behave, in their respective categories, in
a similar way to the finitely generated indecomposable projective modules
over a finite dimensional algebra, in the sense that they have simple tops.

6.6. Lemma. Let M be an indecomposable A-module.

(a) The functor radA(−, M) is the unique maximal subfunctor of the
functor HomA(−, M).

(b) The functor radA(M,−) is the unique maximal subfunctor of the
functor HomA(M,−).

Proof. We only prove (a); the proof of (b) is similar. It suffices to show
that any proper subfunctor F of HomA(−, M) is contained in radA(−, M),
that is, for any indecomposable A-module N , we have F (N) ⊆ radA(N, M).
If N ̸∼= M , this follows from the fact that, by (A.3.5) of the Appendix,
radA(N, M) = HomA(N, M). Assume thus N ∼= M and let f : M → M
belong to F (M). By (6.2), HomA(−, f) maps HomA(−, M) to F , which
is a proper subfunctor of HomA(−, M). Consequently, the functorial mor-
phism HomA(−, f) : HomA(−, M) −→ F −→ HomA(−, M) is not an iso-
morphism. Hence neither is f and thus f ∈ radA(M, M). !

A nonzero functor is called simple if it has no nontrivial subfunctor.
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Lemma 6.6 thus implies the following corollary.

6.7. Corollary. Let M be an indecomposable A-module.
(a) The functor SM = HomA(−, M)/radA(−, M) is simple in FunopA.
(b) The functor SM = HomA(M,−)/radA(M,−) is simple in FunA.

!

In particular, SM (M) ∼= SM (M) ∼= EndM/radEndM is a one-dimensio-
nal K-vector space (because the module M is indecomposable). By (6.2),
this implies that Hom(HomA(−, M), SM ) and Hom(HomA(M,−), SM ) are
also one-dimensional K-vector spaces and hence there exist nonzero func-
torial morphisms

πM : HomA(−, M) −−−−→ SM and πM : HomA(M,−) −−−−→ SM

that are uniquely determined up to a scalar multiple. Moreover, πM and
πM are necessarily epimorphisms, because their targets are simple.

On the other hand, Corollary 6.7 also implies that if X is an indecompos-
able A-module not isomorphic to M , we have SM (X) = 0 and SM (X) = 0.
Therefore the explicit expression of the functorial morphisms πM and πM

follows from the proof of Yoneda’s lemma, that is, if X is an indecom-
posable A-module, the morphisms πM (X) : HomA(X, M) −→ SM (X) and
πM (X) : HomA(M, X) −→ SM (X) are both isomorphic to the canonical
surjection EndM −→ EndM/radEndM if X ∼= M and are zero otherwise.

Following (I.5.6), a functorial epimorphism ϕ : F → G in FunopA (or in
FunA) is called minimal if, for each functorial morphism ψ : H → F , the
composite morphism ϕψ is an epimorphism if and only if ψ is an epimor-
phism. A minimal functorial epimorphism ϕ : F → G, with F projective,
is called a projective cover of G.

An exact sequence F1
ϕ1−−−−→ F0

ϕ0−−−−→ G −−−−→ 0 in FunopA (or in
FunA) is called a projective presentation of G. If, in addition, ϕ0 :
F0 −→ G is a projective cover and ϕ1 : F1

ϕ1−→ Im ϕ1 is a projective cover,
the sequence is called a minimal projective presentation of G.

We now prove the converse of Corollary 6.7, namely, we show that any
simple contravariant (or covariant) functor is of the form described in (a)
(or in (b), respectively) of the corollary.

6.8. Lemma. (a) Let S be a simple object in FunopA. There exists, up
to isomorphism, a unique indecomposable A-module M such that S(M) ̸= 0.
Further, S ∼= SM , the functorial morphism πM : HomA(−, M) −→ SM is
a projective cover and S(X) ̸= 0 if and only if M is isomorphic to a direct
summand of X.

(b) Let S be a simple object in FunA. There exists, up to isomorphism,
a unique indecomposable A-module M such that S(M) ̸= 0. Further, S ∼=
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SM , the functorial morphism πM : HomA(M,−) −→ SM is a projective
cover, and S(X) ̸= 0 if and only if M is isomorphic to a direct summand
of X.

Proof. We only prove (a); the proof of (b) is similar. Let S be a sim-
ple functor. We first note that, by Yoneda’s lemma (6.1), S(X) ̸= 0 for
some A-module X if and only if there exists a nonzero functorial morphism
πX : HomA(−, X) −→ S that is necessarily an epimorphism, because S
is simple. Because S ̸= 0, there exists an indecomposable A-module M
such that S(M) ̸= 0. Let X be an arbitrary module such that S(X) ̸= 0.
We thus have functorial epimorphisms πM : HomA(−, M) −→ S and πX :
HomA(−, X) −→ S. By the projectivity of the functors HomA(−, M) and
HomA(−, X) (see(6.4)), we obtain a commutative diagram with exact rows

HomA(−, M)
πM

−−−−→ S −−−−→ 0

HomA(−,f)

⏐⏐,
⏐⏐,1S

HomA(−, X)
πX

−−−−→ S −−−−→ 0

HomA(−,g)

⏐⏐,
⏐⏐,1S

HomA(−, M)
πM

−−−−→ S −−−−→ 0

where the existence of the morphisms f : M → X and g : X → M fol-
lows from (6.2). Because M is indecomposable, EndM is local, hence
gf ∈ EndM must be nilpotent or invertible, by (I.4.6). However, if (gf)m =
0 for some m ≥ 1, we obtain πM = πMHomA(−, (gf)m) = 0, a con-
tradiction. Hence gf is invertible so that f is a section and g is a re-
traction. Consequently, the functorial morphism HomA(−, g) is a retrac-
tion. This shows that πM : HomA(−, M) −→ S is a projective cover.
The uniqueness up to isomorphism of the indecomposable module M fol-
lows from the uniqueness up to isomorphism of the projective cover and
(6.4). Finally, because, by (6.6), HomA(−, M) has rad(−, M) as unique
maximal subfunctor, we infer the existence of a functorial isomorphism
S ∼= HomA(−, M)/radA(−, M) = SM . !

We have thus exhibited a bijective correspondence M 1→ SM (or M 1→
SM ) between the isomorphism classes of indecomposable A-modules and of
simple objects in FunopA (or in FunA, respectively). We now show that
almost split morphisms in modA correspond to projective presentations of
these simple objects.

6.9. Lemma. (a) Let N be an indecomposable A-module. A homo-
morphism g : M → N of A-modules is a right almost split morphism if and
only if the induced sequence of functors

HomA(−, M)
HomA(−,g)
−−−−−−−−→ HomA(−, N)

πN

−−−−−−→ SN −−−−→ 0
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is a projective presentation of SN in FunopA.
(b) Let L be an indecomposable A-module. A homomorphism f :

L → M of A-modules is a left almost split morphism if and only if the
induced sequence of functors

HomA(M,−)
HomA(f,−)
−−−−−−−−→ HomA(L,−)

πL−−−−−−→ SL −−−−→ 0

is a projective presentation of SL in Fun A.

Proof. We only prove (a); the proof of (b) is similar. Assume that g is
right almost split. To prove that the induced sequence of functors is a projec-
tive presentation of SN in FunopA, it suffices, by (6.4), to prove it is exact,
or equivalently, by (6.7), to prove that ImHomA(−, g) = radA(−, N). Thus,
we must show that, for every indecomposable A-module X , Im HomA(X, g) =
radA(X, N).

Let h ∈ radA(X, N). Then h : X → N is not an isomorphism. Because
g is a right almost split morphism, there exists k : X → M such that
h = gk = HomA(X, g)(k). Thus radA(X, N) ⊆ Im HomA(X, g). For the
reverse inclusion, assume first X ̸∼= N , then radA(X, N) = HomA(X, N)
and clearly Im HomA(X, g) ⊆ HomA(X, N); on the other hand, if X ∼= N ,
this follows from the fact that g is not a retraction and (1.9). We have thus
shown the necessity.

For the sufficiency, assume that the given sequence of functors is exact.
We must show that g is right almost split. Suppose first that g is a retraction
and g′ : N → M is such that gg′ = 1N . Then, for any h ∈ EndN , we
have h = gg′h = HomA(N, g)(g′h) ∈ Im HomA(N, g) = KerπN

N . This
implies that SN (N) = 0, a contradiction. Hence g is not a retraction.
Let X be indecomposable, and h : X → N be a nonisomorphism, that is,
h ∈ radA(X, N). Because the given sequence of functors is exact, evaluating
these functors at X yields radA(X, N) = KerπN

X = Im HomA(X, g). Hence
there exists k : X → M such that h = HomA(X, g)(k) = gk. Thus g is right
almost split. !

Furthermore, minimal almost split morphisms in modA correspond to
minimal projective presentations of simple functors, as we show in the fol-
lowing lemma.

6.10. Lemma. (a) Let N be an indecomposable A-module. A ho-
momorphism g : M → N of A-modules is a right minimal almost split
morphism if and only if the induced sequence of functors

HomA(−, M)
HomA(−,g)
−−−−−−−−→ HomA(−, N)

πN

−−−−−−→ SN −−−−→ 0

is a minimal projective presentation of SN in FunopA.
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(b) Let L be an indecomposable A-module. A homomorphism f : L → M
of A-modules is a left minimal almost split morphism if and only if the in-
duced sequence of functors

HomA(M,−)
HomA(f,−)
−−−−−−−−→ HomA(L,−)

πL−−−−−−→ SL −−−−→ 0

is a minimal projective presentation of SL in FunA.

Proof. We only prove (a); the proof of (b) is similar. Assume that g is
right minimal almost split. It follows from (6.9) that the induced sequence
of functors is a projective presentation. We claim it is minimal, that is,
by (6.6), HomA(−, g) : HomA(−, M) −→ radA(−, N) is a projective cover.
Let thus ϕ : HomA(−, X) −→ radA(−, N) be a functorial epimorphism. It
follows from (6.4) and (6.2) that there exist morphisms u : M → X and
v : X → M such that we have a commutative diagram with exact rows

HomA(−, M)
HomA(−,g)
−−−−−−−−→ radA(−, N) −−−−→ 0

HomA(−,u)

⏐⏐,
⏐⏐,1

HomA(−, X)
ϕ

−−−−−−−−→ radA(−, N) −−−−→ 0

HomA(−,v)

⏐⏐,
⏐⏐,1

HomA(−, M)
HomA(−,g)
−−−−−−−−→ rad(−, N) −−−−→ 0

that is, HomA(−, g) ◦ HomA(−, v) ◦ HomA(−, u) = HomA(−, g). By (6.2)
again, g(vu) = g. Because g is right minimal, vu is an automorphism.
Consequently, v is a retraction and therefore HomA(−, v) is a retraction.
This shows that HomA(−, g) : HomA(−, M) −→ radA(−, N) is a projective
cover.

Conversely, if the shown sequence of functors is a minimal projective
presentation, it follows from (6.9) that g is right almost split. We must
show that it is right minimal. Assume h : M → M is such that gh = g. We
have a commutative diagram with exact rows

HomA(−, M)
HomA(−,g)
−−−−−−−−→ radA(−, N) −−−−→ 0

HomA(−,h)

⏐⏐,
⏐⏐,1

HomA(−, M)
HomA(−,g)
−−−−−−−−→ rad(−, N) −−−−→ 0

Because HomA(−, g) is a projective cover, HomA(−, h) is an isomorphism
and hence so is h. !

We are now able to prove the main theorem of this section, which shows
that almost split sequences in modA correspond to minimal projective res-
olutions of simple functors in FunopA and in FunA defined in a usual way.
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6.11. Theorem. (a) Let N be an indecomposable A-module.
(i) N is projective, and g : M → N is right minimal almost split if and

only if the induced sequence of functors

0 −−−→ HomA(−, M)
HomA(−,g)
−−−−−−−−→ HomA(−, N)

πN

−−−−−−−→ SN −−−→ 0

is a minimal projective resolution of SN in FunopA.
(ii) N is not projective, and the sequence 0 → L

f
−→ M

g
−→ N → 0 is

exact and almost split if and only if the induced sequence of functors

0 −−→ HomA(−, L)
HomA(−,f)
−−−−−−→ HomA(−, M)

HomA(−,g)
−−−−−−→ HomA(−, N)

πN

−−−−→ SN −−→ 0

(where L ̸= 0) is a minimal projective resolution of SN in FunopA.
(b) Let L be an indecomposable A-module.
(i) L is injective, and f : L → M is left minimal almost split if and

only if the induced sequence of functors

0 −−−→HomA(M,−)
HomA(f,−)
−−−−−−−−→ HomA(L,−)

πL−−−−−−−→ SL −−−→ 0

is a minimal projective resolution of SL in FunA.
(ii) L is not injective, and the sequence 0 −→ L

f
−→ M

g
−→ N −→ 0 is

exact and almost split if and only if the induced sequence of functors

0 −−→ HomA(N,−)
HomA(g,−)
−−−−−−→ HomA(M,−)

HomA(f,−)
−−−−−−→ HomA(L,−)

πL−−−−→ SL −−→ 0

(where N ̸= 0) is a minimal projective resolution of SL in FunA.

Proof. We only prove (a); the proof of (b) is similar.
(i) Assume that N is projective, and g : M → N is right minimal almost

split. By (3.5), g is a monomorphism with image equal to radN . By the left
exactness of the Hom functor, HomA(−, g) : HomA(−, M) −→ HomA(−, N)
is a monomorphism. Thus, it follows from (6.10) that the induced sequence
of functors

0 −−−→ HomA(−, M)
HomA(−,g)
−−−−−−−−→ HomA(−, N)

πN

−−−−−−−→ SN −−−→ 0

is a minimal projective resolution of SN in FunopA. Conversely, if the
sequence of functors is a minimal projective resolution of SN in FunopA,
it follows from (6.10) that g is right minimal almost split. Evaluating the
sequence of functors at AA yields that g is a monomorphism. But, by the
description of right minimal almost split morphisms in (3.1) and (3.2), this
implies that N is projective.
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(ii) Assume that N is not projective, and let

0−−−→L
f

−−−→ M
g

−−−→ N−−−→0

be an almost split sequence. By the left exactness of the Hom functor, we
derive an exact sequence of projective functors

0 −−−→ HomA(−, L)
HomA(−,f)
−−−−−−−−→ HomA(−, M)

HomA(−,g)
−−−−−−−−→ HomA(−, N).

Because g : M → N is right minimal almost split, (6.10) yields that the
induced sequence of functors

0 −−→ HomA(−, L)
HomA(−,f)
−−−−−−→ HomA(−, M)

HomA(−,g)
−−−−−−→ HomA(−, N)

πN

−−−−→ SN −−→ 0

is a minimal projective resolution of SN in FunopA. Conversely, assume that
the sequence of functors (where L ̸= 0) is a minimal projective resolution
of SN in FunopA. First, we claim that N is not projective. Indeed, if this
were the case, then SN has, by (a), a minimal projective resolution of the
form

0 −−−→ HomA(−, radN) −−−→ HomA(−, N)
πN

−−−→ SN−−−→ 0,

where the first morphism is induced from the canonical inclusion of radN
into N . We thus have a short exact sequence of functors

0−→HomA(−, L)
HomA(−,f)
−−−−−−−−→HomA(−, M)−−−−−−→HomA(−, radN)−→0

that splits, because HomA(−, radN) is projective. In particular, the mor-
phism HomA(−, f) is a section, a contradiction to the minimality of the
given projective resolution. This shows our claim that N is not projective.
In particular, N is not isomorphic to a direct summand of AA hence, by
(6.8), SN (AA) = 0. Evaluating the given projective resolution at AA yields
a short exact sequence of A-modules

0−−−→L
f

−−−→ M
g

−−−→ N−−−→0,

where, by (6.10), g is right minimal almost split. But this implies, by (1.13),
that the sequence is almost split. !

It is useful to observe that it follows from (6.11)(a) that, for any pro-
jective A-module P , there exists a functorial isomorphism radA(−, P ) ∼=
HomA(−, radP ). Dually, for any injective A-module I, there exists a
functorial isomorphism radA(I,−) ∼= HomA(I/soc I,−).


