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Chapter 1

Examples

1.1 Algebras

Let R be a commutative ring with a 1.

Definition 1.1.1. An (associative) R-algebra is a (not necessarily commutative) ring
A with a 1, equipped with a (unital) ring homomorphism R → A whose image lies in
the center of A.

In all our examples this homomorphism will be one-to-one, so that R is realized as
a subring of the center of A. The polynomial ring R[x1, . . . , xn] and the matrix ring
Mn(R) are examples of R-algebras. The first is commutative, the second is not.

Definition 1.1.2. The opposite ring of a ring A is denoted Aop. This ring has the
same elements of A and a new multiplication a ·b := ba. If A is an R-algebra, so is Aop.

As well as being a ring in its own right, an R-algebra A can be regarded as an
R-module, where the action of R is given by multiplication within A. When R is a
field, A is a vector space over R. To say that A is a finite dimensional algebra means
that R is a field, and A is finite dimensional as a vector space over R.

Definition 1.1.3. A homomorphism of R-algebras A → B is a ring homomorphism
that is also an R-module homomorphism. A representation of an R-algebra A is the
same thing as an A-module.

This means that a representation of A is an abelian group M together with a
ring homomorphism A → EndZ(M), the ring of endomorphisms of M as an abelian
group. Because of the ring homomorphism R → A we have, by composition, a ring
homomorphism R→ EndZ(M), so that M also has the structure of an R-module.

Class Activity. Given an R-algebra A and an A-module M , then EndR(M) is an
R-algebra, and the homomorphism A→ EndR(M) is a homomorphism of R-algebras.
Is this obvious? Is it easy? Is there a difficulty? Would the answers to these questions
change if EndZ(M) were asked about instead of EndR(M)? Is the definition of a
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CHAPTER 1. EXAMPLES 2

representation of A even correct? Should it require M to be an R-module, and A →
EndR(M) a homomorphism of R-algebras?

Why should we make the structure of a ring more complicated by introducing an
extra ring R in the definition of an algebra? What mathematical or other reason do we
have for considering algebras and their representations at all? What goals do we have
in describing representations? So far, the definitions have been rather abstract. These
points will be addressed, to some extent, by considering examples.

1.2 Representations of groups

This section is adapted from P.J. Webb, A course in finite group representation theory,
Cambridge 2016.

Let G denote a finite group, and let R be a commutative ring with a 1. If V is an
R-module we denote by GL(V ) the group of all invertible R-module homomorphisms
V → V . In case V ∼= Rn is a free module of rank n this group is isomorphic to the group
of all non-singular n × n matrices over R, and we denote it by GL(n,R) or GLn(R),
or in case R = Fq is the finite field with q elements by GL(n, q) or GLn(q). We point
out also that unless otherwise stated, modules will be left modules and morphisms will
be composed reading from right to left, so that matrices in GL(n,R) are thought of as
acting from the left on column vectors.

A (linear) representation of G (over R) is a group homomorphism

ρ : G→ GL(V ).

In a situation where V is free as an R-module, on taking a basis for V we may write
each element of GL(V ) as a matrix with entries in R and we obtain for each g ∈ G
a matrix ρ(g). These matrices multiply together in the manner of the group and we
have a matrix representation of G. In this situation the rank of the free R-module
V is called the degree of the representation. Sometimes by abuse of terminology the
module V is also called the representation, but it should more properly be called the
representation module or representation space (if R is a field).

To illustrate some of the possibilities that may arise we consider some examples.

Example 1.2.1. For any group G and commutative ring R we can take V = R and
ρ(g) = 1 for all g ∈ G, where 1 denotes the identify map R → R. This representation
is called the trivial representation, and it is often denoted simply by its representation
module R. Although this representation turns out to be extremely important in the
theory, it does not at this point give much insight into the nature of a representation.

Example 1.2.2. A representation on a space V = R of rank 1 is in general determined
by specifying a homomorphism G → R×. Here R× is the group of units of R, and it
is isomorphic to GL(V ). For example, if G = 〈g〉 is cyclic of order n and k = C is the
field of complex numbers, there are n possible such homomorphisms, determined by

g 7→ e
2rπi
n where 0 ≤ r ≤ n−1. Another important example of a degree 1 representation
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is the sign representation of the symmetric group Sn on n symbols, given by the group
homomorphism which assigns to each permutation its sign, regarded as an element of
the arbitrary ring R.

Example 1.2.3. Let R = R, V = R2 and G = S3. This group G is isomorphic to the
group of symmetries of an equilateral triangle. The symmetries are the three reflections
in the lines that bisect the equilateral triangle, together with three rotations.

1

2

3

Positioning the center of the triangle at the origin of V and labeling the three vertices
of the triangle as 1, 2 and 3 we get a representation

() 7→
[
1 0
0 1

]
(1, 2) 7→

[
0 1
1 0

]
(1, 3) 7→

[
−1 0
−1 1

]
(2, 3) 7→

[
1 −1
0 −1

]
(1, 2, 3) 7→

[
0 −1
1 −1

]
(1, 3, 2) 7→

[
−1 1
−1 0

]
where we have taken basis vectors in the directions of vertices 1 and 2, making an
angle of 2π

3 to each other. In fact these matrices define a representation of degree 2
over any ring R, because although the representation was initially constructed over
R the matrices have integer entries, and these may be interpreted in every ring. No
matter what the ring is, the matrices always multiply together to give a copy of S3.

At this point we have constructed three representations of S3: the trivial represen-
tation, the sign representation and one of dimension 2.
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Example 1.2.4. Let R = Fp, V = R2 and let G = Cp = 〈g〉 be cyclic of order p
generated by an element g. We see that the assignment

ρ(gr) =

[
1 0
r 1

]
is a representation. In this case the fact that we have a representation is very much
dependent on the choice of R as the field Fp: in any other characteristic it would not
work, because the matrix shown would no longer have order p.

We can think of representations in various ways. One of them is that a represen-
tation is the specification of an action of a group on an R-module, as we now explain.
Given a representation ρ : G→ GL(V ), an element v ∈ V and a group element g ∈ G
we get another module element ρ(g)(v). Sometimes we write just g · v or gv for this
element. This rule for multiplication satisfies

g · (λv + µw) = λg · v + µg · w
(gh) · v = g · (h · v)

1 · v = v

for all g ∈ G, v, w ∈ V and λ, µ ∈ R. A rule for multiplication G × V → V satisfying
these conditions is called a linear action of G on V . To specify a linear action of G on V
is the same thing as specifying a representation of G on V , since given a representation
we obtain a linear action as indicated above, and evidently given a linear action we
may recover the representation.

Another way to define a representation of a group is in terms of the group algebra.
We define the group algebra RG (or R[G]) of G over R to be the free R-module with
the elements of G as an R-basis, and with multiplication given on the basis elements
by group multiplication. The elements of RG are the (formal) R-linear combinations
of group elements, and the multiplication of the basis elements is extended to arbitrary
elements using bilinearity of the operation. What this means is that a typical element of
RG is an expression

∑
g∈G agg where ag ∈ R, and the multiplication of these elements

is given symbolically by

(
∑
g∈G

agg)(
∑
h∈G

bhh) =
∑
k∈G

(
∑
gh=k

agbh)k.

More concretely, we exemplify this definition by listing some elements of the group
algebra QS3. We write elements of S3 in cycle notation, such as (1, 2). This group
element gives rise to a basis element of the group algebra which we write either as
1 · (1, 2), or simply as (1, 2) again. The group identity element () also serves as the
identity element of QS3. In general, elements of QS3 may look like (1, 2) − (2, 3) or
1
5(1, 2, 3) + 6(1, 2)− 1

7(2, 3). Here is a computation:

(3(1, 2, 3) + (1, 2))(()− 2(2, 3)) = 3(1, 2, 3) + (1, 2)− 6(1, 2)− 2(1, 2, 3)

= (1, 2, 3)− 5(1, 2).

The group algebra RG is indeed an example of an R-algebra.
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Example 1.2.5. If G = 〈x〉 is an infinite cyclic group then ZG = Z[x, x−1] is the ring
of Laurent polynomials in x.

Example 1.2.6. If p is a prime number it follows from some algebraic number theory
that the ring of integers Z[e2πi/p] ∼= Z[X]/(1 +X + · · ·+ xp−1) has rank p− 1 as a free
abelian group. If G = 〈x〉 is cyclic of order p, there is a surjective ring homomorphism
ZG → Z[e2πi/p] specified by x 7→ e2πi/p. Its kernel is ZN , where N =

∑
g∈G g. This

relationship shows that Z[e2πi/p]-modules may be regarded as ZG modules, because
ZG has an ideal that is free abelian of rank 1, with factor ring Z[e2πi/p].

Having defined the group algebra, we may now instead define a representation of G
over R to be a unital RG-module. The fact that this definition coincides with the previ-
ous ones is the content of the next proposition. We may refer to group representations
as modules (for the group algebra).

Proposition 1.2.7. A representation of G over R has the structure of a unital RG-
module. Conversely, every unital RG-module provides a representation of G over R.

Proof. Given a representation ρ : G→ GL(V ) we define a module action of RG on V
by (

∑
agg)v =

∑
agρ(g)(v).

Given an RG-module V , the linear map ρ(g) : v 7→ gv is an automorphism of V
and ρ(g1)ρ(g2) = ρ(g1g2) so ρ : G→ GL(V ) is a representation.

The group algebra gives another example of a representation, called the regular
representation. In fact for any ring A we may regard A itself as a left A-module with
the action of A on itself given by multiplication of the elements. We denote this left
A-module by AA when we wish to emphasize the module structure, and this is the (left)
regular representation of A. When A = RG we may describe the action on RGRG by
observing that each element g ∈ G acts on RGRG by permuting the basis elements in
the fashion g · h = gh. Thus each g acts by a permutation matrix, namely a matrix in
which in every row and column there is precisely one non-zero entry, and that non-zero
entry is 1. The regular representation is an example of a permutation representation,
namely one in which every group element acts by a permutation matrix.

Regarding representations of G as RG-modules has the advantage that many def-
initions we wish to make may be borrowed from module theory. Thus we may study
RG-submodules of an RG-module V , and if we wish we may call them subrepresen-
tations of the representation afforded by V . To specify an RG-submodule of V it is
necessary to specify an R-submodule W of V that is closed under the action of RG.
This is equivalent to requiring that ρ(g)w ∈W for all g ∈ G and w ∈W . We say that
a submodule W satisfying this condition is stable under G, or that it is an invariant
submodule or invariant subspace (if R happens to be a field). Such an invariant submod-
ule W gives rise to a homomorphism ρW : G → GL(W ) that is the subrepresentation
afforded by W .
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Example 1.2.8. 1. Let C2 = {1,−1} be cyclic of order 2 and consider the represen-
tation

ρ : C2 → GL(R2)

1 7→
[
1 0
0 1

]
−1 7→

[
1 0
0−1

]
There are just four invariant subspaces, namely {0}, 〈

(
1
0

)
〉, 〈
(
0
1

)
〉, R2 and no others. The

representation space R2 = 〈
(
1
0

)
〉 ⊕ 〈

(
0
1

)
〉 is the direct sum of two invariant subspaces.

Example 1.2.9. In Example 1.2.4 above we considered a representation ρ of G =
Cp = 〈g〉 over R = Fp, V = R2 given by

ρ(gr) =

[
1 0
r 1

]
.

An elementary calculation shows that 〈
(
0
1

)
〉 is the only 1-dimensional invariant sub-

space, and so it is not possible to write the representation space V as the direct sum of
two non-zero invariant subspaces (or submodules). This representation has only three
invariant subspaces. In this example the group algebra FpG ∼= Fp[X]/(Xp) with an
isomorphism given by g ↔ X + 1. Every finite dimensional representation of this ring
is a direct sum of modules Fp[X]/(Xr) where 1 ≤ r ≤ p.

1.3 Representations of quivers

Definition 1.3.1. A quiver Q is a directed graph with vertices Q0 and directed edges
Q1. For each directed edge x

α−→ y the origin of α is o(α) = x and the terminus of α is
t(α) = y. A representation M of Q over R is the specification of

• an R module M(x) for each vertex x in Q0, and

• an R-module homomorphism M(α) : M(x)→M(y) for each edge α in Q1.

A homomorphism f : M → N of representations of Q is, for each vertex x, an R-module
homomorphism fx : M(x)→ N(x) so that for every edge x

α−→ y the diagram

M(x)
M(α)−→ M(y)

fx

y yfy
N(x)

N(α)−→ N(y)

commutes. An isomorphism of representations is defined to be a homomorphism with
a 2-sided inverse. For representations of quivers it is equivalent to require that each of
the maps fx be an isomorphism.
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Example 1.3.2. For the quiver

Q1 = • α

a representation over R is the specification of an R-module V and an R-linear map
θ : V → V . A homomorphism from this representation to another representation
φ : W →W is an R-linear map f : V →W so that φf = fθ. Two such representations
are isomorphic if and only if there is an invertible such map f , so that φ = fθf−1. This
requires V ∼= W as R-modules and, taking V = W the condition is that φ and θ are
conjugate by an invertible transformation. The classification of representations of Q1

is thus the same problem as the classification of conjugacy classes of endomorphisms
of an R-module which, when R is an algebraically closed field, is solved by Jordan
canonical form (and over an arbitrary field by rational canonical form).

Example 1.3.3. For the quiver

Q2 = • •y x
β

a representation is a diagram of R-modules M(y)
β∗←− M(x). Three such diagrams

are Sy = R
0←− 0, Sx = 0

0←− R and V = R
1←− R. There are homomorphisms of

representations 0→ Sy → V → Sx → 0, where 0 denotes the representation 0
0←− 0.

Associated to a finite quiver Q there is an R-algebra, called the path algebra, which
we now define.

Definition 1.3.4. A path in the quiver Q is a list of edges p = (αn, αn−1, . . . , α1) with
t(αi) = o(αi+1) for each i with 1 ≤ i ≤ n − 1. Such a path has length n and passes
through n + 1 vertices (possibly with repeats). By convention we include a path of
length 0 from x to x, for each vertex x of Q. This is an empty list of edges; we write
1x for the empty list at x.

The path algebra of Q is the free R module with basis the paths in Q. We define a
multiplication on Q by defining it on the basis elements and extending by R-linearity.
For basis elements p1 and p2, if the end point of p1 is the same as the starting point of p2
we define the product of these elements to be the path p2p1 obtained by concatenating
the paths; and otherwise the product is zero.

Example 1.3.5. For the quivers

Q1 = • α Q2 = • •y x
β

the path algebra of Q1 is the polynomial ring R[α], whereas the path algebra of Q2 is a
free R-module of rank 3 with basis the three paths 1x, 1y, β. The multiplications of these
elements are 1x1x = 1x, 1y1y = 1y, 1yβ = β, β1x = β and all other products between
the basis elements are zero. We see that this algebra is isomorphic to the subalgebra
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of M2(R) consisting of the lower triangular matrices. This is because this algebra
has a basis the matrices E11, E21, E22 with products E11E11 = E11, E22E22 = E22,
E22E21 = E21, E21E11 = E21 and all other products between these matrices are zero.

Proposition 1.3.6. Let Q be a finite quiver. The path algebra of Q is an associative
R-algebra.

Proof. The issues are that multiplication is associative, and the algebra has a mul-
tiplicative identity. Associativity follows because paths are lists of edges, so they are
equal if and only if they have the same terms in the list. For paths that can be concate-
nated this means that it makes no difference if we multiply three paths by concatenating
the first two and then the third, or by concatenating the last two and then the first. In
other situations associativity follows because the product is zero. The identity element
of the path algebra is

∑
x∈Q0

1x.

Proposition 1.3.7. Representations of a finite quiver may be identified with unital
modules for the path algebra, and under this identification homomorphisms of quiver
representations are module homomorphisms.

Proof. The correspondence is that for each representation M of Q we construct the
module for the path algebra

⊕
x∈Q0

M(x). Conversely, for each module L for the path
algebra we associate the representation of the quiver with M(x) := 1xL. For each
edge α ∈ Q1 we associate the R-module homomorphism M(α) : M(x)→M(y) that is
multiplication by α.

This means that we can transport concepts from module theory to the theory of
representations of quivers, and speak of subrepresentations, quotient representations,
and so on.

Example 1.3.8. In Example 1.3.3, when R is a field the representations Sy and Sx
are simple. The sequence of representations in that example is a short exact sequence.
The representation V has precisely three subrepresentations.

1.4 Representations of posets

Definition 1.4.1. A partially ordered set or poset is a set P with a relation x ≤ y
satisfying

• x ≤ x,

• x ≤ y and y ≤ z implies x ≤ z, and

• x ≤ y and y ≤ x implies x = y.

A representation M of a poset P is the specification of an R-module M(x) for each
element x ∈ P, and for each pair of comparable elements x ≤ y there is an R-linear
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map M(x)→ M(y). These R-linear maps should have the property that if x ≤ y ≤ z
then the composite of the maps M(x)→M(y)→M(z) must equal the specified map
M(x)→M(z).

Example 1.4.2. If P is the poset with elements x, y and x < y, its representations
are the same as the representations of the quiver Q2 in Example 1.3.5.

At this point we may be expecting the definition of an algebra whose modules are
the same thing as representations of the poset. This algebra is the incidence algebra
of the poset, or else its opposite, depending on how the incidence algebra is defined.
Rather than make these definitions we move to the more general situation of categories,
which subsumes the constructions given so far.

1.5 Representations of categories

In this section we present the three kinds of examples we have seen so far as instances
of a single construction. The algebras that arise provide a good range of examples of
natural interest. Furthermore, the language of category theory will be extremely useful
to us.

Definition 1.5.1. A category C consists of three ingredients: a class Ob(C) of objects,
a set of morphisms HomC(x, y) for each pair of objects x and y, and a composition map-
ping HomC(y, z) × HomC(x, y) → HomC(x, z) denoted (f, g) 7→ fg. These ingredients
are subject to the following axioms:

1. Hom sets are pairwise disjoint; that is, each f ∈ HomC(x, y) has a unique domain
x and a unique codomain or target y;

2. for each object x there is an identity morphism 1x ∈ HomC(x, x) such that f1x = f
and 1yf = f for all f : x→ y;

3. composition is associative.

This definition captures many familiar examples: the category of sets, the category
of groups, the category of topological spaces, and so on. In each case the morphisms in
the category must be the morphisms appropriate for the structure we are considering:
continuous maps for topological spaces, group homomorphisms for groups, all mappings
of sets for the category of sets.

Definition 1.5.2. We will be particular concerned with A-Mod, the category of all
left A-modules, and A-mod, the category of all finitely generated left A-modules, with
module homomorphisms as the morphisms.

In these examples the collection of objects does not form a set. When the objects
of C do form a set we call C a small category. Apart from these examples, many of our
categories of interest will be finite, and the notion of a category can be regarded as a
combinatorial construction.
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Definition 1.5.3. A morphism f : x→ y is said to be an isomorphism, or be invertible,
if there is a morphism g : y → x so that fg = 1y and gf = 1x. In that case the objects
x and y are said to be isomorphic.

Example 1.5.4. A monoid is a set with an associative binary operation and an identity
element. Every group and, more generally, every monoid can be regarded as a category
with a single object, in which the elements of the monoid are the morphisms, and
composition of morphisms is given by multiplication in the monoid. The monoid is
realized as the endomorphism monoid of the object. In the other direction, for any
object x in a category C, the set of endomorphisms EndC(x) is a monoid. Thus monoids
can be regarded as categories with a single object, and groups can be regarded as
categories with a single object in which all the morphisms are invertible.

Example 1.5.5. Every poset P may be regarded as a category where the elements of
P are the objects, and there is a single morphism x → y if and only if x ≤ y. Each
category where there is at most one morphism between each pair of objects may be
regarded as a preordered set, where for objects x and y we define x ≤ y if there is a
morphism x→ y. A preordered set is a set with a transitive reflexive binary relation ≤
(we do not require the further condition that x ≤ y and y ≤ x imply x = y that makes
a preordered set a poset).

Example 1.5.6. Given a quiver Q we may form the free category F (Q) on Q. The
objects of F (Q) are the vertices of Q, and for objects x and y the set of homomor-
phisms HomF (Q)(x, y) is the set of all paths from x to y. Composition of morphisms is
concatenation of paths. This construction may be found in MacLane’s book [5]. Thus
the quiver Q1 in Example 1.3.5 determines a free category F (Q1) with infinitely many
morphisms, and the free category F (Q2) has two objects and three morphisms.

Just as we introduced the group algebra of a group and the path algebra of a
quiver, we now introduce the category algebra of a category. This generalizes the
previous constructions.

Definition 1.5.7. The category algebra RC of a category C over R is defined to be
the free R-module with the morphisms of the category C as a basis. The product of
morphisms α and β as elements of RC is defined to be

αβ =

{
α ◦ β if o(α) = t(β),

0 otherwise,

and this product is extended to the whole of RC using bilinearity of multiplication.

Example 1.5.8. If C is a group, that is a category with one object in which every
morphism is invertible, the category algebra RC is the group algebra.

Example 1.5.9. The category algebra of a partially ordered set (or rather, its opposite)
is the incidence algebra of the poset. This may be taken as a definition of the incidence
algebra.
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Example 1.5.10. Starting with a quiver Q we may form the free category F (Q). Now
the category algebra RFQ is the same as the path algebra of Q.

Our next step is to introduce the notion of a representation of a category, gener-
alizing the notions of representations of groups, posets, and quivers. The concept is
expressed in terms of a functor.

Definition 1.5.11. If C and D are categories we define a functor T : C → D to be a
function such that

1. if x ∈ Ob(C) then T (x) ∈ Ob(D),

2. if α : x→ y in C, then T (α) : T (x)→ T (y) in D,

3. if x
α−→ y

β−→ z in C, then T (x)
T (α)−−−→ T (y)

T (β)−−−→ T (z) in D and T (βα) = T (β)T (α),

4. T (1x) = 1T (x) for every x ∈ Ob(C).

Many familiar operations on the objects of categories are examples of functors. Here
are some.

Example 1.5.12. If x is an object of C we get a functor HomC(x,−) : C → Set
that sends each object y to the set HomC(x, y) and each morphism β : y → z to the
mapping of sets HomC(x, β) = β∗ : HomC(x, y) → HomC(x, z) that sends α : x → y to
βα : x→ z.

Example 1.5.13. If X is a set we may form the free group F (X) on X. For each
mapping of sets α : X → Y there is a unique group homomorphism α∗ : F (X)→ F (Y )
extending α. The construction of a free group is a functor Set→ Group.

Sometimes we may have the specification of a functor T : C → D except that the
order of composition of morphisms is reversed by T , so that Tβα) = T (α)T (β). Such
is the case with the functor HomC(−, x) : C → Set. We can describe such a functor
using the opposite of a category.

Definition 1.5.14. For each category C, the opposite category Cop has the same objects
as C and for each morphism α : x → y in C there is a formally defined morphism

α̂ : y → x in Cop. The rule of composition in Cop is that if x
α−→ y

β−→ z in C then
α̂β̂ := β̂α : z → x. We say that a functor Cop → D is a contravariant functor on C,
and that the usual functors C → D are covariant.

Example 1.5.15. HomC(−, x) is a contravariant functor C → Set.

Class Activity. Think of some other functors. Can you think of

• a functor Finite Categories→ Algebras?

• a functor Quivers→ Categories?
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These questions presuppose that there is even a category called Finite Categories, and
a category called Quivers. Have you been told what they are? What information is
missing? What do you need to check to verify that you really do have a functor of the
kind asked about?

Definition 1.5.16. When C is a small category and R is a commutative ring with a 1
we define a representation of C over R to be a functor F : C → R-Mod where R-Mod
is the category of R-modules.

Example 1.5.17. When C is a group or a poset, this definition coincides with the
definition given before of a representation of these structures. When Q is a quiver, a
representation of Q is the same thing as a representation of the free category F (Q). In
the cases of groups and quivers we have seen that representations may be regarded as
modules for the group algebra, and for the path algebra.

We now show that for categories in general, modules for the category algebra may
be regarded as representations of the category. This was observed by Mitchell, and we
give only a special case of his result for categories with finitely many objects.

Proposition 1.5.18. [Mitchell [6]] Let C be a category with finitely many objects. The
categories of representations of C over R and of RC-modules are equivalent.

In stating this result we have used two concepts that have not yet been introduced.
The first is that the homomorphisms of representations of C have not been defined
(they are natural transformations of functors) and the second concept is that of an
equivalence of categories. This could be avoided by taking an informal approach that
representations of C over R are ‘the same thing as’ modules for RC, which is what is
often done with group algebras and path algebras. The idea of the proof is the same
as what we have seen in these cases.

Proof. Given a representation M : C → R-mod we obtain an RC-module r(M) =⊕
x∈ObCM(x) where the action of a morphism α : y → z on an element u ∈ M(x) is

to send it to M(α)(u) if x = y and zero otherwise. Conversely, given an RC-module
U , we define a functor M = s(U) : C → R-mod by specifying M at an object x in C as
M(x) = 1xU , where 1x is the identity morphism at x. If α : x→ z is a morphism in C
and u ∈ 1xU we define M(α)(u) = αu. The two operations r and s are functors, and
they are inverse equivalences of categories.

Homomorphisms between representations of a category C could be defined to be
RC-module homomorphisms, but we can also define them directly, by analogy with the
definition for representations of a quiver. If M and N are representations of C over R
a homomorphism θ : M → N is the specification for each object x of C of an R-module
homomorphism θx : M(x) → N(x) so that: for every morphism α : x → y in C the
following diagram commutes:

M(x)
M(α)−→ M(y)

θx

y yθy
N(x)

N(α)−→ N(y)
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Regarding representations of a quiver as representations of the free category of the
quiver, this definition coincides with the previously given definition for quivers. Such
mappings θ are a list of homomorphisms (θx)x∈ObC and they have a special name.

Definition 1.5.19. Let M,N : C → D be functors. A natural transformation θ : M →
N is the specification, for each x ∈ ObC, of a morphism θx : M(x) → N(x) in D so
that for every morphism α : x→ y in C the following diagram commutes:

M(x)
M(α)−→ M(y)

θx

y yθy
N(x)

N(α)−→ N(y)

.

Example 1.5.20. Regarding representations of C as functors M : C → R-Mod, the
homomorphisms M → N are the natural transformations between these functors.

Example 1.5.21. Let Fun(C,D) denote the set of functors from C to D where C,D
are small categories. This set is the set of homomorphisms in the category of small
categories. The set has further structure, in that it is also a category: the objects in
this category are the functors from C to D and the morphisms are the natural trans-
formations. Composition of natural transformations is defined pointwise on objects, so
that if θ : F → G and ψ : G → H then ψθ : F → H is the natural transformation
with (ψθ)x = ψxθx : F (x) → H(x) for each x ∈ ObC. There is an identity natural
transformation 1F : F → F , defined to be (1F )x := 1F (x) : F (x)→ F (x) at x. Thus the
category of small categories has three kinds of pieces of information: objects (the cat-
egories), morphisms (the functors) and natural transformations (morphisms between
the functors). It is an example of a 2-category, which we do not define here. In this
terminology, categories as we have defined them are 1-categories.

Definition 1.5.22. Two functors M,N : C → D are naturally isomorphic, written
M ' N , if they are isomorphic in the functor category, which is to say there are
natural transformations θ : M → N and ψ : N → M so that ψθ = 1M and θψ = 1N .
Two categories C,D are said to be isomorphic if there are functors F : C → D and
G : D → C so that GF = 1C and FG = 1D, the identity functors on C and D. This is
a strong condition, and often functors we construct in practice are not strictly inverse
to each other, but only up to natural isomorphism. We say that categories C,D are
(naturally) equivalent if there are functors F : C → D and G : D → C so that GF ' 1C
and FG ' 1D.

Example 1.5.23. This notion of equivalence of categories is the one used in Mitchell’s
theorem 1.5.18. The two functors r and s that appear in the proof of that theorem do
not compose to give the identity, but their composites are naturally equivalent to the
identity.
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1.6 Representations of algebras in general

The point about all this is to show that by studying representations of finite dimen-
sional algebras we are studying many different examples of natural interest. By regard-
ing these examples as representations of an algebra we can use the language of module
theory. The category of representations of a category C over R is abelian, which we
will not define here, but it implies that we may form subrepresentations, and quotient
representations of a representation by a subrepresentation, namely, submodules and
factor modules for the category algebra. We have the notion of isomorphism of repre-
sentations, as well as simple, projective and injective representations, and direct sums
of representations.

For representations of the special cases groups, posets and quivers, these concepts
from module theory might be less obvious. We might say that ‘u is an element of a
representation M of a category C’ and this will mean that u is an element of the mod-
ule that corresponds to M , namely

⊕
x∈ObCM(x). We may speak of the subfunctor

generated by a set of elements of M , and this means the submodule generated by those
elements, or equally the intersection of all the subfunctors that contain the elements.
Thus we may say that a functor is ‘generated by its value at an object x’, for example,
to mean that it is the smallest subfunctor whose value at x is the given functor, or that
the subfunctor is finitely generated. Such concepts are translated from modules for
the category algebra to representations of the category. In some books on group repre-
sentation theory, for example, the algebraic condition that defines a homomorphism of
representations is written out explicitly, and two representations that are isomorphic
are also said to be equivalent (a term we will not use in this context). We do not need
to do this because we can transport these concepts from module theory.

We have given examples of algebras that are category algebras because such ex-
amples are of wide interest, and it is valuable to see that representations of different
kinds of algebraic structure are all instances of the same construction. Not all finite
dimensional algebras are category algebras. Category algebras have a multiplicative
basis, namely a basis for which the product of any two elements is either a member of
the basis or zero. Many algebras do not have a multiplicative basis.

Exercise 1.6.1. Show that Q[X]/(x2) is not the category algebra of a category. This
can be done by considering how many morphisms a category must have for this to
be the category algebra, listing the categories with that number of morphisms, and
showing that none of these categories have the correct category algebra.

Class Activity. Three questions were asked near the start of this chapter. To what
extent have they been answered? The questions were:

• Why should we make the structure of a ring more complicated by introducing an
extra ring R in the definition of an algebra?

• What mathematical or other reason do we have for considering algebras and their
representations at all?
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• What goals do we have in describing representations?



Chapter 2

Gabriel’s theorem

We follow Chapter 1 of the book
[DDPW] B.Deng, J. Du, B. Parshall and J. Wang, Finite dimensional algebras and
quantum groups, AMS 2008.

Concordance of notation: in Definition 1.1 the tail and head of an arrow ρ are tρ
and hρ, whereas we write oρ and tρ for the origin and terminus of ρ. In Definition
1.3 a representation of a quiver Q is written V = (Vi, Vρ), whereas we write V (i) for
the R-module at vertex i and V (ρ) : V (i) → V (j) for the R-module homomorphism

associated to the arrow i
ρ−→ j.

We study the start of section 1.2 up to part (1) of Lemma 1.8; the statement of
Theorem 1.11; most of section 1.3 up to Examples 1.12 (2); then we start section 1.4.

At the start of section 1.3, we observe by a geometrical argument that if v ∈ Rn is a
vector with (v, v) = 2, where (−,−) is the usual bilinear form, and rv denotes reflection
in the hyperplane perpendicular to v, then rv(x) = x − (x, v)v. This motivates the
definition of the reflection ri as ri(x) = x− (x, αi)αi.

Proposition 2.0.1. Suppose that Q is a quiver without loops.

1. The formula ri(αj) = αj − ci,jαi can also be written

ri(x)j =

{
xj if j 6= i

−xi +
∑

k,edges between i,k xk if i = j

2. r2i = 1,

3. (ri(x), ri(y)) = (x, y) always.

16
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Proof. (1) The proof of this formula is that

ri(x) = x−
[
x1 · · · xn

]
CQ


0
...
1
...
0


= x−

[
x1 · · · xn

] c1,i...
cn,i



=


x1
...

xi − (x1c1,i + · · ·+ xncn,i)
...
xn


and the expression in row i agrees with the desired formula because ci,i = 2.

(2) This comes from direct calculation:

ri(ri(x)) = ri(x)− (ri(x), αi, )αi

= x− (x, αi)αi − ((x− (x, αi)αi), αi)αi

= x+ (−(x, αi)− (x, αi) + (x, αi)(αi, αi))αi

= x.

The proof of (3) is similarly done by calculation.

We define the Weyl group W (Q), the real roots and the positive roots. Beyond this
we do not need to define the root system.

Example 2.0.2. This is a special case of Example 1.12(2). We let Q = α1• → •α2,

so that CQ =

[
2 −1
−1 2

]
. This defines a positive definite inner product, and the angle

between α1 and α2 is
(α1, α2)√

(α1, α1)(α2, α2)
=
−1

2
.

We draw α1 and α2 at an angle of 120◦ and find that the real roots are the vertices of
a regular hexagon and that W (Q) ∼= S3.

We now jump to section 1.4. Here are some preliminary lemmas for Theorem 1.18
of [DDPW]. The first is about kernels and cokernels. We could take the cokernel of
a module homomorphism A

α−→ B to be a homomorphism isomorphic to the quotient
map B → B/α(A). The first part of the next lemma says that this construction implies
the categorical property that can also be taken to define the cokernel.
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Lemma 2.0.3. Let
A

α−→ B
β−→ Cyγ

D

be a diagram of modules for a ring. Suppose that β = Cokerα and γα = 0.

1. There exists a unique homomorphism ε : C → D so that γ = εβ.

2. If in addition A
α−→ B = Ker γ then ε is one-to-one.

There is also a dual version of this lemma to do with kernels.

Definition 2.0.4. We define what it means for a vertex k of Q to be a sink or a source.
We also define the quiver skQ, obtained from Q by reversing all the arrows incident
with k. Evidently skskQ = Q. If k is a sink of Q and V is a representation of Q there
is a map of vector spaces

ξk :
⊕

α,t(α)=k

V (o(α))→ V (k)

where the component maps are the V (α). Similarly, if k is a source there is a map

γk : V (k)→
⊕

α,o(α)=k

V (t(α))

with component maps V (α).

Definition 2.0.5. We now define the reflection functors R+
k ,R

−
k : KFQ-mod →

KFskQ-mod. The first of these, R+
k , is defined when k is a sink and the second, R−k ,

is defined when k is a source. The definitions are these: for a sink k,

R+
k (V )(i) =

{
V (i) if i 6= k,

Ker ξk if i = k.

When k is a source,

R−k (V )(i) =

{
V (i) if i 6= k,

Coker γk if i = k.

This is the definition on objects of KFQ-mod and, as explained in [DDPW], they
are also defined on morphisms, making them functors. These functors are K-linear,
meaning that they preserve linear combinations of morphisms, and they send direct
sums of modules to direct sums.

Example 2.0.6. When Q = α1• → •α2 we compute R+
2 , and compose it with R−2 for

s2Q.

The next result is a replacement for Theorem 1.18.
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Theorem 2.0.7. Let V be an indecomposable representation of the quiver Q over a
field K.

1. If k is a sink then either the map ξk :
⊕

α,t(α)=k V (o(α))→ V (k) is surjective or

V ∼= Sk is simple. Furthermore R+
k (V ) = 0 if and only if V ∼= Sk. When V 6∼= Sk

there is a natural isomorphism R−kR
+
k (V ) ∼= V and dimR+

k (V ) = rkdim(V ).

2. If k is a source then either the map γk : V (k)→
⊕

α,o(α)=k V (t(α)) is injective or

V ∼= Sk is simple. Furthermore R−k (V ) = 0 if and only if V ∼= Sk. When V 6∼= Sk
there is a natural isomorphism R+

kR
−
k (V ) ∼= V and dimR−k (V ) = rkdim(V ).

Proof. The idea is the same as in the proof of Theorem 1.18.
(1) Choose a vector space decomposition V (k) = W1 ⊕W2 where W1 = Im ξk and

W2 is some vector space complement to W1. We get a decomposition V = V1 ⊕ V2
where Vi(j) = V (j) if j 6= k, and Vi(k) = Wi, for i = 1, 2. If V is indecomposable then
either V2 = 0, in which case ξk is surjective, or V1 = 0, in which case V is a direct sum
of copies of Sk, so equals Sk by indecomposability. We see that R+

k (V ) = 0 if and only
if V (j) = 0 for all j 6= i, and Ker ξk = 0, which happens if and only if V is non-zero
only at k, so that V ∼= Sk.

When V 6∼= Sk there is a short exact sequence of vector spaces

0→ R+
k (V )(k)→

⊕
α,t(α)=k

V (o(α))→ V (k)→ 0

from which we see that

dimR+
k (V )(k) =

 ∑
α,t(α)=k

dimV (o(α))

− dimV (k).

Also dimV (j) = dimR+
k (V )(j) if j 6= k. From this we see that dimR−k (V ) = rkdim(V )

because the formula for rkdim(V ) is the same. In constructing R−kR
+
k (V ) we obtain a

similar short exact sequence 0 → R+
k (V )(k) →

⊕
α,t(α)=k V (o(α)) → R−kR

+
k (V )(k) →

0 where R−kR
+
k (V )(k) is defined to be the cokernel of the map on the left. The property

of the cokernel gives a natural isomorphism R−kR
+
k (V )(k)→ V (k) which, together with

the identity maps at the other vertices of Q, gives a natural map R−kR
+
k (V )→ V that

is an isomorphism.
The proof of (2) is similar.

Definition 2.0.8. A subcategory D of a category C is a category whose objects are
all objects of C, and where for each pair of objects x, y of D we have HomD(x, y) ⊆
HomC(x, y), with the same rule of composition as C. A full subcategory of C has the
stronger property that HomD(x, y) = HomC(x, y) for all objects x, y in D. If k is a
vertex of a quiver Q we write KFQ-mod〈k〉 for the full subcategory of KFQ-mod
whose objects do not have any direct summand isomorphic to Sk.

As a replacement for Corollary 1.19, we have the following.
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Corollary 2.0.9. Let k be a sink in Q. Then there is an equivalence of categories
KFQ-mod〈k〉 ' KFskQ-mod〈k〉 given by the inverse equivalences R+

k and R−k . Thus
a representation V of Q with no Sk summand is indecomposable if and only if R+

k V
is an indecomposable representation of skQ with no Sk summand, giving a bijection
between isomorphism classes of indecomposable representations of Q and of skQ that
are distinct from Sk. Furthermore, EndKFQ(V ) ∼= EndKFskQ(R+V ).

Proof. Notice that if V 6∼= Sk then R+
k (V ) 6∼= Sk (if k is a sink) and R−k (V ) 6∼= Sk (if k is

a source). From this it follows that R+
k is a functor KFQ-mod〈k〉 → KFskQ-mod〈k〉

and R−k is a functor in the reverse direction. We have seen that the two composites
R−kR

+
k and R+

kR
−
k are naturally isomorphic to the corresponding identity functors, so

we have an equivalence of categories as claimed. We can deduce everything else from
this, but to do some of it explicitly: if V is an indecomposable representation of Q other
than Sk and R+

k (V ) = V1 ⊕ V2 were to decompose, then neither V1 nor V2 can be Sk
because γk is injective by construction of R+

k (V ). Thus R−kR
+
k (V ) = R−k (V1)⊕R−k (V2)

with neither summand 0, which is not possible since this representation is isomorphic
to V . Hence R+

k (V ) is indecomposable. By a similar argument with R−k , if R−k (V ) is
indecomposable, so is V .

We now do Corollary 1.20 of [DDPW] and define a (+)-admissible sequence of
vertices in Q.

Corollary 2.0.10. Let i1, . . . , it+1 be a (+)-admissible sequence of vertices in the quiver
Q such that the roots rij · · · ritαit+1 are positive for all 1 ≤ j ≤ t.. Then there is an
indecomposable representation of Q with dimension vector β = ri1 · · · ritαit+1, unique
up to isomorphism.

Proof. We take the indecomposable representation to be R−i1 · · ·R
−
it+1

St+1.

We define Coxeter functors, Coxeter transformation. We do Lemma 1.22 which
assumes that if Q is a Dynkin quiver then the corresponding bilinear form is positive
definite and W (Q) is finite. Dynkin implies finite could be done by recognizing these
groups explicitly as finite groups.

We define finite representation type and follow with Gabriel’s Theorem 1.23.
The proof divides up as:

• When Q is a Dynkin quiver the isomorphism types of indecomposable represen-
tations are characterized by their dimension vectors, which are a subset of the
positive real roots. There are only finitely many such roots.

• If Q is not a Dynkin quiver it has a subquiver that is extended Dynkin. The
extended Dynkin quivers are shown to have infinite representation type, at least
over an infinite field.

• If Q is a Dynkin quiver then for every positive real root there is an indecomposable
representation with that dimension vector.
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The proof of the last part uses the following lemma.

Lemma 2.0.11. Let Q be a Dynkin quiver, let β be a positive real root and let i be a
vertex of Q. Then ri(β) is either positive or β = αi.

Proof. Because the bilinear form is positive definite we get

0 ≤ (β ± αi, β ± αi)
= (β, β) + (αi, αi)± 2(β, αi)

= 2(2± (β, αi)).

Hence −2 ≤ (β, αi) ≤ 2. Also the form takes values (x, x) in 2Z, because (x, x) =
2
∑

i∈Q0
x2i −

∑
(i,j),i 6=j xixj , so (β, αi) = −2, 0 or 2. If (β, αi) = 2 then (β − αi, β −

αi) = 0 and consequently β = αi. On the other hand, if (β, αi) ≤ 2 then ri(β) =
β − (β, αi)αi > 0, because β > 0.

The approach used in [DDPW] to show that quivers of extended Dynkin type have
infinite representation type seems to need K to be an infinite field. There is another
approach to this in the literature, due to Tits, using dimension properties of the action
of an algebraic group on a variety. It also relies on having an infinite (or possibly
algebraically closed) field. Some further argument is needed to show that the infinite
field hypothesis can be removed. It would be nice to avoid this; one approach may be to
use the reflection functors to construct infinitely many indecomposable representations
over any field, at least on an ad hoc basis.

Example 2.0.12. Let Q = 1 • →→ • 2 be a quiver with two vertices and two edges
between them, as shown. The Cartan matrix is

CQ =

[
2 −2
−2 2

]
and the simple reflections ri(v) = v − (αi, v)αi act via matrices

r1 =

[
−1 2
0 1

]
, r2 =

[
1 0
2 −1

]
.

From this we calculate that r2r1(α2) = 2δ + α2 where δ =

[
1
1

]
spans the kernel of CQ,

called the radical of the corresponding bilinear form. The property that (x, δ) = 0 for
all x means that δ is fixed by r1 and r2, so that (r2r1)

n(α2) = 2nδ + α2. From this
we see that the coordinate entries of these roots increase, the roots are positive, and
for each of them there is an indecomposable representation of Q with that dimension
vector. This provides infinitely many non-isomorphic indecomposable representations
over any field, because their dimension vectors are distinct.
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Class Activity. In the above example, over Q, how many indecomposable representa-

tions are there with each of the possible dimension vectors

[
2
1

]
,

[
1
2

]
,

[
1
1

]
? Answers A:0

B:1 C:∞. Can any representations with these dimension vectors be written R+
1 (W ) or

R−2 (W ), for some W?



Chapter 3

Semisimplicity

3.1 Semisimple representations

This section is extracted from section 1.2 of P.J. Webb, A course in finite group repre-
sentation theory, Cambridge 2016.

We let A be a ring with a 1 and consider its modules. A non-zero A-module V is
said to be simple or irreducible if V has no A-submodules other than 0 and V .

Example 3.1.1. When A is an algebra over a field, every module of dimension 1
is simple. In Example 1.2.3 we have constructed three representations of RS3, and
they are all simple. The trivial and sign representations are simple because they have
dimension 1, and the 2-dimensional representation is simple because, visibly, no 1-
dimensional subspace is invariant under the group action. We will see in Example ??
that this is a complete list of the simple representations of S3 over R.

We see immediately that a non-zero module is simple if and only if it is generated
by each of its non-zero elements. Furthermore, the simple A-modules are exactly those
of the form A/I for some maximal left ideal I of A: every such module is simple, and
given a simple module S with a non-zero element x ∈ S the A-module homomorphism
A→ S specified by a 7→ ax is surjective with kernel a maximal ideal I, so that S ∼= A/I.
Since all simple modules appear inside A in this way, we may deduce that if A is a
finite dimensional algebra over a field there are only finitely many isomorphism types
of simple modules, these appearing among the composition factors of A when regarded
as a module. As a consequence, the simple A-modules are all finite dimensional.

A module that is the direct sum of simple submodules is said to be semisimple or
completely reducible. We saw in Examples 1.2.8 and 1.2.9 two examples of modules,
one of which was semisimple and the other of which was not. Every module of finite
composition length is somehow built up out of its composition factors, which are simple
modules, and we know from the Jordan–Hölder theorem that these composition factors
are determined up to isomorphism, although there may be many composition series.
The most rudimentary way these composition factors may be fitted together is as a
direct sum, giving a semisimple module. In this case the simple summands are the

23
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composition factors of the module and their isomorphism types and multiplicities are
uniquely determined. There may, however, be many ways to find simple submodules
of a semisimple module so that the module is their direct sum.

We will now relate the property of semisimplicity to the property that appears in
Maschke’s theorem, namely that every submodule of a module is a direct summand.
Our immediate application of this will be an interpretation of Maschke’s theorem, but
the results have application in greater generality in situations where R is not a field,
or when |G| is not invertible in R. To simplify the exposition we have imposed a
finiteness condition in the statement of each result, thereby avoiding arguments that
use Zorn’s lemma. These finiteness conditions can be removed, and we leave the details
to Exercise 3.3.13 at the end of this chapter.

In the special case when the ring A is a field and A-modules are vector spaces the
next result is familiar from linear algebra.

Lemma 3.1.2. Let A be a ring with a 1 and suppose that U = S1 + · · · + Sn is an
A-module that can be written as the sum of finitely many simple modules S1, . . . , Sn.
If V is any submodule of U there is a subset I = {i1, . . . , ir} of {1, . . . , n} such that
U = V ⊕ Si1 ⊕ · · ·Sir . In particular,

(1) V is a direct summand of U , and

(2) (taking V = 0), U is the direct sum of some subset of the Si, and hence is
necessarily semisimple.

Proof. Choose a subset I of {1, . . . , n} maximal subject to the condition that the sum
W = V ⊕(

⊕
i∈I Si) is a direct sum. Note that I = ∅ has this property, so we are indeed

taking a maximal element of a non-empty collection of subsets. We show that W = U .
If W 6= U then Sj 6⊆W for some j. Now Sj ∩W = 0, being a proper submodule of Sj ,
so Sj +W = Sj ⊕W and we obtain a contradiction to the maximality of I. Therefore
W = U . The consequences (1) and (2) are immediate.

Proposition 3.1.3. Let A be a ring with a 1 and let U be an A-module. The following
are equivalent.

(1) U can be expressed as a direct sum of finitely many simple A-submodules.

(2) U can be expressed as a sum of finitely many simple A-submodules.

(3) U has finite composition length and has the property that every submodule of U
is a direct summand of U .

When these three conditions hold, every submodule of U and every factor module of
U may also be expressed as the direct sum of finitely many simple modules.

Proof. The implication (1) ⇒ (2) is immediate and the implications (2) ⇒ (1) and
(2)⇒ (3) follow from Lemma 3.1.2. To show that (3)⇒ (1) we argue by induction on
the composition length of U , and first observe that hypothesis (3) passes to submodules
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of U . For if V is a submodule of U and W is a submodule of V then U = W ⊕X for
some submodule X, and now V = W ⊕ (X ∩ V ) by the modular law (Exercise 3.3.2 at
the end of this chapter). Proceeding with the induction argument, when U has length
1 it is a simple module, and so the induction starts. If U has length greater than 1, it
has a submodule V and by condition (3), U = V ⊕W for some submodule W . Now
both V and W inherit condition (3) and are of shorter length, so by induction they are
direct sums of simple modules and hence so is U .

We have already observed that every submodule of U inherits condition (3), and
so satisfies condition (1) also. Every factor module of U has the form U/V for some
submodule V of U . If condition (3) holds then U = V ⊕ W for some submodule
W that we have just observed satisfies condition (1), and hence so does U/V since
U/V ∼= W .

We now present a different version of Maschke’s theorem. The assertion remains
correct if the words ‘finite dimensional’ are removed from it, but we leave the proof of
this to the exercises.

Corollary 3.1.4. Let F be a field in which |G| is invertible. Then every finite dimen-
sional FG-module is semisimple.

Proof. This combines Theorem ?? with the equivalence of the statements of Proposi-
tion 3.1.3.

This result puts us in very good shape if we want to know about the representations
of a finite group over a field in which |G| is invertible — for example any field of char-
acteristic zero. To obtain a description of all possible finite dimensional representations
we need only describe the simple ones, and then arbitrary ones are direct sums of these.

The following corollaries to Lemma 3.1.2 will be used on many occasions when we
are considering modules that are not semisimple.

Corollary 3.1.5. Let A be a ring with a 1, and let U be an A-module of finite compo-
sition length.

(1) The sum of all the simple submodules of U is a semisimple module, that is the
unique largest semisimple submodule of U .

(2) The sum of all submodules of U isomorphic to some given simple module S is
a submodule isomorphic to a direct sum of copies of S. It is the unique largest
submodule of U with this property.

Proof. The submodules described can be expressed as the sum of finitely many sub-
modules by the finiteness condition on U . They are the unique largest submodules
with their respective properties since they contain all simple submodules (in case (1)),
and all submodules isomorphic to S (in case (2)).
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The largest semisimple submodule of a module U is called the socle of U , and is
denoted Soc(U). There is a dual construction called the radical of U , denoted RadU ,
that we will study in Chapter 6. It is defined to be the intersection of all the maximal
submodules of U , and has the property that it is the smallest submodule of U with
semisimple quotient.

Corollary 3.1.6. Let U = Sa11 ⊕· · ·⊕Sarr be a semisimple module over a ring A with a 1,
where the Si are non-isomorphic simple A-modules and the ai are their multiplicities as
summands of U . Then each submodule Saii is uniquely determined and is characterized
as the unique largest submodule of U expressible as a direct sum of copies of Si.

Proof. It suffices to show that Saii contains every submodule of U isomorphic to Si. If T
is any non-zero submodule of U not contained in Saii then for some j 6= i its projection
to a summand Sj must be non-zero. If we assume that T is simple this projection will
be an isomorphism T ∼= Sj . Thus all simple submodules isomorphic to Si are contained
in the summand Saii .

3.2 Summary of Chapter 3

• Representations of G over R are the same thing as RG-modules.

• Semisimple modules may be characterized in several different ways. They are
modules that are the direct sum of simple modules, or equivalently the sum of
simple modules, or equivalently modules for which every submodule is a direct
summand.

• If F is a field in which G is invertible, FG-modules are semisimple.

• The sum of all simple submodules of a module is the unique largest semisimple
submodule of that module: the socle.

3.3 Exercises for Chapter 3

Exercise 3.3.1. In Example 1.2.8 prove that there are no invariant subspaces other
than the ones listed.

Exercise 3.3.2. (The modular law.) Let A be a ring and U = V ⊕W an A-module
that is the direct sum of A-modules V and W . Show by example that if X is any
submodule of U then it need not be the case that X = (V ∩X)⊕ (W ∩X). Show that
if we make the assumption that V ⊆ X then it is true that X = (V ∩X)⊕ (W ∩X).

Exercise 3.3.3. Suppose that ρ is a finite dimensional representation of a finite group
G over C. Show that for each g ∈ G the matrix ρ(g) is diagonalizable.

Exercise 3.3.4. Let φ : U → V be a homomorphism of A-modules. Show that
φ : (SocU) ⊆ SocV , and that if φ is an isomorphism then φ restricts to an isomorphism
SocU → SocV .
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Exercise 3.3.5. Let U = S1⊕· · ·⊕Sr be an A-module that is the direct sum of finitely
many simple modules S1, . . . , Sr. Show that if T is any simple submodule of U then
T ∼= Si for some i.

Exercise 3.3.6. Let V be an A-module for some ring A and suppose that V is a sum
V = V1 + · · · + Vn of simple submodules. Assume further that the Vi are pairwise
non-isomorphic. Show that the Vi are the only simple submodules of V and that
V = V1 ⊕ · · · ⊕ Vn is their direct sum.

Exercise 3.3.7. Let G = 〈x, y
∣∣ x2 = y2 = 1 = [x, y]〉 be the Klein four-group, R = F2,

and consider the two representations ρ1 and ρ2 specified on the generators of G by

ρ1(x) =

1 1 0
0 1 0
0 0 1

 , ρ1(y) =

1 0 1
0 1 0
0 0 1


and

ρ2(x) =

1 0 0
0 1 1
0 0 1

 , ρ2(y) =

1 0 1
0 1 0
0 0 1

 .
Calculate the socles of these two representations. Show that neither representation is
semisimple.

Exercise 3.3.8. Let G = Cp = 〈x〉 and R = Fp for some prime p ≥ 3. Consider the
two representations ρ1 and ρ2 specified by

ρ1(x) =

1 1 0
0 1 1
0 0 1

 and ρ2(x) =

1 1 1
0 1 0
0 0 1

 .
Calculate the socles of these two representations and show that neither representation
is semisimple. Show that the second representation is nevertheless the direct sum of
two non-zero subrepresentations.

Exercise 3.3.9. Let k be an infinite field of characteristic 2, and G = 〈x, y〉 ∼= C2×C2

be the non-cyclic group of order 4. For each λ ∈ k let ρλ(x), ρλ(y) be the matrices

ρλ(x) =

[
1 0
1 1

]
, ρλ(y) =

[
1 0
λ 1

]
regarded as linear maps Uλ → Uλ where Uλ is a k-vector space of dimension 2 with
basis {e1, e2}.

(a) Show that ρλ defines a representations of G with representation space Uλ.
(b) Find a basis for SocUλ.
(c) By considering the effect on SocUλ, show that any kG-module homomorphism

α : Uλ → Uµ has a triangular matrix α =

[
a 0
b c

]
with respect to the given bases.

(d) Show that if Uλ ∼= Uµ as kG-modules then λ = µ. Deduce that kG has infinitely
many non-isomorphic 2-dimensional representations.
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Exercise 3.3.10. Let
ρ1 : G→ GL(V )

ρ2 : G→ GL(V )

be two representations of G on the same R-module V that are injective as homomor-
phisms. (We say that such a representation is faithful.) Consider the three properties

(1) the RG-modules given by ρ1 and ρ2 are isomorphic,

(2) the subgroups ρ1(G) and ρ2(G) are conjugate in GL(V ),

(3) for some automorphism α ∈ Aut(G) the representations ρ1 and ρ2α are isomor-
phic.

Show that (1) ⇒ (2) and that (2) ⇒ (3). Show also that if α ∈ Aut(G) is an inner
automorphism (i.e. one of the form ‘conjugation by g’ for some g ∈ G) then ρ1 and
ρ1α are isomorphic.

Exercise 3.3.11. One form of the Jordan–Zassenhaus theorem asserts that for each
n, GL(n,Z) (that is, Aut(Zn)) has only finitely many conjugacy classes of subgroups
of finite order. Assuming this, show that for each finite group G and each integer n
there are only finitely many isomorphism classes of representations of G on Zn.

Exercise 3.3.12. (a) Using Proposition 3.1.3 show that if A is a ring for which the
regular representation AA is semisimple, then every finitely generated A-module is
semisimple.

(b) Extend the result of part (a), using Zorn’s lemma, to show that if A is a ring for
which the regular representation AA is semisimple, then every A-module is semisimple.

Exercise 3.3.13. Let U be a module for a ring A with a 1. Show that the following
three statements are equivalent.

(1) U is a direct sum of simple A-submodules.

(2) U is a sum of simple A-submodules.

(3) Every submodule of U is a direct summand of U .

[Use Zorn’s lemma to prove a version of Lemma 3.1.2 that has no finiteness hypothesis
and then copy Proposition 3.1.3. This deals with all implications except (3)⇒ (2). For
that, use the fact that A has a 1 and hence every (left) ideal is contained in a maximal
(left) ideal, combined with condition (3), to show that every submodule of U has a
simple submodule. Consider the sum of all simple submodules of U and show that it
equals U .]

Exercise 3.3.14. Let RG be the group algebra of a finite group G over a commutative
ring R with 1. Let S be a simple RG-module and let I be the anihilator in R of S,
that is

I = {r ∈ R
∣∣ rx = 0 for all x ∈ S}.
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Show that I is a maximal ideal in R.
[This question requires some familiarity with standard commutative algebra. We con-
clude from this result that when considering simple RG modules we may reasonably
assume that R is a field, since S may naturally be regarded as an (R/I)G-module and
R/I is a field.]

3.4 Schur’s Lemma and Wedderburn’s Theorem

This section is Chapter 2 of P.J. Webb, A course in finite group representation theory,
Cambridge 2016.

We present the Artin–Wedderburn structure theorem for semisimple algebras and
its immediate consequences. This theorem is the ring-theoretic manifestation of the
module-theoretic hypothesis of semisimplicity that was introduced in Chapter 1, and
it shows that the kind of algebras that can arise when all modules are semisimple is
very restricted. The theorem applies to group algebras over a field in which the group
order is invertible (as a consequence of Maschke’s theorem), but since the result holds
in greater generality we will assume we are working with a finite dimensional algebra
A over a field k.

Possibly the most important single technique in representation theory is to consider
endomorphism rings. It is the main technique of this chapter and we will see it in use
throughout this book. The first result is basic, and will be used time and time again.

Theorem 3.4.1 (Schur’s Lemma). Let A be a ring with a 1 and let S1 and S2 be simple
A-modules. Then HomA(S1, S2) = 0 unless S1 ∼= S2, in which case the endomorphism
ring EndA(S1) is a division ring. If A is a finite dimensional algebra over an alge-
braically closed field k, then every A-module endomorphism of S1 is multiplication by
some scalar. Thus EndA(S1) ∼= k in this case.

Proof. Suppose θ : S1 → S2 is a non-zero homomorphism. Then 0 6= θ(S1) ⊆ S2, so
θ(S1) = S2 by simplicity of S2 and we see that θ is surjective. Thus ker θ 6= S1, so
ker θ = 0 by simplicity of S1, and θ is injective. Therefore θ is invertible, S1 ∼= S2 and
EndA(S1) is a division ring.

If A is a finite dimensional k-algebra and k is algebraically closed then S1 is a finite
dimensional vector space. Let θ be an A-module endomorphism of S1 and let λ be an
eigenvalue of θ. Now (θ − λI) : S1 → S1 is a singular endomorphism of A-modules, so
θ − λI = 0 and θ = λI.

We have just seen that requiring k to be algebraically closed guarantees that the
division rings EndA(S) are no larger than k, and this is often a significant simplifying
condition. In what follows we sometimes make this requirement, also indicating how
the results go more generally. At other times requiring k to be algebraically closed is
too strong, but we still want k to have the property that EndA(S) = k for all simple
A-modules S. In this case we call k a splitting field for the k-algebra A. The theory
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of splitting fields will be developed in Chapter 9; for the moment it suffices know that
algebraically closed fields are always splitting fields.

The next result is the main tool in recovering the structure of an algebra from its
representations. We use the notation Aop to denote the opposite ring of A, namely the
ring that has the same set and the same addition as A, but with a new multiplication
· given by a · b = ba.

Lemma 3.4.2. For any ring A with a 1, EndA(AA) ∼= Aop.

Proof. We prove the result by writing down homomorphisms in both directions that
are inverse to each other. The inverse isomorphisms are

φ 7→ φ(1)

(a 7→ ax)← x.

There are several things here that need to be checked: that the second assignment does
take values in EndA(AA), that the morphisms are ring homomorphisms, and that they
are mutually inverse. We leave most of this to the reader, observing only that under the
first homomorphism a composite θφ is sent to (θφ)(1) = θ(φ(1)) = θ(φ(1)1) = φ(1)θ(1),
so that it is indeed a homomorphism to Aop.

Observe that the proof of Lemma 3.4.2 establishes that every endomorphism of the
regular representation is of the form ‘right multiplication by some element’.

A ring A with 1 all of whose modules are semisimple is itself called semisimple. By
Exercise 3.3.12 of Chapter 1 it is equivalent to suppose that the regular representation

AA is semisimple. It is also equivalent, if A is a finite dimensional algebra over a field,
to suppose that the Jacobson radical of the ring is zero, but the Jacobson radical has
not yet been defined and we will not deal with this point of view until Chapter 6.

Theorem 3.4.3 (Artin–Wedderburn). Let A be a finite dimensional algebra over a
field k with the property that every finite dimensional module is semisimple. Then A
is a direct sum of matrix algebras over division rings. Specifically, if

AA ∼= Sn1
1 ⊕ · · · ⊕ S

nr
r

where the S1, . . . , Sr are non-isomorphic simple modules occuring with multiplicities
n1, . . . , nr in the regular representation, then

A ∼= Mn1(D1)⊕ · · · ⊕Mnr(Dr)

where Di = EndA(Si)
op. Furthermore, if k is algebraically closed then Di = k for all i.

More is true: every such direct sum of matrix algebras is a semisimple algebra. Each
matrix algebra over a division ring is a simple algebra (namely one that has no 2-sided
ideals apart from the zero ideal and the whole ring), and it has up to isomorphism a
unique simple module (see the exercises). Furthermore, the matrix algebra summands
are uniquely determined as subsets of A (although the module decomposition of AA is
usually only determined up to isomorphism). The uniqueness of the summands will be
established in Proposition ??.
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Proof. We first observe that if we have a direct sum decomposition U = U1 ⊕ · · · ⊕ Ur
of a module U then EndA(U) is isomorphic to the algebra of r × r matrices in which
the i, j entries lie in HomA(Uj , Ui). This is because any endomorphism φ : U → U
may be writen as a matrix of components φ = (φij) where φij : Uj → Ui, and when
viewed in this way endomorphisms compose in the manner of matrix multiplication.
Since HomA(S

nj
j , S

ni
i ) = 0 if i 6= j by Schur’s lemma, the decomposition of AA shows

that
EndA(AA) ∼= EndA(Sn1

1 )⊕ · · · ⊕ EndA(Snrr )

and furthermore EndA(Snii ) ∼= Mni(D
op
i ). Evidently Mni(D

op
i )op ∼= Mni(Di) and by

Lemma 3.4.2 we identify EndA(AA) as Aop. Putting these pieces together gives the
matrix algebra decomposition. Finally, if k is algebraically closed it is part of Schur’s
lemma that Di = k for all i.

Corollary 3.4.4. Let A be a finite dimensional semisimple algebra over a field k. In
any decomposition

AA = Sn1
1 ⊕ · · · ⊕ S

nr
r

where the Si are pairwise non-isomorphic simple modules we have that S1, . . . , Sr is a
complete set of representatives of the isomorphism classes of simple A-modules. When
k is algebraically closed ni = dimk Si and dimk A = n21 + · · ·+ n2r.

Proof. All isomorphism types of simple modules must appear in the decomposition
because every simple module can be expressed as a homomorphic image of AA (as
observed at the start of this chapter), and so must be a homomorphic image of one
of the modules Si. When k is algebraically closed all the division rings Di coincide
with k by Schur’s lemma, and EndA(Snii ) ∼= Mni(k). The ring decomposition A =
Mn1(k)⊕ · · · ⊕Mnr(k) of Theorem 3.4.3 immediately gives dimk A = n21 + · · ·+ n2r .

We obtained this decomposition by identifying A with End(AA)op in such a way
that an element a ∈ A is identified with the endomorphism ‘right multiplication by a’,
by Lemma 3.4.2. From this we see that right multiplication of an element of S

nj
j by

an element of Mni(k) is 0 if i 6= j, and hence Snii is the unique summand of A (in the
initial decomposition of A) containing elements on which Mni(k) acts in a non-zero
fashion from the right. We deduce that Mni(k) ∼= Snii as left A-modules, since the
term on the left is isomorphic to the quotient of A by the left submodule consisting
of elements that the summand Mni(k) annihilates by right multiplication, the term on
the right is an image of this quotient, and in order to have dimk A =

∑
i dimk S

ni
i they

must be isomorphic. Hence

dimkMni(k) = n2i = dimk S
ni
i = ni dimSi,

and so dimSi = ni.

3.5 Summary of Chapter 3

• Endomorphism algebras of simple modules are division rings.
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• Semisimple algebras are direct sums of matrix algebras over division rings.

• For a semisimple algebra over an algebraically closed field, the sum of the squares
of the degrees of the simple modules equals the dimension of the algebra.

3.6 Exercises for Chapter 3

Exercise 3.6.1. Let A be a finite dimensional semisimple algebra. Show that A has
only finitely many isomorphism types of modules in each dimension. [This is not in
general true for algebras that are not semisimple: we saw in Chapter 1 Exercise 3.3.9
that k[C2×C2] has infinitely many non-isomorphic 2-dimensional representations when
k is an infinite field of characteristic 2.]

Exercise 3.6.2. Let D be a division ring and n a natural number.
(a) Show that the natural Mn(D)-module, consisting of column vectors of length n

with entries in D, is a simple module.
(b) Show that Mn(D) is semisimple and has up to isomorphism only one simple

module.
(c) Show that every algebra of the form

Mn1(D1)⊕ · · · ⊕Mnr(Dr)

is semisimple.
(d) Show that Mn(D) is a simple ring, namely one in which the only 2-sided ideals

are the zero ideal and the whole ring.

Exercise 3.6.3. Show that for any field k we have Mn(k) ∼= Mn(k)op, and in general
for any division ring D that given any positive integer n, Mn(D) ∼= Mn(D)op if and
only if D ∼= Dop.

Exercise 3.6.4. Let U be a module for a semisimple finite dimensional algebra A.
Show that if EndA(U) is a division ring then U is simple.

Exercise 3.6.5. Prove the following extension of Corollary 3.4.4:

Theorem. Let A be a finite dimensional semisimple algebra, S a simple A-module and
D = EndA(S). Then S may be regarded as a module over D and the multiplicity of S
as a summand of AA equals dimD S.

Exercise 3.6.6. Let k be a field of characteristic 0 and suppose the simple kG-modules
are S1, . . . , Sr with degrees di = dimk Si. Show that

∑r
i=1 d

2
i ≥ |G| with equality if and

only if EndkG(Si) = k for all i.

Exercise 3.6.7. Using the fact that Mn(k) has a unique simple module up to isomor-
phism, prove the Noether-Skolem theorem: every algebra automorphism of Mn(k) is
inner, i.e. of the form conjugation by some invertible matrix.
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Exercise 3.6.8. Let A be a ring with a 1, and let V be an A-module. An element e
in any ring is called idempotent if and only if e2 = e.

(a) Show that an endomorphism e : V → V is a projection onto a subspace W
if and only if e is idempotent as an element of EndA(V ). (The term projection was
defined at the start of the proof of Theorem ??. It is a linear mapping onto a subspace
that is the identity on restriction to that subspace.)

(b) Show that direct sum decompositions V = W1⊕W2 as A-modules are in bijection
with expressions 1 = e + f in EndA(V ), where e and f are idempotent elements with
ef = fe = 0. (In case ef = fe = 0, e and f are called orthogonal.)

(c) A non-zero idempotent element e is called primitive if it cannot be expressed as
a sum of orthogonal idempotent elements in a non-trivial way. Show that e ∈ EndA(V )
is primitive if and only if e(V ) has no (non-trivial) direct sum decomposition. (In this
case e(V ) is said to be indecomposable.)

(d) Suppose that V is semisimple with finitely many simple summands and let
e1, e2 ∈ EndA(V ) be idempotent elements. Show that e1(V ) ∼= e2(V ) as A-modules if
and only if e1 and e2 are conjugate by an invertible element of EndA(V ) (i.e. there
exists an invertible A-endomorphism α : V → V such that e2 = αe1α

−1).
(e) Let k be a field. Show that all primitive idempotent elements in Mn(k) are con-

jugate under the action of the unit group GLn(k). Write down explicitly any primitive
idempotent element in M3(k). (It may help to use Exercise 3.6.2.)

Exercise 3.6.9. (We exploit results from a basic algebra course in our suggested
approach to this question.) Let G be a cyclic group of order n and k a field.

(a) By considering a homomorphism k[X] → kG or otherwise, where k[X] is a
polynomial ring, show that kG ∼= k[X]/(Xn − 1) as rings.

(b) Suppose that the characteristic of k does not divide n. Use the Chinese Re-
mainder Theorem and separability of Xn − 1 to show that when kG is expressed as a
direct sum of irreducible representations, no two of the summands are isomorphic, and
that their degrees are the same as the degrees of the irreducible factors of Xn − 1 in
k[X]. Deduce, as a special case of Corollary ??, that when k is algebraically closed all
irreducible representations of G have degree 1.

(c) When n is prime and k = Q, use irreducibility of Xn−1 + Xn−2 + · · ·X + 1 to
show that G has a simple module S of degree n− 1, and that EndkG(S) ∼= Q(e2πi/n).

(d) When k = R and n is odd show that G has n−1
2 simple representations of degree

2 as well as the trivial representation of degree 1. When k = R and n is even show that
G has n−2

2 simple representations of degree 2 as well as two simple representations of
degree 1. If S is one of the simple representations of degree 2 show that EndkG(S) = C.

Exercise 3.6.10. Let H be the algebra of quaternions, that has a basis over R con-
sisting of elements 1, i, j, k and multiplication determined by the relations

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j.

You may assume that H is a division ring. The elements {±1,±i,±j,±k} under mul-
tiplication form the quaternion group Q8 of order 8, and it acts on H by left multipli-
cation, so that H is a 4-dimensional representation of Q8 over R.
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(a) Show that EndRQ8(H) ∼= H, and that H is simple as a representation of Q8 over
R. [Consider the image of 1 ∈ H under an endomorphism.]

(b) In the decomposition RQ8 =
⊕t

i=1Mni(Di) predicted by Corollary ??, com-
pute the number of summands t, the numbers ni and the divisions rings Di. Show
that RQ8 has no simple representation of dimension 2. [Observe that there are four
homomorphisms Q8 → {±1} ⊂ R that give four 1-dimensional representations. Show
that, together with the representation of dimension 4, we have a complete set of simple
representations.]

(c) The span over R of the elements 1, i ∈ H is a copy of the field of complex
numbers C, so that H contains C as a subfield. We may regard H as a vector space
over C by letting elements of C act as scalars on H by multiplication from the right.
Show that with the action of Q8 from the left and of C from the right, H becomes a left
CQ8-module. With respect to the basis {1, j} for H over C, write down matrices for
the action of the elements i, j ∈ Q8 on H. Show that this 2-dimensional CQ8-module
is simple, and compute its endomorphism ring EndCQ8(H).

(d) Show that C⊗R H ∼= M2(C).



Chapter 4

Structure of projective modules

4.1 Radicals, socles and the augmentation ideal

The following is section 6.3 of P.J. Webb, A course in finite group representation theory,
Cambridge 2016.

At this point we examine further the structure of representations that are not
semisimple, and we work in the context of modules for a ring A, that is always supposed
to have a 1. At the end of Chapter 1 we defined the socle of an A-module U to be
the sum of all the simple submodules of U , and we showed (at least in the case that
U is finite dimensional) that it is the unique largest semisimple submodule of U . We
now work with quotients and define a dual concept, the radical of U . We work with
quotients instead of submodules, and use the fact that if M is a submodule of U , the
quotient U/M is simple if and only if M is a maximal submodule of U . We put

RadU =
⋂
{M

∣∣M is a maximal submodule of U}.

In our applications U will always be Noetherian, so provided U 6= 0 this intersection
will be non-empty and hence RadU 6= U . If U has no maximal submodules (for
example, if U = 0, or in more general situations than we consider here where U might
not be Noetherian) we set RadU = U .

Lemma 4.1.1. Let U be a module for a ring A.

(1) Suppose that M1, . . . ,Mn are maximal submodules of U . Then there is a subset
I ⊆ {1, . . . , n} such that

U/(M1 ∩ · · · ∩Mn) ∼=
⊕
i∈I

U/Mi

which, in particular, is a semisimple module.

(2) Suppose further that U has the descending chain condition on submodules. Then
U/RadU is a semisimple module, and RadU is the unique smallest submodule
of U with this property.

35
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Proof. (1) Let I be a subset of {1, . . . , n} maximal with the property that the quo-
tient homomorphisms U/(

⋂
i∈IMi) → U/Mi induce an isomorphism U/(

⋂
i∈IMi) ∼=⊕

i∈I U/Mi. We show that
⋂
i∈IMi = M1 ∩ · · · ∩Mn and argue by contradiction. If it

were not the case, there would exist Mj with
⋂
i∈IMi 6⊆ Mj . Consider the homomor-

phism

f : U → (
⊕
i∈I

U/Mi)⊕ U/Mj

whose components are the quotient homomorphisms U → U/Mk. This has kernel
Mj ∩

⋂
i∈IMi, and it will suffice to show that f is surjective, because this will imply

that the larger set I ∪ {j} has the same property as I, thereby contradicting the
maximality of I.

To show that f is surjective let g : U → U/
⋂
i∈IMi ⊕ U/Mj and observe that

(
⋂
i∈IMi)+Mj = U since the left-hand side is strictly larger than Mj , which is maximal

in U . Thus if x ∈ U we can write x = y + z where y ∈
⋂
i∈IMi and z ∈ Mj . Now

g(y) = (0, x + Mj) and g(z) = (x +
⋂
i∈IMi, 0) so that both summands U/

⋂
i∈IMi

and U/Mj are contained in the image of g and g is surjective. Since f is obtained
by composing g with the isomorphism that identifies U/

⋂
i∈IMi with

⊕
i∈I U/Mi, we

deduce that f is surjective.
(2) By the assumption that U has the descending chain condition on submod-

ules, RadU must be the intersection of finitely many maximal submodules. Therefore
U/RadU is semisimple by part (1). If V is a submodule such that U/V is semisimple,
say U/V ∼= S1 ⊕ · · · ⊕ Sn where the Si are simple modules, let Mi be the kernel of

U → U/V
proj.−→Si. Then Mi is maximal and V = M1 ∩ · · · ∩Mn. Thus V ⊇ RadU , and

RadU is contained in every submodule V for which U/V is semisimple.

We define the radical of a ring A to be the radical of the regular representation
RadAA and write simply RadA. We present some identifications of the radical that
are very important theoretically, and also in determining what it is in particular cases.

Proposition 4.1.2. Let A be a ring. Then,

(1) RadA = {a ∈ A
∣∣ a · S = 0 for every simple A-module S}, and

(2) RadA is a 2-sided ideal of A.

(3) Suppose further that A is a finite dimensional algebra over a field. Then

(a) RadA is the smallest left ideal of A such that A/RadA is a semisimple
A-module,

(b) A is semisimple if and only if RadA = 0,

(c) RadA is nilpotent, and is the largest nilpotent ideal of A.

(d) RadA is the unique ideal U of A with the property that U is nilpotent and
A/U is semisimple.
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Proof. (1) Given a simple module S and 0 6= s ∈ S, the module homomorphism

AA → S given by a 7→ as is surjective and its kernel is a maximal left ideal Ms. Now
if a ∈ RadA then a ∈ Ms for every S and s ∈ S, so as = 0 and a annihilates every
simple module. Conversely, if a ·S = 0 for every simple module S and M is a maximal
left ideal then A/M is a simple module. Therefore a · (A/M) = 0, which means a ∈M .
Hence a ∈

⋂
maximalM M = RadA.

(2) Being the intersection of left ideals, RadA is also a left ideal of A. Suppose that
a ∈ RadA and b ∈ A, so a · S = 0 for every simple S. Now a · bS ⊆ a · S = 0 so ab has
the same property that a does.

(3) (a) and (b) are immediate from Lemma 4.1.1. We prove (c). Choose any
composition series

0 = An ⊂ An−1 ⊂ · · · ⊂ A1 ⊂ A0 = AA

of the regular representation. Since each Ai/Ai+1 is a simple A-module, RadA · Ai ⊆
Ai+1 by part (1). Hence (RadA)r ·A ⊆ Ar and (RadA)n = 0.

Suppose now that I is a nilpotent ideal of A, say Im = 0, and let S be any simple
A-module. Then

0 = Im · S ⊆ Im−1 · S ⊆ · · · ⊆ IS ⊆ S

is a chain of A-submodules of S that are either 0 or S since S is simple. There must
be some point where 0 = IrS 6= Ir−1S = S. Then IS = I · Ir−1S = IrS = 0, so in
fact that point was the very first step. This shows that I ⊆ RadA by part (1). Hence
RadA contains every nilpotent ideal of A, so is the unique largest such ideal.

Finally (d) follows from (a) and (c): these imply that RadA has the properties
stated in (d); and, conversely, these conditions on an ideal U imply by (a) that U ⊇
RadA, and by (c) that U ⊆ RadA.

Note that if I is a nilpotent ideal of A then it is always true that I ⊆ Rad(A)
without the assumption that A is a finite dimensional algebra. The argument given to
prove part 3c of Proposition 4.1.2 shows this.

For any group G and commutative ring R with a 1, the ring homomorphism

ε : RG→ R

g 7→ 1 for all g ∈ G

is called the augmentation map. As well as being a ring homomorphism it as a homo-
morphism of RG-modules, in which case it expresses the trivial representation as a ho-
momorphic image of the regular representation. The kernel of ε is called the augmenta-
tion ideal, and is denoted IG. Evidently IG consists of those elements

∑
g∈G agg ∈ RG

such that
∑

g∈G ag = 0. We now show that when k is a field of characteristic p and G
is a p-group this construction gives the radical of kG.

Proposition 4.1.3. Let G be a finite group and R a commutative ring with a 1.

(1) Let R denote the trivial RG-module. Then IG = {x ∈ RG
∣∣ x ·R = 0}.

(2) IG is free as an R-module with basis {g − 1
∣∣ 1 6= g ∈ G}.
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(3) If R = k is a field of characteristic p and G is a p-group then IG = Rad(kG). It
follows that IG is nilpotent in this case.

Proof. (1) The augmentation map ε is none other than the linear extension to RG of
the homomorphism ρ : G → GL(1, R) that is the trivial representation. Thus each
x ∈ RG acts on R as multiplication by ε(x), and so will act as 0 precisely if ε(x) = 0.

(2) The elements g − 1 where g ranges through the non-identity elements of G are
linearly independent since the elements g are, and they lie in IG. We show that they
span IG. Suppose

∑
g∈G agg ∈ IG, which means that

∑
g∈G ag = 0 ∈ R. Then∑

g∈G
agg =

∑
g∈G

agg −
∑
g∈G

ag1 =
∑

1 6=g∈G
ag(g − 1)

is an expression as a linear combination of elements g − 1.
(3) When G is a p-group and char(k) = p we have seen in Proposition ?? that k is

the only simple kG-module. The result follows by part (1) and Proposition 4.1.2.

Working in the generality of a finite dimensional algebra A again, the radical of A
allows us to give a further description of the radical and socle of a module. We present
this result for finite dimensional modules, but it is in fact true without this hypothesis.
We leave this stronger version to Exercise ?? at the end of this chapter.

Proposition 4.1.4. Let A be a finite dimensional algebra over a field k, and U a finite
dimensional A-module.

(1) The following are all descriptions of RadU :

(a) the intersection of the maximal submodules of U ,

(b) the smallest submodule of U with semisimple quotient,

(c) RadA · U .

(2) The following are all descriptions of SocU :

(a) the sum of the simple submodules of U ,

(b) the largest semisimple submodule of U ,

(c) {u ∈ U
∣∣ RadA · u = 0}.

Proof. Under the hypothesis that U is finitely generated we have seen the equivalence
of descriptions (a) and (b) in Lemma 4.1.1 and Corollary 3.1.5. Our arguments below
actually work without the hypothesis of finite generation, provided we assume the
results of Exercises 3.3.12 and 3.3.13 from Chapter 1. The reader who is satisfied with
a proof for finitely generated modules can assume that the equivalence of (a) and (b)
has already been proved.

Let us show that the submodule RadA · U in (1)(c) satisfies condition (1)(b).
Firstly U/(RadA · U) is a module for A/RadA, which is a semisimple algebra. Hence
U/(RadA · U) is a semisimple module and so RadA · U contains the submodule of
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(1)(b). On the other hand if V ⊆ U is a submodule for which U/V is semisimple then
RadA·(U/V ) = 0 by Proposition 4.1.2, so V ⊇ RadA·U . In particular, the submodule
of (1)(b) contains RadA · U . This shows that the descriptions in (1)(b) and (1)(c) are
equivalent.

To show that they give the same submodule as (1)(a), observe that if V is any
maximal submodule of U , then as above (since U/V is simple) V ⊇ RadA · U , so
the intersection of maximal submodules of U contains RadA · U . The intersection of
maximal submodules of the semisimple module U/(RadA · U) is zero, so this gives a
containment the other way, since they all correspond to maximal submodules of U . We
deduce that the intersection of maximal submodules of U equals RadA · U .

For the conditions in (2), observe that {u ∈ U
∣∣ RadA · u = 0} is the largest

submodule of U annihilated by RadA. It is thus an A/RadA-module and hence is
semisimple. Since every semisimple submodule of U is annihilated by RadA, it equals
the largest such submodule.

Example 4.1.5. Consider the situation of Theorem ?? and Proposition ?? in which G
is a cyclic group of order pn and k is a field of characteristic p. We see that RadUr ∼=
Ur−1 and SocUr ∼= U1 for 1 ≤ r ≤ pn, taking U0 = 0.

We now iterate the notions of socle and radical: for each A-module U we define
inductively

Radn(U) = Rad(Radn−1(U))

Socn(U)/ Socn−1(U) = Soc(U/ Socn−1 U).

It is immediate from Proposition 4.1.4 that

Radn(U) = (RadA)n · U
Socn(U) = {u ∈ U

∣∣ (RadA)n · u = 0}

and these submodules of U form chains

· · · ⊆Rad2 U ⊆ RadU ⊆ U
0 ⊆ SocU ⊆Soc2 U ⊆ · · ·

that are called, respectively, the radical series and socle series of U . The radical series
of U is also known as the Loewy series of U . The quotients Radn−1(U)/Radn(U) are
called the radical layers, or Loewy layers of U , and the quotients Socn(U)/ Socn−1(U)
are called the socle layers of U .

The next corollary is a deduction from Proposition 4.1.4, and again it is true without
the hypothesis that the modules be finite dimensional.

Corollary 4.1.6. Let A be a finite dimensional algebra over a field k, and let U
and V be finite dimensional A-modules. Then for each n we have Radn(U ⊕ V ) =
Radn(U)⊕ Radn(V ) and Socn(U ⊕ V ) = Socn(U)⊕ Socn(V ).

Proof. One way to see this is to use the identifications Radn(U⊕V ) = (RadA)n·(U⊕V )
and Socn(U ⊕ V ) = {(u, v) ∈ U ⊕ V

∣∣ (RadA)n · (u, v) = 0}.



CHAPTER 4. STRUCTURE OF PROJECTIVE MODULES 40

The next result can be proved in various ways; it is also a consequence of Theo-
rem 4.4.9 in the next chapter.

Corollary 4.1.7. Let k be a field of characteristic p and G a p-group. Then the regular
representation kG is indecomposable.

Proof. If kG = U ⊕ V is the direct sum of two non-zero modules then Rad kG =
RadU ⊕ RadV where RadU 6= U and RadV 6= V , so the codimension of Rad kG in
kG must be at least 2. We know from Proposition 4.1.3 that Rad kG has codimension
1, a contradiction.

Proposition 4.1.8. Let A be a finite dimensional algebra over a field k, and U an
A-module. The radical series of U is the fastest descending series of submodules of U
with semisimple quotients, and the socle series of U is the fastest ascending series of
U with semisimple quotients. The two series terminate, and if m and n are the least
integers for which Radm U = 0 and Socn U = U then m = n.

Proof. Suppose that · · · ⊆ U2 ⊆ U1 ⊆ U0 = U is a series of submodules of U with
semisimple quotients. We show by induction on r that Radr(U) ⊆ Ur. This is true
when r = 0. Suppose that r > 0 and Radr−1(U) ⊆ Ur−1. Then

Radr−1(U)/(Radr−1(U) ∩ Ur) ∼= (Radr−1(U) + Ur)/Ur ⊆ Ur−1/Ur

is semisimple, so Radr−1(U)∩Ur ⊇ Rad(Radr−1(U)) = Radr(U). Therefore Radr(U) ⊆
Ur. This shows that the radical series descends at least as fast as the series Ui. The
argument that the socle series ascends at least as fast is similar.

Since A is a finite dimensional algebra we have (RadA)r = 0 for some r. Then
Radr U = (RadA)r · U = 0 and Socr U = {u ∈ U

∣∣ (RadA)ru = 0} = U , so the two
series terminate. By what we have just proved, the radical series descends at least as
fast as the socle series and so has equal or shorter length. By a similar argument (using
the fact that the socle series is the fastest ascending series with semisimple quotients)
the socle series ascends at least as fast as the radical series and so has equal or shorter
length. We conclude that the two lengths are equal.

The common length of the radical series and socle series of U is called the Loewy
length of the module U , and from the description of the terms of these series we see it
is the least integer n such that (RadA)n · U = 0.

4.2 Characterizations of projective and injective modules

The following is chapter 7 of P.J. Webb, A course in finite group representation theory,
Cambridge 2016.

Recall that a module M over a ring A is said to be free if it has a basis; that is,
a subset {xi

∣∣ i ∈ I} that spans M as an A-module, and is linearly independent over
A. To say that {xi

∣∣ i ∈ I} is a basis of M is equivalent to requiring M =
⊕

i∈I Axi
with A ∼= Axi via an isomorphism a 7→ axi for all i. Thus M is a finitely generated
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free module if and only if M ∼= An for some n. These conditions are also equivalent to
the condition in the following proposition:

Proposition 4.2.1. Let A be a ring and M an A-module. The following are equivalent
for a subset {xi

∣∣ i ∈ I} of M :

(1) {xi
∣∣ i ∈ I} is a basis of M ,

(2) for every module N and mapping of sets φ : {xi
∣∣ i ∈ I} → N there exists a

unique module homomorphism ψ : M → N that extends φ.

Proof. The proof is standard. If {xi
∣∣ i ∈ I} is a basis, then given φ we may define

ψ(
∑

i∈I aixi) =
∑

i∈I aiφ(xi) and this is evidently the unique module homomorphism
extending φ. This shows that (1) implies (2). Conversely if condition (2) holds we
may construct the free module F with {xi

∣∣ i ∈ I} as a basis and use the condition
to construct a homomorphism from M → F that is the identity on {xi

∣∣ i ∈ I}. The
fact just shown that the free module also satisfies condition (2) allows us to construct
a homomorphism F → M that is again the identity on {xi

∣∣ i ∈ I}, and the two
homomorphisms have composites in both directions that are the identity, since these
are the unique extensions of the identity map on {xi

∣∣ i ∈ I}. They are therefore
isomorphisms and from this condition (1) follows.

We define a module homomorphism f : M → N to be a split epimorphism if
and only if there exists a homomorphism g : N → M so that fg = 1N , the identity
map on N . Note that a split epimorphism is necessarily an epimorphism since if
x ∈ N then x = f(g(x)) so that x lies in the image of f . We define similarly f
to be a split monomorphism if there exists a homomorphism g : N → M so that
gf = 1M . Necessarily a split monomorphism is a monomorphism. We are about to
show that if f is a split epimorphism then N is (isomorphic to) a direct summand of
M . To combine both this and the corresponding result for split monomorphisms it is
convenient to introduce short exact sequences. We say that a diagram of modules and

module homomorphisms L
α−→M β−→N is exact at M if Imα = kerβ. A short exact

sequence of modules is a diagram 0→ L
α−→M β−→N → 0 that is exact at each of L,M

and N . Exactness at L and N means simply that α is a monomorphism and β is an
epimorphism.

Proposition 4.2.2. Let 0 → L
α−→M β−→N → 0 be a short exact sequence of modules

over a ring. The following are equivalent:

(1) α is a split monomorphism,

(2) β is a split epimorphism,
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(3) there is a commutative diagram

0 → L
α−→ M

β−→ N → 0

‖
yγ ‖

0 → L
ι1−→ L⊕N π2−→ N → 0

where ι1 and π2 are inclusion into the first summand and projection onto the
second summand,

(4) for every module U the sequence

0→ HomA(U,L)→ HomA(U,M)→ HomA(U,N)→ 0

is exact,

(4′) for every module U the sequence

0→ HomA(N,U)→ HomA(M,U)→ HomA(L,U)→ 0

is exact.

In any diagram such as the one in (3) the morphism γ is necessarily an isomorphism.
Thus if any of the listed conditions is satisfied it follows that M ∼= L⊕N .

Proof. Condition (3) implies the first two, since the existence of such a commutative
diagram implies that α is split by π1γ and β is split by γ−1ι2, and it also implies the
last two conditions because the commutative diagram produces similar commutative
diagrams after applying HomA(U,−) and HomA(−, U).

Conversely if condition (1) is satisfied, so that δα = 1L for some homomorphism
δ : M → L, we obtain a commutative diagram as in (3) on taking the components of γ
to be δ and β. If condition (2) is satisfied we obtain a commutative diagram similar to
the one in (3) but with a homomorphism ζ : L⊕N →M in the wrong direction, whose
components are α and a splitting of β. We obtain the diagram of (3) on showing that
in any such diagram the middle vertical homomorphism must be invertible.

The fact that the middle homomorphism in the diagram must be invertible is a
consequence of both the ‘five lemma’ and the ‘snake lemma’ in homological algebra.
We leave it here as an exercise.

Finally if (4) holds then on taking U to be N we deduce that the identity map on
N is the image of a homomorphism ε : U →M , so that 1N = βε and β is split epi, so
that (2) holds. Equally if (4′) holds then taking U to be L we see that the identity map
on L is the image of a homomorphism δ : M → U , so that 1L = δα and (1) holds.

In the event that α and β are split, we say that the short exact sequence in Propo-
sition 4.2.2 is split. Notice that whenever β : M → N is an epimorphism it is part

of the short exact sequence 0 → kerβ ↪→ M
β−→N → 0, and so we deduce that if β is

a split epimorphism then N is a direct summand of M . A similar comment evidently
applies to split monomorphisms.
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Proposition 4.2.3. The following are equivalent for an A-module P .

(1) P is a direct summand of a free module.

(2) Every epimorphism V → P is split.

(3) For every pair of morphisms
Pyα

V
β−→ W

where β is an epimorphism, there exists a morphism γ : P → V with βγ = α.

(4) For every short exact sequence of A-modules 0 → V → W → X → 0 the corre-
sponding sequence

0→ HomA(P, V )→ HomA(P,W )→ HomA(P,X)→ 0

is exact.

Proof. This result is standard and we do not prove it here. In condition (4) the se-
quence of homomorphism groups is always exact at the left-hand terms HomA(P, V )
and HomA(P,W ) without requiring any special property of P (we say that HomA(P, )
is left exact). The force of condition (4) is that the sequence should be exact at the
right-hand term.

We say that a module P satisfying any of the four conditions of Proposition 4.2.3
is projective. Notice that direct sums and also direct summands of projective modules
are projective. An indecomposable module that is projective is an indecomposable
projective module, and these modules will be very important in our study. In other
texts the indecomposable projective modules are also known as PIMs, or Principal
Indecomposable Modules, but we will not use this terminology here.

We should also mention injective modules, which enjoy properties similar to those
of projective modules, but in a dual form. We say that a module I is injective if and
only if whenever there are morphisms

Ixα
V

β←− W

with β a monomorphism, then there exists a morphism γ : V → I so that γβ = α.
Dually to Proposition 4.2.3, it is equivalent to require that every monomorphism I → V
is split; and also that HomA( , I) sends exact sequences to exact sequences. When A is
an arbitrary ring we do not have such a nice characterization of injectives analogous to
the property that projective modules are direct summands of free modules. However,
for group algebras over a field we will show in Corollary 8.13 that injective modules are
the same thing as projective modules, so that in this context they are indeed summands
of free modules.
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4.3 Projectives by means of idempotents

One way to obtain projective A-modules is from idempotents of the ring A. If e2 =
e ∈ A then AA = Ae⊕A(1− e) as A-modules, and so the submodules Ae and A(1− e)
are projective. We formalize this with the next result, which should be compared
with Proposition ?? in which we were dealing with ring summands of A and central
idempotents.

Proposition 4.3.1. Let A be a ring. The decompositions of the regular representation
as a direct sum of submodules

AA = A1 ⊕ · · · ⊕Ar

biject with expressions 1 = e1 + · · · + er for the identity of A as a sum of orthogonal
idempotents, in such a way that Ai = Aei. The summand Ai is indecomposable if and
only if the idempotent ei is primitive.

Proof. Suppose that 1 = e1 + · · · + er is an expression for the identity as a sum of
orthogonal idempotents. Then

AA = Ae1 ⊕ · · · ⊕Aer,

for the Aei are evidently submodules of A, and their sum is A since if x ∈ A then
x = xe1 + · · · + xer. The sum is direct since if x ∈ Aei ∩

∑
j 6=iAej then x = xei and

also x =
∑

j 6=i ajej so x = xei =
∑

j 6=i ajejei = 0.
Conversely, suppose that AA = A1 ⊕ · · · ⊕ Ar is a direct sum of submodules. We

may write 1 = e1 + · · · + er where ei ∈ Ai is a uniquely determined element. Now
ei = ei1 = eie1 + · · ·+ eier is an expression in which eiej ∈ Aj , and since the only such
expression is ei itself we deduce that

eiej =

{
ei if i = j,

0 otherwise.

The two constructions just described, in which we associate an expression for 1 as a
sum of idempotents to a module direct sum decomposition and vice-versa, are mutually
inverse, giving a bijection as claimed.

If a summand Ai decomposes as the direct sum of two other summands, this gives
rise to an expression for ei as a sum of two orthogonal idempotents, and conversely.
Thus Ai is indecomposable if and only if ei is primitive.

In Proposition ?? it was proved that in a decomposition of A as a direct sum
of indecomposable rings, the rings are uniquely determined as subsets of A and the
corresponding primitive central idempotents are also unique. We point out that the
corresponding uniqueness property need not hold with module decompositions of AA
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that are not ring decompositions. For an example of this we take A = M2(R), the ring
of 2× 2-matrices over a ring R, and consider the two decompositions

AA = A

[
1 0
0 0

]
⊕A

[
0 0
0 1

]
= A

[
0 1
0 1

]
⊕A

[
1 −1
0 0

]
.

The submodules here are all different. We will see later that if A is a finite dimen-
sional algebra over a field then in any two decompositions of AA as a direct sum of
indecomposable submodules, the submodules are isomorphic in pairs.

We will also see that when A is a finite dimensional algebra over a field, every inde-
composable projective A-module may be realized as Ae for some primitive idempotent
e. For other rings this need not be true: an example is ZG, for which it is the case
that the only idempotents are 0 and 1 (see Exercise ?? in Chapter 8). For certain finite
groups (an example is the cyclic group of order 23, but this takes us beyond the scope
of this book) there exist indecomposable projective ZG-modules that are not free, so
such modules will never have the form ZGe for any idempotent element e.

Example 4.3.2. We present an example of a decomposition of the regular represen-
tation in a situation that is not semisimple. Many of the observations we will make
are consequences of theory to be presented in later sections, but it seems worthwhile
to show that the calculations can be done by direct arguments.

Consider the group ring F4S3 where F4 is the field of 4 elements. The choice of F4 is
made because at one point it will be useful to have all cube roots of unity available, but
in fact many of the observations we are about to make also hold over the field F2. By
Proposition ?? the 1-dimensional representations of S3 are the simple representations
of S3/S

′
3
∼= C2, lifted to S3. But F4C2 has only one simple module, namely the trivial

module, by Proposition ??, so this is the only 1-dimensional F4S3-module. The 2-
dimensional representation of S3 constructed in Chapter 1 over any coefficient ring is
now seen to be simple here, since otherwise it would have a trivial submodule; but the
eigenvalues of the element (1, 2, 3) on this module are ω and ω2, where ω ∈ F4 is a
primitive cube root of 1, so there is no trivial submodule.

Let K = 〈(1, 2, 3)〉 be the subgroup of S3 of order 3. Now F4K is semisimple with
three 1-dimensional representations on which (1, 2, 3) acts as 1, ω and ω2, respectively.
In fact

F4K = F4Ke1 ⊕ F4Ke2 ⊕ F4Ke3

where
e1 = () + (1, 2, 3) + (1, 3, 2)

e2 = () + ω(1, 2, 3) + ω2(1, 3, 2)

e3 = () + ω2(1, 2, 3) + ω(1, 3, 2)

are orthogonal idempotents in F4K. We may see that these are orthogonal idempotents
by direct calculation, but it can also be seen by observing that the corresponding

elements of CK with ω replaced by e
2πi
3 are orthogonal and square to 3 times themselves

(Theorem ??), and lie in Z[e
2πi
3 ]K. Reduction modulo 2 gives a ring homomorphism
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Z[e
2πi
3 ]→ F4 that maps these elements to e1, e2 and e3, while retaining their properties.

Thus
F4S3 = F4S3e1 ⊕ F4S3e2 ⊕ F4S3e3

and we have constructed modules F4S3ei that are projective. We have not yet shown
that they are indecomposable.

We easily compute that

(1, 2, 3)e1 = e1, (1, 2, 3)e2 = ω2e2, (1, 2, 3)e3 = ωe3

and from this we see that K · F4ei = F4ei for all i. Since S3 = K ∪ (1, 2)K we have
F4S3ei = F4ei ⊕ F4(1, 2)ei, which has dimension 2 for all i. We have already seen that
when i = 2 or 3, ei is an eigenvector for (1, 2, 3) with eigenvalue ω or ω2, and a similar
calculation shows that the same is true for (1, 2)ei. Thus when i = 2 or 3, F4S3ei has
no trivial submodule and hence is simple by the observations made at the start of this
example. We have an isomorphism of F4S3-modules

F4S3e2 → F4S3e3

e2 7→ (1, 2)e3

(1, 2)e2 7→ e3.

On the other hand F4S3e1 has fixed points F4
∑

g∈S3
g of dimension 1 and so has two

composition factors, which are trivial. On restriction to F4〈(1, 2)〉 it is the regular
representation, and it is a uniserial module.

We see from all this that F4S3 = 1
1 ⊕ 2⊕ 2, in a diagrammatic notation. Thus the

2-dimensional simple F4S3-module is projective, and the trivial module appears as the
unique simple quotient of a projective module of dimension 2 whose socle is also the
trivial module. These summands of F4S3 are indecomposable, and so e1, e2 and e3
are primitive idempotents in F4S3. We see also that the radical of F4S3 is the span of∑

g∈S3
g.

4.4 Projective covers, Nakayama’s lemma and lifting of
idempotents

We now develop the theory of projective covers. We first make the definition that an
essential epimorphism is an epimorphism of modules f : U → V with the property
that no proper submodule of U is mapped surjectively onto V by f . An equivalent
formulation is that whenever g : W → U is a map such that fg is an epimorphism, then
g is an epimorphism. One immediately asks for examples of essential epimorphisms,
but it is probably more instructive to consider epimorphisms that are not essential.
If U → V is any epimorphism and X is a non-zero module then the epimorphism
U ⊕X → V constructed as the given map on U and zero on X can never be essential.
This is because U is a submodule of U⊕X mapped surjectively onto V . Thus if U → V
is essential then U can have no direct summands that are mapped to zero. One may
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think of an essential epimorphism as being minimal, in that no unnecessary parts of U
are present.

The greatest source of essential epimorphisms is Nakayama’s lemma, given here in
a version for modules over non-commutative rings. Over an arbitrary ring a finiteness
condition is required, and that is how we state the result here. We will see in Exer-
cise 4.8.10 at the end of this chapter that, when the ring is a finite dimensional algebra
over a field, the result is true for arbitrary modules without any finiteness condition.

Theorem 4.4.1 (Nakayama’s Lemma). If U is any Noetherian module, the homomor-
phism U → U/RadU is essential. Equivalently, if V is a submodule of U with the
property that V + RadU = U , then V = U .

Proof. Suppose V is a submodule of U . If V 6= U then V ⊆ M ⊂ U where M is a
maximal submodule of U . Now V + RadU ⊆ M and so the composite V → U →
U/RadU has image contained in M/RadU , which is not equal to U/RadU since
(U/RadU)/(M/RadU) ∼= U/M 6= 0.

When U is a module for a finite dimensional algebra it is always true that every
proper submodule of U is contained in a maximal submodule, even when U is not
finitely generated. This was the only point in the proof of Theorem 4.4.1 where the
Noetherian hypothesis was used, and so in this situation U → U/RadU is always
essential. This is shown in Exercise 4.8.10 of this chapter.

The next result is not at all difficult and could also be proved as an exercise.

Proposition 4.4.2. (1) Suppose that f : U → V and g : V → W are two module
homomorphsms. If two of f , g and gf are essential epimorphisms then so is the
third.

(2) Let f : U → V be a homomorphism of Noetherian modules. Then f is an essential
epimorphism if and only if the homomorphism of radical quotients U/RadU →
V/RadV is an isomorphism.

(3) Let fi : Ui → Vi be homomorphisms of Noetherian modules, where i = 1, . . . , n.
The fi are all essential epimorphisms if and only if

⊕fi :
⊕
i

Ui →
⊕
i

Vi

is an essential epimorphism.

Proof. (1) Suppose f and g are essential epimorphisms. Then gf is an epimorphism
also, and it is essential because if U0 is a proper submodule of U then f(U0) is a proper
submodule of V since f is essential, and hence g(f(U0)) is a proper submodule of S
since g is essential.

Next suppose f and gf are essential epimorphisms. Since W = Im(gf) ⊆ Im(g) it
follows that g is an epimorphism. If V0 is a proper submodule of V then f−1(V0) is a
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proper submodule of U since f is an epimorphism, and now g(V0) = gf(f−1(V0)) is a
proper submodule of S since gf is essential.

Suppose that g and gf are essential epimorphisms. If f were not an epimorphism
then f(U) would be a proper submodule of V , so gf(U) would be a proper submodule
of W since gf is essential. Since gf(U) = W we conclude that f is an epimorphism.
If U0 is a proper submodule of U then gf(U0) is a proper submodule of W , since gf is
essential, so f(U0) is a proper submodule of V since g is an epimorphism. Hence f is
essential.

(2) Consider the commutative square

U −→ Vy y
U/RadU −→ V/RadV

where the vertical homomorphisms are essential epimorphisms by Nakayama’s lemma.
Now if either of the horizontal arrows is an essential epimorphism then so is the other,
using part (1). The bottom arrow is an essential epimorphism if and only if it is an
isomorphism; for U/RadU is a semisimple module and so the kernel of the map to
V/RadV has a direct complement in U/RadU , which maps onto V/RadV . Thus if
U/RadU → V/RadV is an essential epimorphism its kernel must be zero and hence
it must be an isomorphism.

(3) The map
(⊕iUi)/Rad(⊕iUi)→ (⊕iVi)/Rad(⊕iVi)

induced by ⊕fi may be identified as a map⊕
i

(Ui/RadUi)→
⊕
i

(Vi/RadVi),

and it is an isomorphism if and only if each map Ui/RadUi → Vi/RadVi is an iso-
morphism. These conditions hold if and only if ⊕fi is an essential epimorphism, if and
only if each fi is an essential epimorphism by part (2).

We define a projective cover of a module U to be an essential epimorphism P → U ,
where P is a projective module. Strictly speaking the projective cover is the homo-
morphism, but we may also refer to the module P as the projective cover of U . We
are justified in calling it the projective cover by the second part of the following result,
which says that projective covers (if they exist) are unique.

Proposition 4.4.3. (1) Suppose that f : P → U is a projective cover of a module
U and g : Q → U is an epimorphism where Q is a projective module. Then we
may write Q = Q1 ⊕Q2 so that g has components g = (g1, 0) with respect to this
direct sum decomposition and g1 : Q1 → U appears in a commutative triangle

Q1
γ

↙
yg1

P
f−→ U
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where γ is an isomorphism.

(2) If any exist, the projective covers of a module U are all isomorphic, by isomor-
phisms that commute with the essential epimorphisms.

Proof. (1) In the diagram
Qyg

P
f−→ U

we may lift in both directions to obtain maps α : P → Q and β : Q → P so that
the two triangles commute. Now fβα = gα = f is an epimorphism, so βα is also an
epimorphism since f is essential. Thus β is an epimorphism. Since P is projective β
splits and Q = Q1 ⊕Q2 where Q2 = kerβ, and β maps Q1 isomorphically to P . Thus
g = (fβ|Q1 , 0) is as claimed with γ = β|Q1 .

(2) Supposing that f : P → U and g : Q→ U are both projective covers, since Q1

is a submodule of Q that maps onto U and f is essential we deduce that Q = Q1. Now
γ : Q→ P is the required isomorphism.

Corollary 4.4.4. If P and Q are Noetherian projective modules over a ring then P ∼= Q
if and only if P/RadP ∼= Q/RadQ.

Proof. By Nakayama’s lemma P and Q are the projective covers of P/RadP and
Q/RadQ. It is clear that if P and Q are isomorphic then so are P/RadP and
Q/RadQ, and conversely if these quotients are isomorphic then so are their projective
covers, by uniqueness of projective covers.

If P is a projective module for a finite dimensional algebra A then Corollary 4.4.4
says that P is determined up to isomorphism by its semisimple quotient P/RadP . We
are going to see that if P is an indecomposable projective A-module, then its radical
quotient is simple, and also that every simple A-module arises in this way. Further-
more, every indecomposable projective for a finite dimensional algebra is isomorphic
to a summand of the regular representation (something that is not true in general for
projective ZG-modules, for instance). This means that it is isomorphic to a module Af
for some primitive idempotent f ∈ A, and the radical quotient P/RadP is isomorphic
to (A/RadA)e where e is a primitive idempotent of A/RadA satisfying e = f+RadA.
We will examine this kind of relationship between idempotent elements more closely.

In general if I is an ideal of a ring A and f is an idempotent of A then clearly
e = f + I is an idempotent of A/I, and we say that f lifts e. On the other hand, given
an idempotent e of A/I it may or may not be possible to lift it to an idempotent of A.
If, for every idempotent e in A/I, we can always find an idempotent f ∈ A such that
e = f + I then we say we can lift idempotents from A/I to A.

We present the next results about lifting idempotents in the context of a ring with a
nilpotent ideal I, but readers familiar with completions will recognize that these results
extend to a situation where A is complete with respect to the I-adic topology on A.
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Theorem 4.4.5. Let I be a nilpotent ideal of a ring A and e an idempotent in A/I.
Then there exists an idempotent f ∈ A with e = f + I. If e is primitive, so is any lift
f .

Proof. We define idempotents ei ∈ A/Ii inductively such that ei + Ii−1/Ii = ei−1 for
all i, starting with e1 = e. Suppose that ei−1 is an idempotent of A/Ii−1. Pick any
element a ∈ A/Ii mapping onto ei−1, so that a2 − a ∈ Ii−1/Ii. Since (Ii−1)2 ⊆ Ii we
have (a2 − a)2 = 0 ∈ A/Ii. Put ei = 3a2 − 2a3. This does map to ei−1 ∈ A/Ii−1 and
we have

e2i − ei = (3a2 − 2a3)(3a2 − 2a3 − 1)

= −(3− 2a)(1 + 2a)(a2 − a)2

= 0.

This completes the inductive definition, and if Ir = 0 we put f = er.
Suppose that e is primitive and that f can be written f = f1 + f2 where f1 and

f2 are orthogonal idempotents. Then e = e1 + e2, where ei = fi + I, is also a sum of
orthogonal idempotents. Therefore one of these is zero, say, e1 = 0 ∈ A/I. This means
that f21 = f1 ∈ I. But I is nilpotent, and so contains no non-zero idempotent.

We will very soon see that in the situation of Theorem 4.4.5, if f is primitive, so is
e. It depends on the next result, which is a more elaborate version of Theorem 4.4.5.

Corollary 4.4.6. Let I be a nilpotent ideal of a ring A and let 1 = e1 + · · · + en be
a sum of orthogonal idempotents in A/I. Then we can write 1 = f1 + · · · + fn in A,
where the fi are orthogonal idempotents such that fi + I = ei for all i. If the ei are
primitive then so are the fi.

Proof. We proceed by induction on n, the induction starting when n = 1. Suppose that
n > 1 and the result holds for smaller values of n. We will write 1 = e1+E in A/I where
E = e2+ · · ·+en is an idempotent orthogonal to e1. By Theorem 4.4.5 we may lift e1 to
an idempotent f1 ∈ A. Write F = 1−f1, so that F is an idempotent that lifts E. Now F
is the identity element of the ring FAF which has a nilpotent ideal FIF . The composite
homomorphism FAF ↪→ A → A/I has kernel FAF ∩ I and this equals FIF , since
clearly FAF ∩I ⊇ FIF , and if x ∈ FAF ∩I then x = FxF ∈ FIF , so FAF ∩I ⊆ FIF .
Inclusion of FAF in A thus induces a monomorphism FAF/FIF → A/I, and its
image is E(A/I)E. In E(A/I)E the identity element E is the sum of n− 1 orthogonal
idempotents, and this expression is the image of a similar expression for F + FIF in
FAF/FIF . By induction, there is a sum of orthogonal idempotents F = f2 + · · ·+ fn
in FAF that lifts the expression in FAF/FIF and hence also lifts the expression for
E in A/I, so we have idempotents fi ∈ A, i = 1, . . . , n with fi + I = ei. These fi
are orthogonal: for f2, . . . , fn are orthogonal in FAF by induction, and if i > 1 then
Ffi = fi so we have f1fi = f1Ffi = 0.

The final assertion about primitivity is the last part of Theorem 4.4.5.

Corollary 4.4.7. Let f be an idempotent in a ring A that has a nilpotent ideal I.
Then f is primitive if and only if f + I is primitive.
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Proof. We have seen in Theorem 4.4.5 that if f+I is primitive, then so is f . Conversely,
if f + I can be written f + I = e1 + e2 where the ei are orthogonal idempotents of A/I,
then by applying Corollary 4.4.6 to the ring fAf (of which f is the identity) we may
write f = g1 + g2 where the gi are orthogonal idempotents of A that lift the ei.

We now classify the indecomposable projective modules over a finite dimensional
algebra as the projective covers of the simple modules. We first describe how these
projective covers arise, and then show that they exhaust the possibilities for indecom-
posable projective modules. We postpone explicit examples until the next section, in
which we consider group algebras.

Theorem 4.4.8. Let A be a finite dimensional algebra over a field and S a simple
A-module.

(1) There is an indecomposable projective module PS with PS/RadPS ∼= S, of the
form PS = Af where f is a primitive idempotent in A.

(2) The idempotent f has the property that fS 6= 0 and if T is any simple module
not isomorphic to S then fT = 0.

(3) PS is the projective cover of S, it is uniquely determined up to isomorphism by
this property and has S as its unique simple quotient.

(4) It is also possible to find an idempotent fS ∈ A so that fSS = S and fST = 0 for
every simple module T not isomorphic to S.

Proof. Let e ∈ A/RadA be any primitive idempotent such that eS 6= 0. It is possible
to find such e since we may write 1 as a sum of primitive idempotents and some term in
the sum must be non-zero on S. Let f be any lift of e to A, possible by Corollary 4.4.7.
Then f is primitive, fS = eS 6= 0 and fT = eT = 0 if T 6∼= S since a primitive
idempotent e in the semisimple ring A/RadA is non-zero on a unique isomorphism
class of simple modules. We define PS = Af , an indecomposable projective module.
Now

PS/RadPS = Af/(RadA ·Af) ∼= (A/RadA) · (f + RadA) = S,

the isomorphism arising because the map Af → (A/RadA) · (f + RadA) defined by
af 7→ (af +RadA) has kernel (RadA) ·f . The fact that PS is the projective cover of S
is a consequence of Nakayama’s lemma, and the uniqueness of the projective cover was
dealt with in Proposition 4.4.3. Any simple quotient of PS is a quotient of PS/RadPS ,
so there is only one of these. Finally we observe that if we had written 1 as a sum of
primitive central idempotents in A/RadA, the lift of the unique such idempotent that
is non-zero on S is the desired idempotent fS .

Theorem 4.4.9. Let A be a finite dimensional algebra over a field k. Up to isomor-
phism, the indecomposable projective A-modules are exactly the modules PS that are
the projective covers of the simple modules, and PS ∼= PT if and only if S ∼= T . Each
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projective PS appears as a direct summand of the regular representation, with multi-
plicity equal to the multiplicity of S as a summand of A/RadA. As a left A-module
the regular representation decomposes as

A ∼=
⊕

simpleS

(PS)nS

where nS = dimk S if k is algebraically closed, and more generally nS = dimD S where
D = EndA(S).

In what follows we will only prove that finitely generated indecomposable projective
modules are isomorphic to PS , for some simple S. In Exercise 4.8.10 at the end of this
chapter it is shown that this accounts for all indecomposable projective modules.

Proof. Let P be an indecomposable projective module and write

P/RadP ∼= S1 ⊕ · · · ⊕ Sn.

Then P → S1 ⊕ · · · ⊕ Sn is a projective cover. Now

PS1 ⊕ · · · ⊕ PSn → S1 ⊕ · · · ⊕ Sn

is also a projective cover, and by uniqueness of projective covers we have

P ∼= PS1 ⊕ · · · ⊕ PSn .

Since P is indecomposable we have n = 1 and P ∼= PS1 .
Suppose that each simple A module S occurs with multiplicity nS as a summand

of the semisimple ring A/RadA. Both A and
⊕

simpleS P
nS
S are the projective cover

of A/RadA, and so they are isomorphic. We have seen in Corollary 3.4.4 that nS =
dimk S when k is algebraically closed, and in Exercise 3.6.5 of Chapter 2 that nS =
dimD S in general.

Theorem 4.4.10. Let A be a finite dimensional algebra over a field k, and U an
A-module. Then U has a projective cover.

Again, we only give a proof in the case that U is finitely generated, leaving the
general case to Exercise 4.8.10 of this chapter.

Proof. Since U/RadU is semisimple we may write U/RadU = S1 ⊕ · · · ⊕ Sn, where
the Si are simple modules. Let PSi be the projective cover of Si and h : PS1 ⊕ · · · ⊕
PSn → U/RadU the projective cover of U/RadU . By projectivity there exists a
homomorphism f such that the following diagram commutes:

PS1 ⊕ · · · ⊕ PSn
f

↙
yh

U
g−→ U/RadU

.

Since both g and h are essential epimorphisms, so is f by Proposition 4.4.2. Therefore
f is a projective cover.
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We should really learn more from Theorem 4.4.10 than simply that U has a projec-
tive cover: the projective cover of U is the same as the projective cover of U/RadU .

Example 4.4.11. The arguments that show the existence of projective covers have
a sense of inevitability about them and we may get the impression that projective
covers always exist in arbitrary situations. In fact they fail to exist in general for
integral group rings. If G = {e, g} is a cyclic group of order 2, consider the submodule
3Z ·e+Z ·(e+g) of ZG generated as an abelian group by 3e and e+g. We rapidly check
that this subgroup is invariant under the action of G (so it is a ZG-submodule), and
it is not the whole of ZG since it does not contain e. Applying the augmentation map
ε : ZG→ Z we have ε(3e) = 3 and ε(e+ g) = 2 so ε(3Z · e+Z · (e+ g)) = 3Z+ 2Z = Z.
This shows that the epimorphism ε is not essential, and so it is not a projective cover
of Z. If Z were to have a projective cover it would be a proper summand of ZG by
Proposition 4.4.3. On reducing modulo 2 we would deduce that F2G decomposes, which
we know not to be the case by Corollary 4.1.7. This shows that Z has no projective
cover as a ZG-module.

4.5 The Cartan matrix

Now that we have classified the projective modules for a finite dimensional algebra we
turn to one of their important uses, which is to determine the multiplicity of a simple
module S as a composition factor of an arbitrary module U (with a composition series).
If

0 = U0 ⊂ U1 ⊂ · · · ⊂ Un = U

is any composition series of U , the number of quotients Ui/Ui−1 isomorphic to S is
determined independently of the choice of composition series, by the Jordan–Hölder
theorem. We call this number the (composition factor) multiplicity of S in U .

Proposition 4.5.1. Let S be a simple module for a finite dimensional algebra A with
projective cover PS, and let U be a finite dimensional A-module.

(1) If T is a simple A-module then

dim HomA(PS , T ) =

{
dim EndA(S) if S ∼= T,

0 otherwise.

(2) The multiplicity of S as a composition factor of U is

dim HomA(PS , U)/ dim EndA(S).

(3) If e ∈ A is an idempotent then dim HomA(Ae,U) = dim eU .

We remind the reader that if the ground field k is algebraically closed then dim EndA(S) =
1 by Schur’s lemma. Thus the multiplicity of S in U is just dim HomA(PS , U) in this
case.
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Proof. (1) If PS → T is any non-zero homomorphism, the kernel must contain RadPS ,
being a maximal submodule of PS . Since PS/RadPS ∼= S is simple, the kernel must
be RadPS and S ∼= T . Every homomorphism PS → S is the composite PS →
PS/RadPS → S of the quotient map and either an isomorphism of PS/RadPS with
S or the zero map. This gives an isomorphism HomA(PS , S) ∼= EndA(S).

(2) Let
0 = U0 ⊂ U1 ⊂ · · · ⊂ Un = U

be a composition series of U . We prove the result by induction on the composition
length n, the case n = 1 having just been established. Suppose n > 1 and that the
multiplicity of S in Un−1 is dim HomA(PS , Un−1)/dim EndA(S). The exact sequence

0→ Un−1 → U → U/Un−1 → 0

gives rise to an exact sequence

0→ HomA(PS , Un−1)→ HomA(PS , U)→ HomA(PS , U/Un−1)→ 0

by Proposition 4.2.3, so that

dim HomA(PS , U) = dim HomA(PS , Un−1) + dim HomA(PS , U/Un−1).

Dividing these dimensions by dim EndA(S) gives the result, by part (1).
(3) There is an isomorphism of vector spaces HomA(Ae,U) ∼= eU specified by

φ 7→ φ(e). Note here that since φ(e) = φ(ee) = eφ(e) we must have φ(e) ∈ eU . This
mapping is injective since each A-module homomorphism φ : Ae → U is determined
by its value on e as φ(ae) = aφ(e). It is surjective since the equation just written down
does define a module homomorphism for each choice of φ(e) ∈ eU .

Again in the context of a finite dimensional algebra A, we define for each pair of
simple A-modules S and T the integer

cST = the composition factor multiplicity of S in PT .

These are called the Cartan invariants of A, and they form a matrix C = (cST ) with
rows and columns indexed by the isomorphism types of simple A-modules, called the
Cartan matrix of A.

Corollary 4.5.2. Let A be a finite dimensional algebra over a field, let S and T be
simple A-modules and let eS, eT be idempotents so that PS = AeS and PT = AeT are
projective covers of S and T . Then

cST = dim HomA(PS , PT )/ dim EndA(S) = dim eSAeT / dim EndA(S).

If the ground field k is algebraically closed then cST = dim HomA(PS , PT ) = dim eSAeT .

While it is rather weak information just to know the composition factors of the
projective modules, this is at least a start in describing these modules. We will see later
on in the case of group algebras that there is an extremely effective way of computing
the Cartan matrix using the decomposition matrix.
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4.6 Dualities, injective modules and the Nakayama func-
tor

Definition 4.6.1. A duality between two categories C,D is a contravariant equivalence
of categories F : Cop → D.

Usually this term is only used when the categories have some additive structure. We
will describe two dualities that are available for representations of a finite dimensional
algebra A over a field K. Notice that the category mod-A of right A-modules is
equivalent to the category Aop -mod of left modules for the opposite ring Aop. If A is
the path algebra of a quiver, then Aop is the path algebra of the opposite quiver.

Definition 4.6.2. The first duality we consider is the functor D : A -mod→ mod-A be-
tween finite dimensional left and right A-modules, defined by D(M) := HomK(M,K),
the vector space dual. If M is a left A-module then D(M) becomes a right A-module
using the left action of A on M .

This functor D has an inverse duality, also denoted D and defined by the same
formula. The fact that the natural map M → DD(M) is an isomorphism shows
that D is a duality. The duality D is exact: it sends a short exact sequence of left
A-modules 0 → L → M → N → 0 to a short exact sequence of right A-modules
0 → DN → DM → Dl → 0. Thus, the lattice of submodules of DM is the opposite
of the lattice of submodules of M . A module S is simple if and only if DS is simple.
Furthermore, if S is associated to an idempotent e ∈ A, in the sense that eS 6= 0 but
eT = 0 if S 6∼= T , then DS is also associated to e. Direct sum decompositions are
preserved by D, so M is indecomposable if and only if DM is indecomposable, and M
is semisimple if and only if DM is semisimple. The quotient map M →M/Rad(M) is
exchanged by D with the inclusion of the socle Soc(DM) → DM . Uniserial modules
are sent to uniserial modules by D. Projective modules are sent to injective modules
by D, and vice-versa. The Loewy lengths of M and DM are the same.

We may define an essential monomorphism f : L → M to be a monomorphism
with the property that whenever g : M → N is a homomorphism for which gf is a
monomorphism, then g is a monomorphism. The theory of essential monomorphisms
proceeds in exactly the same way as the theory of essential epimorphisms, with a two
out of three lemma, and so on. A dual version of Nakayama’s lemma (for modules
over a finite dimensional algebra) states that the inclusion Soc(M) → M is an essen-
tial monomorphism We see that D exchanges essential epimorphisms with essential
monomorphisms.

Definition 4.6.3. Given a module M , an essential monomorphism M → I, where I
is an injective module, is called an injective envelope or injective hull of M .

The injective envelope of M is unique, if it exists.

Proposition 4.6.4. Let A be a finite dimensional algebra over a field K. The inde-
composable injective A-modules are precisely the injective envelopes IS of the simple
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A-modules S and Soc(IS) is the unique simple submodule of IS. Every module has an
injective envelope.

Example 4.6.5. We describe the indecomposable injective modules for the quivers
Q1 = 1→ 2→ 3 and Q2 = 1→ 2← 3.

We now consider the contravariant functor (−)∨ : A -mod → mod-A defined on
each left A-module M as M∨ := HomA(M,A). This time, if M is a left A-module then
M∨ becomes a right A-module using the right action on the second variable A. We
also get a functor in the reverse direction defined by the same formula, whose effect on
a right module M is also denoted M∨. This functor is left exact, but not, in general,
exact. It will only be exact on all modules M if A is an injective module (as well as
being projective). Thus (−)∨ is not a duality on the whole module category.

Proposition 4.6.6. Let A be a ring with a 1. The functor (−)∨ restricts to a con-
travariant equivalent between the full subcategories of A-mod and of mod-A whose ob-
jects are the projective modules. If A is a finite dimensional algebra over a field K, an
indecomposable projective Af corresponding to an idempotent f has (Af)∨ ∼= fA.

Proof. Taking M = AA we have that A∨ = HomA(A,A) ∼= AA is projective and that
the natural map A → A∨∨ is an isomorphism. It follows that the same is true when
M is projective, because such a module is a summand of a direct sum of copies of

AA. This demonstrates the claimed equivalence of categories. When A is a finite
dimensional algebra, (Af)∨ = HomA(Af,A) ∼= fA via an isomorphism that sends
a homomorphism φ : Af → A to φ(f). Note that, since φ(f) = φ(f2) = fφ(f),
necessarily φ(f) ∈ fA. This homomorphism has inverse that sends an element fa to
the homomorphism φ(bf) = bfa.

WhenA is a finite dimensional algebra we define the Nakayama functor ν : A -mod→
A -mod to be the composite of the two contravariant functors we have just considered.
Thus if M is a left A-module then ν(M) := D(M∨).

Proposition 4.6.7. Let A be a finite dimensional algebra over a field K.

1. The Nakayama functor ν is right exact.

2. ν provides an equivalence of categories between the full subcategory of A -mod
whose objects are projective and the full subcategory of A -mod whose objects are
injective, with inverse functor that sends N to (DN)∨. We have ν(PS) ∼= IS for
each simple module S.

7

Proof. The right exactness comes because D is exact and (−)∨ is left exact. Both of
these functors are their own inverse on the subcategories in question, and the formula for
the inverse equivalence follows from this. The fact that ν(PS) ∼= IS comes from the fact
that both contravariant functors D and (−)∨ preserve the correspondence of simples,
indecomposable projectives and indecomposable injectives with idempotents.
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Example 4.6.8. The endomorphism ring of the direct sum of the indecomposable pro-
jectives is isomorphic to the endomorphism ring of the direct sum of the indecomposable
injectives. We illustrate this with Q1 and Q2 considered earlier.

4.7 Summary of Chapter 4

• Direct sum decompositions of AA as an A-module (with indecomposable sum-
mands) correspond to expressions for 1A as a sum of orthogonal (primitive) idem-
potents.

• U → U/RadU is essential.

• Projective covers are unique when they exist. For modules for a finite dimensional
algebra over a field they do exist.

• Idempotents can be lifted through nilpotent ideals.

• The indecomposable projective modules for a finite dimensional algebra over a
field are exactly the projective covers of the simple modules. Each has a unique
simple quotient and is a direct summand of the regular representation. Over an
algebraically closed field PS occurs as a summand of the regular representation
with multiplicity dimS.

4.8 Exercises for Chapter 4

Exercise 4.8.1. Let A be a finite dimensional algebra over a field. Show that A is
semisimple if and only if all finite dimensional A-modules are projective.

Exercise 4.8.2. Let PS be an indecomposable projective module for a finite dimen-
sional algebra over a field. Show that every non-zero homomorphic image of PS

(a) has a unique maximal submodule,
(b) is indecomposable, and
(c) has PS as its projective cover.

Exercise 4.8.3. Let A be a finite dimensional algebra over a field, and suppose that
f, f ′ are primitive idempotents of A. Show that the indecomposable projective modules
Af and Af ′ are isomorphic if and only if dim fS = dim f ′S for every simple module S.

Exercise 4.8.4. Let A be a finite dimensional algebra over a field and f ∈ A a
primitive idempotent. Show that there is a simple A-module S with fS 6= 0, and that
S is uniquely determined up to isomorphism by this property.

Exercise 4.8.5. Let A be a finite dimensional algebra over a field, and suppose that
Q is a projective A-module. Show that in any expression

Q = Pn1
S1
⊕ · · · ⊕ PnrSr
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where S1, . . . , Sr are non-isomorphic simple modules, we have

ni = dim HomA(Q,Si)/ dim EndA(Si).

Exercise 4.8.6. Let A be a finite dimensional algebra over a field. Suppose that V is
an A-module, and that a certain simple A-module S occurs as a composition factor of
V with multiplicity 1. Suppose that there exist non-zero homomorphisms S → V and
V → S. Prove that S is a direct summand of V .

Exercise 4.8.7. Let G = Sn, let k be a field of characteristic 2 and let Ω = {1, 2, . . . , n}
permuted transitively by G.

(a) When n = 3, show that the permutation module kΩ is semisimple, being the
direct sum of the one-dimensional trivial module and the 2-dimensional simple module.
[Use the information from Example 4.3.2 and Exercise ?? from Chapter 6.]

(b) When n = 4 there is a normal subgroup V / S4 with S4/V ∼= S3, where V =
〈(1, 2)(3, 4), (1, 3)(2, 4)〉. Show that the simple kS4-modules are precisely the two simple
kS3-modules, made into kS4-modules via the quotient homomorphism to S3. Show
that kΩ is uniserial with three composition factors that are the trivial module, the
2-dimensional simple module and the trivial module.
[Use Exercise ?? from Chapter 6.]

Exercise 4.8.8. Show by example that if H is a subgroup of G it need not be true
that Rad kH ⊆ Rad kG.
[Compare this result with Exercise ?? from Chapter 6.]

Exercise 4.8.9. Suppose that we have module homomorphisms U
f−→V g−→W . Show

that part of Proposition 4.4.2(1) can be strengthened to say the following: if gf is
an essential epimorphism and f is an epimorphism then both f and g are essential
epimorphisms.

Exercise 4.8.10. Let U and V be arbitrary (not necessarily Noetherian) modules for
a finite dimensional algebra A. Use the results of Exercise ?? of Chapter 6 to show the
following.

(a) Show that the quotient homomorphism U → U/RadU is essential.
(b) Show that a homomorphism U → V is essential if and only if the homomorphism

of radical quotients U/RadU → V/RadV is an isomorphism.
(c) Show that U has a projective cover.
(d) Show that every indecomposable projective A-module is finite dimensional, and

hence isomorphic to PS for some simple module S.
(e) Show that every projective A-module is a direct sum of indecomposable projec-

tive modules.

Exercise 4.8.11. In this question U, V and W are modules for a finite dimensional
algebra over a field and PW is the projective cover of W . Assume either that these
modules are finite dimensional, or the results from the last exercise.
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(a) Show that U →W is an essential epimorphism if and only if there is a surjective
homomorphism PW → U so that the composite PW → U →W is a projective cover of
W . In this situation show that PW → U must be a projective cover of U .

(b) Prove the following ‘extension and converse’ to Nakayama’s lemma: let V be
any submodule of U . Then U → U/V is an essential epimorphism ⇔ V ⊆ RadU .



Chapter 5

Indecomposable modules and
Auslander-Reiten theory

5.1 The endomorphism ring of an indecomposable module

Proposition 5.1.1. Let U be a module for a ring A with a 1. Expressions

U = U1 ⊕ · · · ⊕ Un

as a direct sum of submodules biject with expressions 1U = e1 + · · ·+ en for the identity
1U ∈ EndA(U) as a sum of orthogonal idempotents. Here ei is obtained from Ui as
the composite of projection and inclusion U → Ui → U , and Ui is obtained from ei as
Ui = ei(U). The summand Ui is indecomposable if and only if ei is primitive.

Proof. We must check several things. Two constructions are indicated in the statement
of the proposition: given a direct sum decomposition of U we obtain an idempotent
decomposition of 1U , and vice-versa. It is clear that the idempotents constructed from
a module decomposition are orthogonal and sum to 1U . Conversely, given an expression
1U = e1 + · · · + en as a sum of orthogonal idempotents, every element u ∈ U can be
written u = e1u + · · · + enu where eiu ∈ eiU = Ui. In any expression u = u1 + · · ·un
with ui ∈ eiU we have ejui ∈ ejeiU = 0 if i 6= j so eiu = eiui = ui, and this expression
is uniquely determined. Thus the expression 1U = e1 + · · · + en gives rise to a direct
sum decomposition.

We see that Ui decomposes as Ui = V ⊕W if and only if ei = eV + eW can be
written as a sum of orthogonal idempotents, and so Ui is indecomposable if and only
if ei is primitive.

Corollary 5.1.2. An A-module U is indecomposable if and only if the only non-zero
idempotent in EndA(U) is 1U .

Proof. From the proposition, U is indecomposable if and only if 1U is primitive, and
this happens if and only if 1U and 0 are the only idempotents in EndA(U). This
last implication in the forward direction follows since any idempotent e gives rise to

60
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an expression 1U = e + (1U − e) as a sum of orthogonal idempotents, and in the
opposite direction there simply are no non-trivial idempotents to allow us to write
1U = e1 + e2.

The equivalent conditions of the next result are satisfied by the endomorphism ring
of an indecomposable module, but we first present them in abstract. The connection
with indecomposable modules will be presented in Corollary 5.1.5.

Proposition 5.1.3. Let B be a ring with 1. The following are equivalent.

(1) B has a unique maximal left ideal.

(2) B has a unique maximal right ideal.

(3) B/Rad(B) is a division ring.

(4) The set of elements in B that are not invertible forms a left ideal.

(5) The set of elements in B that are not invertible forms a right ideal.

(6) The set of elements in B that are not invertible forms a 2-sided ideal.

Proof. (1) ⇒ (3) Let I be the unique maximal left ideal of B. Since Rad(B) is the
intersection of the maximal left ideals, it follows that I = Rad(B). If a ∈ B − I
then Ba is a left ideal not contained in I, so Ba = B. Thus there exists x ∈ B with
xa = 1. Furthermore x 6∈ I, so Bx = B also and there exists y ∈ B with yx = 1. Now
yxa = a = y so a and x are 2-sided inverses of one another. This implies that B/I is
a division ring.

(1)⇒ (6) The argument just presented shows that the unique maximal left ideal I is
in fact a 2-sided ideal, and every element not in I is invertible. This implies that every
non-invertible element is contained in I. Equally, no element of I can be invertible, so
I consists of the non-invertible elements, and they form a 2-sided ideal.

(3)⇒ (1) If I is a maximal left ideal of B then I ⊇ Rad(B) and so corresponds to
a left ideal of B/Rad(B), which is a division ring. It follows that either I = Rad(B)
or I = B, and so Rad(B) is the unique maximal left ideal of B.

(4) ⇒ (1) Let J be the set of non-invertible elements of B and I a maximal left
ideal. Then no element of I is invertible, so I ⊆ J . Since J is an ideal, we have equality,
and I is unique.

(6)⇒ (4) This implication is immediate, and so we have established the equivalence
of conditions (1), (3), (4) and (6).

Since conditions (3) and (6) are left-right symmetric, it follows that they are also
equivalent to conditions (2) and (5), by analogy with the equivalence with (1) and
(4).

We will call a ring B satisfying any of the equivalent conditions of the last propo-
sition a local ring. Any commutative ring that is local in the usual sense (i.e. it has
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a unique maximal ideal) is evidently local in this non-commutative sense. As for non-
commutative examples of local rings, we see from Proposition 4.1.3 part (3) that if G is
a p-group and k is a field of characteristic p then the group algebra kG is a local ring.
This is because its radical is the augmentation ideal and the quotient by the radical is
k, which is a division ring, thus verifying condition (3) of Proposition 5.1.3.

We have seen in Corollary 5.1.2 a characterization of indecomposable modules as
modules whose endomorphism ring only has idempotents 0 and 1. We now make the
connection with local rings.

Proposition 5.1.4. (1) In a local ring the only idempotents are 0 and 1.

(2) Suppose that B is an R-algebra that is finitely generated as an R-module, where
R is a complete discrete valuation ring or a field. If the only idempotents in B
are 0 and 1 then B is a local ring.

Proof. (1) In a local ring B, any idempotent e other than 0 and 1 would give a non-
trivial direct sum decomposition of B = Be ⊕ B(1 − e) as left B-modules, and so B
would have more than one maximal left ideal, a contradiction.

(2) Suppose that 0 and 1 are the only idempotents in B, and let (π) be the maximal
ideal of R. Just as in the proof of part (1) of Proposition ?? we see that π annihilates
every simple B-module, and so πB ⊆ Rad(B). This implies that B/Rad(B) is a finite
dimensional R/(π)-algebra. If e ∈ B/Rad(B) is idempotent then by the argument of
Proposition ?? it lifts to an idempotent of B, which must be 0 or 1. Since e is the image
of this lifting, it must also be 0 or 1. Now B/Rad(B) ∼= Mn1(∆1) ⊕ · · · ⊕Mnt(∆t)
for certain division rings ∆i, since this is a semisimple algebra, and the only way this
algebra would have just one non-zero idempotent is if t = 1 and n1 = 1. This shows
that condition (3) of the last proposition is satisfied.

We put these pieces together:

Corollary 5.1.5. Let U be a module for a ring A.

(1) If EndA(U) is a local ring then U is indecomposable.

(2) Suppose that R is a complete discrete valuation ring or a field, A is an R-algebra,
and U is finitely-generated as an R-module. Then U is indecomposable if and
only if EndA(U) is a local ring. In particular this holds if A = RG where G is a
finite group.

Proof. (1) This follows from Corollary 5.1.2 and Proposition 5.1.4.
(2) From Corollary 5.1.2 and Proposition 5.1.4 again all we need to do is to show

that EndA(U) is finitely-generated as an R-module. Let Rm → U be a surjection
of R-modules. Composition with this surjection gives a homomorphism EndA(U) →
HomR(Rm, U), and it is an injection since Rm → U is surjective (using the property
of Hom from homological algebra that it is ‘left exact’ and the fact that A-module
homomorphisms are a subset of R-module homomorphisms). Thus EndA(U) is realized
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as an R-submodule of HomR(Rm, U) ∼= Um, which is a finitely generated R-module.
Since R is Noetherian, the submodule is also finitely-generated.

The next result is a version of the Krull-Schmidt theorem. We first present it in
greater generality than for group representations.

Theorem 5.1.6 (Krull-Schmidt). Let A be a ring with a 1, and suppose that U is an
A-module that has two A-module decompositions

U = U1 ⊕ · · · ⊕ Ur = V1 ⊕ · · · ⊕ Vs

where, for each i, EndA(Ui) is a local ring and Vi is an indecomposable A-module. Then
r = s and the summands Ui and Vj are isomorphic in pairs when taken in a suitable
order.

Proof. The proof is by induction on max{r, s}. When this number is 1 we have U =
U1 = V1, and this starts the induction.

Now suppose max{r, s} > 1 and the result is true for smaller values of max{r, s}.
For each j let πj : U → Vj be projection onto the jth summand with respect to the
decomposition U = V1 ⊕ · · · ⊕ Vs, and let ιj : Vj ↪→ U be inclusion. Then

∑s
j=1 ιjπj =

1U . Now let β : U → U1 be projection with respect to the decomposition U = U1 ⊕
· · · ⊕ Ur and α : U1 ↪→ U be inclusion so that βα = 1U1 . We have

1U1 = β(
s∑
j=1

ιjπj)α =
s∑
j=1

βιjπjα

and since EndA(U1) is a local ring it follows that at least one term βιjπjα must be
invertible. By renumbering the Vj if necessary we may suppose that j = 1, and we
write φ = βι1π1α. Now (φ−1βι1)(π1α) = 1U1 and so π1α : U1 → V1 is split mono
and φ−1βι1 : V1 → U1 is split epi. It follows that π1α(U1) is a direct summand of
V1. Since V1 is indecomposable we have π1α(U1) = V1 and π1α : U1 → V1 must be an
isomorphism.

We now show that U = U1 ⊕ V2 ⊕ · · · ⊕ Vs. Because π1α is an isomorphism, π1
is one-to-one on the elements of U1. Also π1 is zero on V2 ⊕ · · · ⊕ Vs and it follows
that U1 ∩ (V2 ⊕ · · · ⊕ Vs) = 0, since any element of the intersection is detected by its
image under π1, and this must be zero. The submodule U1 + V2 + · · · + Vs contains
V2+ · · ·+Vs = kerπ1 and so corresponds via the first isomorphism theorem for modules
to a submodule of π1(U) = V1. In fact π1 is surjective and so U1 + V2 + · · ·+ Vs = U .
It follows that U = U1 ⊕ V2 ⊕ · · · ⊕ Vs.

We now deduce that U/U1
∼= U2 ⊕ · · · ⊕Ur ∼= V2 ⊕ · · · ⊕ Vs. It follows by induction

that r = s and the summands are isomorphic in pairs, which completes the proof.

Note that the proof of Theorem 5.1.6 shows that an ‘exchange lemma’ property
holds for the indecomposable summands in the situation of the theorem. After the
abstraction of general rings, we state the Krull-Schmidt theorem in the context of
finite group representations, just to make things clear.
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Corollary 5.1.7. Let R be a complete discrete valuation ring or a field and G a finite
group. Suppose that U is a finitely-generated RG-module that has two decompositions

U = U1 ⊕ · · · ⊕ Ur = V1 ⊕ · · · ⊕ Vs

where the Ui and Vj are indecomposable RG-modules. Then r = s and the summands
Ui and Vj are isomorphic in pairs when taken in a suitable order.

Proof. We have seen in Corollary 5.1.5 that the rings EndRG(Ui) are local, so that
Theorem 5.1.6 applies.

5.2 Irreducible morphisms

An element a of a commutative ring is irreducible if it is not a unit, and whenever
a = bc then b is a unit or c is a unit. In the case of the ring Z this is the definition
that most people would give of a prime number, although in mathematics we use a
different definition for this. Such irreducible elements have importance when it comes
to questions of unique factorization. It is not completely obvious at the beginning
how to generalize this definition to non-commutative situations, and whether such a
generalization would be useful. We now give the definition in the context of categories,
and it turns out to be extremely useful.

Definition 5.2.1. A morphism g : x→ y in a category C is called irreducible if g has
neither a left inverse nor a right inverse, and whenever g = ts for some morphisms
s : x→ z and t : z → y then either s has a left inverse or t has a right inverse.

This definition is most often applied in categories that have an additive structure,
and especially in categories of modules and in triangulated categories. In this situation
a morphism g has a left inverse if and only if it is split mono, and it has a right inverse if
and only if it is split epi. In some texts a morphism that is split mono is called a section
and a split epi is called a retraction. Thus the definition of irreducible morphism can
be rephrased as follows:

Definition 5.2.2. A morphism g : U → U in the category of modules for some ring
is called irreducible if g is neither split mono nor split epi, and whenever g = ts then
either s is split mono or t is split epi.

To understand this definition it helps to observe that, given any module homomor-
phism g : U → V and a further module W , we can always factorize g as

U

1
0


−−−→ U ⊕W

[
g 0

]
−−−−−→ V

and as

U

g
0


−−−→ V ⊕W

[
1 0

]
−−−−−→ V.
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These trivial factorizations are excluded as factorizations of an irreducible morphism
because either the first morphism of the first factorization is split mono and the second
morphism of the second factorization is split epi.

Here are some initial properties of irreducible morphisms.

Proposition 5.2.3. Let g : U → V be an irreducible morphism in A -mod.

1. Either g is a monomorphism or an epimorphism.

2. Irreducible morphisms are preserved under equivalences of categories and duali-
ties.

3. If g is a monomorphism then U is a summand of all proper submodules of V
containing g(U).

4. If g is an epimorphism then V is a summand of U/W for all submodules W of
V such that 0 6= W ⊂ Ker g.

Proof. 1. We factor g as U
s−→ g(U)

t−→ V and either s is (split) mono, in which case g
is mono, or t is (split) epi, in which case g is epi.

2. follows because the definition of an irreducible morphism is in terms of categor-
ical properties that are preserved under equivalence, and reversed under duality. The
definition is self-dual.

3. Suppose that g(U) ⊆ W ⊂ V with W 6= V , so that g factors as U
s−→ W

t−→ V .
Here t is not epi, so that s is split mono.

4. This follows by a dual argument to the one that proved 3.

Proposition 5.2.4. Let A be a finite dimensional algebra.

1. Let PS be a non-simple indecomposable projective A-module. The inclusion RadPS →
PS is irreducible.

2. Let IS be an indecomposable non-simple injective A-module. The quotient map
IS → IS/Soc IS is irreducible.

More is true than this: the inclusions of the summands of RadPS in PS are irre-
ducible, as are the surjections of IS onto IS/ Soc IS .

Proof. 1. Consider the inclusion f : RadPS → PS . This morphism is mono, but it is
not split mono, because then we would have PS = RadPS ⊕ U for some submodule
U so that PS = U by Nakayama’s lemma and RadPS = 0. Neither is this map split

epi, because it is not epi. Consider a factorization f = ts where RadPS
s−→ W

t−→ PS
for some module W . We will verify that either s is split mono or t is split epi. If t is
epi then it is split epi because PS is projective, so we may assume t is not epi. Now
the image of t is contained in the unique maximal submodule RadPS of PS , and it
equals RadPS because this is the image of ts. We see from this that t provides a map
W → RadPS that is a left inverse to s, so that s is split mono.

2. This follows by duality from 1.
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Example 5.2.5. We consider the irreducible morphisms for the quiver 1 → 2 → 3
that arise in this way.

Example 5.2.6. When A = K[x]/(xn) there is an indecomposable module Vi =
K[x]/(xi) of each dimension i with 1 ≤ i ≤ n. There are inclusion maps Vi → Vi+1 and
the quotient maps Vi+1 → Vi and (up to isomorphism given by a commutative square)
these are the irreducible maps between these modules.

5.3 The radical and the Auslander-Reiten quiver

Many (or perhaps all) of the definitions and results that follow apply in any Krull-
Schmidt category, namely, an additive category where every object is isomorphic to
a finite direct sum of indecomposable objects, and where the endomorphism rings of
indecomposable objects are local rings. At times, what is written here does not make
sense without assuming that homomorphism spaces are vector spaces over a field K.

Definition 5.3.1. Let A be a finite dimensional algebra and let U and V be finite
dimensional A-modules. We define the radical of HomA(U, V ) by

RadA(U, V ) = {f : U → V
∣∣ hfg is never an isomorphism when W

g−→ U
f−→ V

h−→W

with W indecomposable}

This is the form of the definition given in the book by Auslander, Reiten and Smalø,
but it appears to be equivalent to

RadA(U, V ) = {f : U → V
∣∣for all non-zero modules W

and morphisms g : W → U, h : V →W,

hfg is never an isomorphism}.

To see that these definitions define the same set of morphisms, if f satisfies the
condition of the second definition then it satisfies the condition of the first, because
in the first we only have to test f with indecomposable modules W , rather than with
all modules. Conversely, suppose that f : U → V satisfies the condition of the first
definition, and consider morphisms g : W → U and h : V → W for some module
W so that hfg is an isomorphism. If W1 ⊆ W is any indecomposable summand of
W then hfg(W1) is also a summand of W , isomorphic to W1 via an isomorphism
α : hfg(W1) → W1. Letting i : W1 → W be inclusion and p : W → hfg(W1) be
projection, the map αphfgi : W1 → W1 is an isomorphism. Because f satisfies the
condition of definition 1 this cannot happen, so f satisfies the condition of definition 2.

Proposition 5.3.2. Let A be a finite dimensional algebra over K and let U and V be
finite dimensional A-modules. Then:

1. RadA(U, V ) is a vector subspace of HomA(U, V ).
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2. If L
s−→ U

f−→ V
t−→ M are morphisms, where L,M are A-modules and f ∈

RadA(U, V ) then tfs ∈ RadA(L,M).

3. If U and V are indecomposable A-modules then RadA(U, V ) is the set of non-
isomorphisms U → V .

4. If U = U1 ⊕ · · ·Um and V = V1 ⊕ · · · ⊕ Vn and homomorphisms are written as
matrices φ = (φij) with respect to this decomposition, where φij : Uj → Vi, then
φ ∈ RadA(U, V ) if and only if φij ∈ RadA(Uj , Vi).

Proof. 1. We see that RadA(U, V ) is closed under taking scalar multiples. Suppose both
f1 and f2 lie in RadA(U, V ). If g : W → U and h : V →W with W indecomposable are
such that h(f1+f2)g = hf1g+hf2g is an isomorphism, then one of hf1g and hf2g must
be an isomorphism because EndA(W ) is a local ring. This does not happen because f1
and f2 lie in the radical. Thus f1 + f2 lies in RadA(U, V ).

2. If g : W → L and h : M →W are morphisms with W indecomposable it cannot
happen that (ht)f(sg) is an isomorphism because f lies in the radical, so this shows
that tfs lies in the radical.

3. Suppose that U and V are indecomposable and that f : U → V is not an iso-
morphism. If g : W → U and h : V → W are morphisms with W indecomposable so
that hfg is an isomorphism then g must be split mono and h must be split epi. This
means that W is isomorphic to a direct summand of U , hence that g is an isomorphism
because U is indecomposable. Similarly h is an isomorphism, so also f is an isomor-
phism. This is not the case, so that f lies in RadA(U, V ). Because RadA(U, V ) does
not contain any isomorphism, it equals the set of non-isomorphisms.

4. Suppose that φ ∈ RadA(U, V ). We show that φkj ∈ RadA(Uj , Vk). Now φkj =
pkφij where pk and ij are projection and inclusion maps. For morphisms g : W → Uj
and h : Vk → W we have hφkjg = hpkφijg and this is not an isomorphism because
φ is in the radical. Conversely, suppose that φkj ∈ RadA(Uj , Vk) for all k, j, and let
g : W → U and h : V →W with W indecomposable. Then

hφg = h(
∑
k,j

ikφkjpj)g =
∑
k,j

hikφkjpjg

If this is an isomorphism then some term hikφkjpjg in the sum must be an isomorphism,
because EndA(W ) is a local ring. This cannot happen, because φkj ∈ RadA(Uj , Vk).
Thus φ ∈ RadA(U, V ).

Condition 2. implies that in each variable, RadA(U, V ) is a subfunctor of HomA(U, V ).
Conditions 1. and 2. say that RadA(−,−) is a 2-sided ideal in A -mod, in the terminol-
ogy used by Assem-Simson-Skowronski, and a K-relation on A -mod in the terminology
of Auslander-Reiten-Smalø. Condition 2. has the effect that we can form quotient func-
tors.

Corollary 5.3.3. There are quotient functors SU : A -mod → K -mod and SV :
(A -mod)op → k -mod defined by

SU (V ) = (HomA(U,−)/RadA(U,−))(V ) = HomA(U, V )/RadA(U, V )
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and

SV (U) = (HomA(−, V )/RadA(−, V ))(U) := HomA(U, V )/RadA(U, V ).

These functors have the property that if M,U, V are indecomposable modules then

SU (M) ∼=

{
EndA(U)/RadA(U) if M ∼= U,

0 otherwise.

and

SU (M) ∼=

{
EndA(U)/RadA(U) if M ∼= U,

0 otherwise.

The non-zero quotients of these endomorphism rings are division rings. These func-
tors are simple objects in the categories of K-linear functors A -mod → K -mod and
(A -mod)op → K -mod.

When considering representations of A -mod and (A -mod)op we only consider K-
linear functors, that preserve the vector space structure of spaces of homomorphisms.
There is much more to be said about this, but we postpone it.

Definition 5.3.4. We define the powers of the radical inductively by

RadnA(U, V ) = {f : U → V
∣∣there is a module W

and morphisms g ∈ RadA(U,W ), h ∈ Radn−1A (W,V )

with f = hg}.

We define the infinite radical by

Rad∞A (U, V ) :=
⋂
n>0

RadnA(U, V ).

We might have expected to take sums of morphisms of the form hg in the above
definition.

Lemma 5.3.5. RadnA(U, V ) is a vector subspace of HomA(U, V ), as is Rad∞A (U, V ).

Proof. Suppose fi = higi with i = 1, 2 and gi ∈ RadA(U,Wi) and hi ∈ Radn−1A (Wi, V ).
Then the linear combination λ1f1 + λ2f2 factors as

U

g1
g2


−−−→W1 ⊕W2

[
λ1h1 λ2h2

]
−−−−−−−−−−→ V,

and the result is proved by induction on n. The intersection of vector subspaces is a
vector subspace, which shows that Rad∞A (U, V ) is such.

Proposition 5.3.6. Let f : U → V be a homomorphism of A-modules.
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1. If U is indecomposable then f ∈ RadA(U, V ) if and only if f is not split mono.

2. If V is indecomposable then f ∈ RadA(U, V ) if and only if f is not split epi.

3. If both U and V are indecomposable then f is irreducible if and only if f ∈
RadA(U, V )− Rad2

A(U, V ).

Proof. 1. The morphism f is split mono if and only if there is a morphism s : V → U

so that the composite U
f−→ V

s−→ U = 1U , which is an isomorphism. This implies
that f is not in the radical, from the definition. Conversely, if f is not in the radical

there exists a module W and morphisms W
g−→ U

f−→ V
h−→W whose composition is an

isomorphism. This implies that W is a summand of U , hence is isomorphic to U by g
because U is indecomposable, and so f is split mono.

2. is proved similarly.
3. We see that f ∈ Rad2

A(U, V ) if and only if f factors as f = hg with g ∈
RadA(U,W ) and h ∈ RadA(W,V ), for some module W . By parts 1. and 2. it is
equivalent to say that g is not split mono and h is not split epi. Equivalently, f is not
an isomorphism and is not irreducible.

Definition 5.3.7. For each pair of indecomposable A-modules U and V we define
Irr(U, V ) := RadA(U, V )/Rad2

A(U, V ). This vector space is called the space of irre-
ducible morphisms from U to V , although its elements are not morphisms.

We see that Irr(U, V ) is a left EndA(V )-module and a right EndA(U)-module. The
terminology for this is that it is a (EndA(V ),EndA(U))-bimodule. It is annihilated by
both Rad(EndA V ) and by Rad(EndA U), so that it is a bimodule for the division ring
quotients DV and DU of these endomorphism rings.

We make the following definition for A -mod where A is a finite dimensional algebra,
but it applies to Krull-Schmidt categories generally.

Definition 5.3.8. The Auslander-Reiten quiver of the finite dimensional algebra A
is the directed graph with the isomorphism classes [U ] of indecomposable modules

U as vertices. There is an arrow [U ]
(dUV ,d

UV )−−−−−−−→ [V ] from [U ] to [V ], where dUV =
dimDV Irr(U, V ) and dUV = dimDU Irr(U, V ). If dUV = dUV we may omit the labeling
and replace the labeled edge by dUV unlabeled edges.

When the ground field K is algebraically closed we must always have that the
division rings DU = DV = K and dUV = dUV .

Example 5.3.9. When A = K[x]/(xn) there is an indecomposable module Vi of each
dimension up to n. There are monomorphisms Vi → Vi+1 and epimorphisms Vi+1 → Vi,
and these are (representatives of) all the irreducible maps between these modules. In
fact, the irreducible morphisms Vi → Vj (when there are any) form a single orbit under
the the unit groups of EndA(Vi) and of EndA(Vj). From this we see that

dViVi+1 = dViVi+1 = dVi+1Vi = dVi+1Vi = 1 when 1 ≤ i ≤ n− 1.
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The Auslander-Reiten quiver is

V1
→
←
V2
→
←
· · · →
←
Vn.

It is clear that dim Irr(U, V ) is finite when U and V are indecomposable modules, so
that sets of irreducible morphisms U → V whose images in Irr(U, V ) are independent
must necessarily be finite. What is not clear at this stage is whether there can be
found infinitely many non-isomorphic indecomposable modules W with an irreducible
morphism U →W . This is the same as asking whether the functor Rad(U,−) is finitely
generated or, equivalently, whether the simple functors SU are finitely presented. We
will see an answer to this question as a consequence of the existence of Auslander-Reiten
sequences.

5.4 Auslander-Reiten sequences

Given a short exact sequence of modules 0 → U
α−→ V

β−→ W → 0 we consider the
following conditions:

(1L) U is indecomposable,

(1R) W is indecomposable,

(2) the sequence does not split,

(2L) α is not split mono,

(2R) β is not split epi,

(3L) give any morphism ρ : U → U ′ that is not split mono, there exists a morphism
σ : V → U ′ so that ρ = σα,

(3R) give any morphism θ : W ′ → W that is not split epi, there exists a morphism
φ : W ′ → V so that θ = βφ,

(4L) whenever h ∈ End(V ) is such that hα = α then h is an automorphism,

(4R) whenever h ∈ End(V ) is such that βh = β then h is an automorphism,

(5L) α is irreducible,

(5R) β is irreducible,

Definition 5.4.1. If α satisfies 4L it is called left minimal, and if β satisfies 4R it
is called right minimal. If α satisfies 2L and 3L it is called left almost split, and if β
satisfies 2R and 3R it is called right almost split. If α is minimal and left almost split it
is called left minimal almost split, and if β is minimal and right almost split it is called
right minimal almost split.
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These conditions are not independent. We already know that (2) ⇔ (2L) ⇔ (2R).
Other implications, such as (3L) ⇒ (1L), (3R) ⇒ (1R), are less obvious. Notice also
that if α were split mono then (3L) would hold (without requiring that ρ be not split
mono), and similarly if β were split epi then (3R) would hold.

Definition 5.4.2. We say that the short exact sequence 0 → U
α−→ V

β−→ W → 0 is
an almost split sequence, or an Auslander-Reiten sequence, if α is left minimal almost
split and β is right minimal almost split.

Theorem 5.4.3. Let U , V and W be finite dimensional modules for a finite dimen-

sional algebra. The following are equivalent for a short exact sequence 0→ U
α−→ V

β−→
W → 0.

1. α is left almost split and β is right almost split.

2. α is left minimal almost split.

3. β is right minimal almost split.

4. U is indecomposable and β is right almost split.

5. W is indecomposable and α is left almost split.

6. α and β are irreducible.

Over a finite dimensional algebra, all of the conditions listed in Theorem 5.4.3 are
equivalent to the definition of an almost split sequence, and in this context there is
redundancy in the definition we have given of an almost split sequence. Some of the
conditions are more convenient to use than others. Conditions 4. or 5. often turn out
to work well with in practice. Condition 6. may be less helpful, because we do not
have much idea at this stage what the irreducible morphisms look like.

Parts of the equivalences in the above result will come from the following proposi-
tion.

Proposition 5.4.4. Let 0→ U
α−→ V

β−→W → 0 be a short exact sequence.

1. If α is left almost split then U is indecomposable.

2. If α is minimal left almost split then α is irreducible.

3. If α is irreducible then W is indecomposable.

4. For finite dimensional modules, if W is indecomposable and the sequence does not
split then α is left minimal.

Analogous statements hold regarding β.
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Proof. 1. Suppose that U = U1 ⊕ U2 is the direct sum of two non-zero submodules.
Then, for each i, projection pi : U → Ui is not split mono, so there exists vi : V → Ui

so that pi = viα. We deduce that α is split by the map V → U with components

[
v1
v2

]
,

which is not possible. Thus U is indecomposable.
2. Suppose that α is minimal left almost split. Then α is not split mono, and

it is not split epi because then α would be an isomorphism. Assume that α = α1α2

where α2 : U → X and α1 : X → V . We suppose that α2 is not split mono and show
that α1 must be split epi. Because α is left almost split, there exists α′2 : V → X so
that α2 = α′2α. Hence α = α1α2 = α1α

′
2α. Because α is left minimal, α1α

′
2 is an

automorphism and so α1 is split epi.
3. Suppose that α is irreducible and that W = W1 ⊕W2 is the direct sum of two

non-zero submodules. For each i let qi : Wi → W be the inclusion and consider the
commutative (pullback) diagram with exact rows

0 → U
α−→ V

β−→ W → 0

‖ u

x qi

x
0 → U

α′−→ Vi
β′−→ Wi → 0

where Vi is the preimage in V of Wi. Now α = uα′ and u is not split epi, so α′ is split
mono and hence β′ is split epi. Thus there exists vi : Wi → Vi so that β′vi = 1Wi and
now uvi : Wi → V has the property that qi = βuvi. This means the map W → V with
components [uv1, uv2] splits β. We deduce that α is split mono, which is not possible
for an irreducible morphism. Thus W is indecomposable.

4. Suppose that W is indecomposable and that h : V → V satisfies hα = α, so that
h is the identity on α(U). Then h induces a map g : W →W . If g is an isomorphism,
so is h, and we are done. Otherwise g is not an isomorphism so that gn = 0 for some
n because W is indecomposable. Now hnα = α and hn : V → U has image equal
to α(U), where it is the identity. This means hn provides a splitting of the sequence,
which does not happen. Thus h is an isomorphism.

Class Activity. In the next proof, determine which part or parts of Proposition 5.4.4
are used in the implications 1. implies 4. and 5, 5. implies 2, 4. and 5. imply 6. and
6. implies that U and W are indecomposable.

Proof of Theorem 5.4.3. We see from Proposition 5.4.4 that 1. implies 4. and 5; that
5. implies 2. and 4. implies 3. for finite dimensional algebras; and that 4. and 5.
taken together imply 6, which implies that U and W are indecomposable. We show
that 3. implies 1, and from this and the similar 4. implies 1. we conclude that the first
5 conditions are equivalent. We omit 6. implies 1: see Auslander-Reiten-SmaløIV.1.13.

To show that 3. implies 1, suppose that β is right minimal almost split. Let
u : V → X be a module homomorphism with u 6= u′α for all u′ : V → X. We show
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that u is split mono. We construct the pushout commutative diagram

0 → U
α−→ V

β−→ W → 0

u

y v

y ‖

0 → X
γ−→ Y

δ−→ W → 0

where Y := (X ⊕ V )/{(u(z),−α(z))
∣∣ z ∈ U}. Now γ is not split mono, otherwise

the splitting precomposed with v would provide a map u′ with u = u′α, which was
excluded. Therefore δ is not split epi. Because β is right almost split, δ lifts to a
mapping v̄ : Y → V so that δ = βv̄. Thus β = δv = βv̄v. From right minimality of β
we deduce that v̄v is an automorphism. Thus v̄ restricts to a map ū : X → U with ūu
an automorphism. This means that u is split mono.

We now list some first properties of almost split sequences.

Proposition 5.4.5. Let E : 0→ U
α−→ V

β−→W → 0 be an almost split sequence.

1. Every almost split sequence E′ : 0 → U
α′−→ V ′

β′−→ W ′ → 0 starting with U is
isomorphic to E.

2. Every almost split sequence E′′ : 0 → U ′′
α′′−→ V ′′

β′′−→ W → 0 ending with W is
isomorphic to E.

Proof. We only prove 1. Because α and α′ are not split mono there exist maps σ : V →
V ′ and σ′ : V ′ → V so that α′ = σα and α = σ′α′. Thus α = σ′σα and α′ = σσ′α′. Left
minimality of α implies that σ and σ′ are automorphisms. They extend to commutative
diagrams showing that the two sequences are isomorphic.

Apart from anything else, this means that, up to isomorphism, the left hand module
of an almost split sequence is determined by the right hand module, and vice-versa.

Proposition 5.4.6. A short exact sequence of left modules

0→ U
α−→ V

β−→W → 0

for a finite dimensional algebra A is an almost split sequence if and only if

0→ D(W )
D(β)−−−→ D(V )

D(α)−−−→ D(U)→ 0

is an almost split sequence of right A-modules.

Proof. This is immediate from the fact that D is a duality.

Proposition 5.4.7. Let A be a finite dimensional algebra.
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1. Let 0→ U
α−→ V

β−→W → 0 be an almost split sequence. A morphism X
γ−→W is

irreducible if and only if X is isomorphic to a summand of V and γ = β ◦ i where

i is the inclusion of X as a summand. A morphism U
δ−→ Y is irreducible if and

only if Y is isomorphic to a summand of V and δ = p ◦ α where p is projection
onto Y as a summand.

2. If P is an indecomposable projective A-module, a morphism γ : X → P is irre-
ducible if and only if γ is an inclusion of X as a summand of RadP . If I is an
indecomposable injective A-module, a morphism δ : I → Y is irreducible if and
only if δ is a projection of I/ Soc I onto Y as a summand.

Proof. 1. We only prove the first part. If γ : X → W is irreducible then γ is not split
epi so lifts to a morphism u : X → V so that γ = β ◦ u. Now β is not split epi, so u
must be split mono, and embeds X as a summand of V . We leave as an exercise the
fact that if X is a summand of V then the restriction of β to X is irreducible.

2. We have already seen that the inclusion RadP → P is irreducible. We leave the
rest as an exercise.

We conclude in all cases that if W is an indecomposable A-module that is either
projective or the right hand term of an almost split sequence, then there are only
finitely many isomorphism classes of indecomposable modules X for which there is an
irreducible morphism X → W . A similar statement holds for irreducible morphisms
U → Y when U is indecomposable.

Theorem 5.4.8. Let 0 → U →
⊕

i V
ni
i → W be an almost split sequence, where the

summands Vi of the middle term have multiplicity ni, and Vi 6∼= Vj if i 6= j. Then
ni = dimDW Irr(Vi,W ) = dimDU Irr(U, Vi), where DU and DW are the radical quotient
division rings of End(U) and End(W ).

Proof. See Assem-Simson-Skowronski IV.4.2.

5.5 The Auslander-Reiten translate

We define the transpose of a module and start by approximating each left A-module
W by projective modules.

Definition 5.5.1. Let
P1

p1−→ P0
p0−→W → 0

be a minimal projective presentation of W . This means that the sequence is exact and
both p0 : P0 → W and p1 : P1 → Ker p0 are projective covers. Applying the left exact
contravariant functor (−)∨ we obtain an exact sequence of right A-modules

0→W∨ → P∨0 → P∨1 → TrW → 0

where TrW is defined as the cokernel of p∨1 .
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Example 5.5.2. Let Q be the quiver 1 → 2 ← 3, with indecomposable projective
left modules P1 = 1

2 , P2 = 2 , P3 = 3
2 . We compute Tr( 1 3

2 ) by taking a minimal
projective presentation

P2 → P1 ⊕ P3 → 1 3
2 → 0

Applying (−)∨ we get right modules, which are modules for the opposite quiver 1 ←
2→ 3 and we get an exact sequence of right modules

P1 ⊕ P3 → P2 → Tr( 1 3
2 )→ 0.

From this we deduce that Tr( 1 3
2 ) = 2 .

Class Activity. For Q = 1→ 2← 3 compute DTr(1).

From what we know so far, we can say that Tr is only defined on modules up to
isomorphism. The isomorphism type of TrW is uniquely determined because projective
covers of modules are uniquely determined up to isomorphism. We can ask whether Tr
is defined as a functor, and it is, but on categories that factor out the isomorphisms
that can occur. If we use the stable category associated to A-mod, in which morphisms
are cosets of the set of morphisms that factor through projective modules, then Tr
provides an equivalence between the stable category of A-mod and the stable category
of mod-A. Without going into such technicalities, we have the following:

Proposition 5.5.3. Let W be an indecomposable left A-module.

1. The right A-module TrW has no nonzero projective direct summands.

2. If W is not projective, then the sequence P∨0 → P∨1 → TrW → 0 induced from

the minimal projective presentation P1
p1−→ P0

p0−→ W → 0 of W is a minimal
projective presentation of TrW .

3. W is projective if and only if TrW = 0. If W is not projective, then TrW is
indecomposable and Tr(TrW ) ∼= W .

4. If W and X are indecomposable nonprojective, then W ∼= X if and only if TrW ∼=
TrX.

5. Tr provides a bijection between isomorphism classes of non-projective indecom-
posable left A-modules, and isomorphism classes of non-projective indecomposable
right A-modules.

Proof. See Assem-Simson-Skowronski IV.2.1. We give a brief version.
1. If TrW = Q⊕V where Q is projective, then Q splits off P∨1 so that P∨1

∼= Q⊕X
for some module X containing the image of P∨0 → P∨1 . It follows that P1

∼= P∨∨1
∼=

Q∨ ⊕X∨ and X∨ is a summand of P∨∨1 contained in the kernel of P∨∨1 → P∨∨0 . This
implies that the projective presentation of W was not minimal.

2. If it is not a minimal projective presentation of TrW then one of P∨0 and P∨1
has a direct summand that is mapped to zero. Applying (−)∨ we see that the original
projective presentation was not minimal.
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3. If W is projective then TrW = 0 because in the minimal projective presentation
of W we can take P0 = W and P1 = 0. If TrW = 0 then P∨0 → P∨1 is epi, and hence
split because P∨1 is projective. We deduce that P1 → P0 is split mono, P1 = 0 by
minimality, and P0

∼= W is projective.
If W is not projective we deduce that Tr(TrW ) ∼= W by applying 2. twice. If

TrW = W1 ⊕W2 with nonzero summands then W ∼= Tr(W1) ⊕ Tr(W2) with neither
summand 0, which cannot happen, so that TrW is indecomposable.

4. If W ∼= X then TrW ∼= TrX, which in turn implies W ∼= Tr TrW ∼= Tr TrX ∼=
X.

5. is now immediate.

Definition 5.5.4. The Auslander-Reiten translate is defined on A-modules as τ =
DTr. Thus if W is a left A-module then τW = DTrW . We also define τ−1 = TrD.

Corollary 5.5.5. The Auslander-Reiten translate τ provides a bijection

{isomorphism classes of indecomposable non-projective A-modules}
→ {isomorphism classes of indecomposable non-injective A-modules}

with the inverse bijection provided by τ−1.

The Nakayama functor ν = D((−)∨) provides a good way to compute τ .

Proposition 5.5.6. 1. Let P1
p1−→ P0

p0−→W → 0 be a minimal projective presenta-
tion of W . Then there is an exact sequence

0→ τW → νP1 → νP0 → νW → 0.

2. Let 0 → U → I0
ι0−→ I1

ι1−→ be a minimal injective presentation of U . Then there
is an exact sequence

0→ ν−1U → νI0 → νI1 → τ−1U → 0.

Proof. We get this by applying the exact functor D to the sequence

0→W∨ → P∨0 → P∨1 → TrW → 0.

The second part is proved similarly.

Example 5.5.7. We calculate τ for the indecomposable modules for the quiver 1 →
2→ 3.
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5.6 Existence of Auslander-Reiten sequences

It is quite surprising that, for modules over a finite dimensional algebra, almost split
sequences exist. In view of Proposition 5.4.7 it has the implication that, for each
indecomposable module W , there are only finitely many isomorphism classes of modules
V for which there is an irreducible morphism V → W and, for each indecomposable
module U , there are only finitely many isomorphism classes of modules V for which
there is an irreducible morphism U → V .

Theorem 5.6.1. Let A be a finite dimensional algebra.

1. For each indecomposable non-projective A-module W there exists an almost split
sequence 0→ τW → V →W → 0.

2. For each indecomposable non-injective A-module U there exists an almost split
sequence 0→ U → V → τ−1U → 0.

Proof. The proof uses constructions from homological algebra, including a remarkable
duality isomorphism. These constructions go beyond what we have done so far. At the
end of the proof we realize that a construction has been made, but it does not help
us too much to understand the properties of almost split sequences. We sketch what
happens.

The proof starts with the Auslander-Reiten duality formula. Let W be an inde-
composable non-projective A-module. We have

DHomA(L,W ) ∼= Ext1A(W, τL)

valid for any module L, where HomA(L,W ) is the quotient of HomA(L,W ) by the
homomorphisms that factor through a projective module. Taking L = W we get a
quotient of the local ring EndA(W ), which has a simple radical quotient as a module for
EndA(W ). It follows that Ext1A(W, τW ) has a simple socle as a left EndA(W )-module
and also as a right EndA(W )-module. This Ext group classifies module extensions of
W by τW , and a non-zero element in the socle turns out to correspond to an almost
split sequence. The two end terms are indecomposable, the sequence is not split and
the right almost split property is satisfied: any element of Rad(X,W ) acts as zero on
the extension, so produces a split extension under pullback. This provides a lifting as
required for the right almost split property.

There are some situations where we can immediately write down almost split se-
quences.

Proposition 5.6.2. Let P be an indecomposable module that is both projective and
injective, and not simple. Then the sequence

0→ RadP → (RadP/ SocP )⊕ P → P/ SocP → 0

is almost split, where the component maps are the inclusions and projections (with a
minus sign, as appropriate).
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Example 5.6.3. The quiver 1 → 2 → 3 has a projective-injective indecomposable
module. An algebra is self-injective if all projective modules are injective (and all
injective modules are projective).

Proof. The module P is the projective cover of a simple module S, being indecompos-
able projective, and the injective envelope of a simple module T , being indecomposable
injective. Thus P = PS = IT . Notice that RadPS and PS/SocPS are both in-
decomposable in this situation. We compute DTr(PS/SocPS) using the projective
presentation

PT
p1−→ PS → PS/ SocPS → 0.

Applying the Nakayama functor ν gives an exact sequence

0→ DTr(PS/ SocPS)→ IT
νp1−−→ IS .

We show that νp1 has image S = Soc IS , which will imply that DTr(PS/ SocPS) =
RadPS . This can be seen because p1 has the property that for all f : PS → Q where Q
is indecomposale projective, either f is an isomorphism or fp1 = 0. Therefore, for all
g : IS → J where J is injective indecomposable, either g is an isomorphism or gνp1 = 0.
If the image of νp1 is larger than S, we can find a non-isomorphism g : IS → J so that
gνp1 6= 0, which cannot happen, so we deduce that νp1 has image S.

We have now shown that τ(PS/ SocPS) = RadPS , so there is an almost split
sequence

0→ RadPS → V ⊕ PS → PS/ SocPS → 0

for some module V , using the fact that there are irreducible morphisms RadPS → PS
and PS → PS/SocPS . Counting composition factors, V has the same composition fac-
tors as RadPS/SocPS . This means the component irreducible morphism RadPS → V
cannot be a monomorphism. Therefore it is an epimorphism, and V is a proper quo-
tient of RadPS , which has a simple socle. Thus V is a quotient of RadPS/ SocPS with
the same composition factors, so V ∼= RadPS/SocPS and the component irreducible
morphism from RadPS is the quotient map. Similarly, the map V → PS/ SocPS is the
inclusion to RadPS/SocPS .

5.7 Calculations

Example 5.7.1. We calculate the Auslander-Reiten quiver of the quivers 1 → 2 → 3
and 1 → 2 → 3 → 4. We do this by writing down all the irreducible morphisms
that arise as inclusions of radicals of projectives, and as quotients maps to quotients
of injectives by their socles. We also write down the sequence for the projective-
injective indecomposable. For 1 → 2 → 3 this gives all the irreducible morphisms.
For 1 → 2 → 3 → 4 we complete the quiver from counting the composition factors of
modules in the middle term of an almost split sequence.

Example 5.7.2. We calculate the Auslander-Reiten quiver of the incidence algebra of
the poset with Hasse diagram
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over an arbitrary field. We take the elements of the poset to be {1, 2, 3, 4, 5} with
partial order given by 1 < 2 < 3 < 5 and 1 < 4 < 5. The indecomposable projective
modules are

P1 =
1

2 4
3
5
, P2 =

2
3
5
, P3 = 3

5 , P4 = 4
5 , P5 = 5

and the indecomposable injective modules are

I1 = 1 , I2 = 1
2 , I3 =

1
2
3
, I4 = 1

4 , I5 =
1

2 4
3
5

The Auslander-Reiten quiver is

4

5

3

1
2
3

4
5

3
5

1
2 4
3

1
2

2
3

2
3
5

1
2 4

3 4
5

2
3 4
5

1

2 1
4

P1

We calculate

• The AS sequence with the indecomposable projective-injective P1 = I5 in the
middle,

• DTr(4) and DTr( 2
3 ). From this we deduce that the AS sequence with 4 at the

right has indecomposable middle term, and the AS sequence with 2
3 at the right

has 3 as a summand of its middle term.

• The inclusion of the radical P3 → P2, which shows that P3 = DTr(
2
3 4
5

), because

P3 is not injective, and there is only one irreducible morphism out of P2.

• We place the irreducible morphism P5 → P4, finding that P5 = DTr( 3 4
5 ),

because there are only two irreducible morphisms out of P3, and that P4 =
DTr(3).

• We complete the right half of the quiver by duality.
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• We have constructed a connected component of the quiver. For all we know
there by further components that we have not yet discovered. By a theorem of
Auslander, if the quiver has a finite connected component, and the algebra cannot
be written as a direct sum of ideals, then the quiver is complete.

Notice that only two direct τ = DTr calculations were done, and that the remaining
DTr values were deduced from the structure of the quiver. Notice also that the equiv-
alence A-proj ' A-inj given by the Nakayama functor does not preserve irreducible
morphisms.

Example 5.7.3. We calculate a component of the Auslander-Reiten quiver of the

Kronecker quiver 1 2 A representation of this quiver is the specification of a pair
of matrices from one vector space to another, and isomorphism of such representations
corresponds to simultaneous conjugacy of the matrices by base change matrices for the
two spaces. The problem of finding a normal form for such pairs of matrices was solved
by Kronecker, and corresponds to the classification of indecomposable representations
of the quiver. For this reason the quiver is known as the Kronecker quiver.

The indecomposable projective and injective modules have the form

P1 = 1
2 2 , P2 = 2 , I1 = 1 , I2 = 1 1

2 .

We calculate DTr(1) by taking the minimal projective resolution P 2
2 → P1 → 1 → 0

and applying ν to get an exact sequence 0 → DTr(1) → I22 → I1 from which we get
DTr(1) = 1 1 1

2 2 . This provides a proof that the last module is indecomposable.
(Calculation also shows that 1 1 1

2 2
∼= R+

1 R
+
2 (1), which again provides a proof that

this module is indecomposable.)
There is thus an almost split sequence

0→ 1 1 1
2 2 → E → 1 → 0

for some module E. We know by Proposition 5.4.7 that there are two irreducible
morphisms I2 = 1 1

2 → 1 , so that E must have two copies of I2 as a direct summand.
By counting composition factors we see that E ∼= I22 and the almost split sequence is

0→ 1 1 1
2 2 → 1 1

2 ⊕ 1 1
2 → 1 → 0.

Continuing in this fashion we compute DTr( 1 1
2 ) = 1 1 1 1

2 2 2 so that there is an
almost split sequence

0→ 1 1 1 1
2 2 2 → 1 1 1

2 2 ⊕ 1 1 1
2 2 → 1 1

2 → 0.

In this way we construct a quiver component that extends infinitely to the left. It does
not extend to the right because I1 and I2 are injective.

By dual calculations with τ−1 = TrD we obtain almost split sequences

0→ 2 → 1
2 2 ⊕ 1

2 2 → 1 1
2 2 2 → 0
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and
0→ 1

2 2 → 1 1
2 2 2 ⊕ 1 1

2 2 2 → 1 1 1
2 2 2 2 → 0

and so on, constructing a quiver component that starts with the indecomposable pro-
jectives at the left and extends infinitely to the right. These quiver components have
the form of a semi-infinite graph along the real line with vertices at either negative
integers or positive integers, and with edges labeled (2, 2).

The indecomposable modules just constructed are known as the string modules for
this quiver. It is a fact that we have now seen a complete list of the string modules, and
they account for all the indecomposables whose total dimension is odd. There remain
infinitely many further Auslander-Reiten quiver components for the Kronecker quiver.



Chapter 6

Representation type

We follow section IV.5 of Assem-Simson-Skowronski for applications to finite represen-
tation type and Brauer-Thrall questions.

82



Chapter 7

Functorial methods

We follow section IV.6 of Assem-Simson-Skowronski for a discussion of representations
of the category of A-modules, including the correspondence between AR sequences and
projective resolutions of the simple functors, and Auslander algebras.

We let A be a finite dimensional K-algebra and let FunA denote the category of
K-linear functors A -mod → K -mod. The morphisms between such functors are the
natural transformations that are k-linear maps at each object. The theory of these
functors is very similar to the theory of all functors from a category to the category
of vector spaces, that we have considered before, but there are some differences. Such
linear functors

• preserve direct sums,

• are determined by their values on indecomposable objects and the morphisms
between them,

so that FunA is equivalent to the category of K-linear functors A-ind→ K -mod where
A-ind is the full subcategory of A-mod whose objects are (a set of representatives of
isomorphism classes of) the indecomposable A-modules. Morphisms in FunA are mono
or epi if and only if at each evaluation they are mono or epi. A sequence of natural
transformations of functors is exact at some functor if and only if on each evaluation
the sequence is exact.

If A has finite representation type and we take a set of representatives U1, . . . , Ut
of the indecomposable A-modules we may form a finite dimensional algebra that is the
vector space B =

⊕
i,j HomA(Uj , Ui). The product in B of elements that lie in these

summands is defined to be composition if they can be composed, and 0 otherwise.

Proposition 7.0.1. Let A have finite representation type. The algebra B just defined
is isomorphic to EndA(

⊕
i Ui).

Proof. This is a matter of examining the definitions and using the fact that every
endomorphism of a direct sum can be written as a matrix of component morphisms
between the summands.

83
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Definition 7.0.2. Let A have finite representation type with representatives U1, . . . , Ut
of the indecomposable A-modules. The algebra EndA(

⊕
i Ui) is called the Auslander

algebra of A.

The Auslander algebra is defined up to isomorphism, depending on the choice of
representatives of the indecomposable A-modules.

Proposition 7.0.3. Let A have finite representation type and let B be the Auslander
algebra of A. Then FunA and B-mod are equivalent categories.

Proof. Given a functor F : A -mod → K -mod we get a B module
⊕

i F (Ui). Given
a B-module M we get a functor with F (U) := 1U ·M . These two functors provide
inverse equivalences.

When A is of infinite representation type the construction described above does not
produce a finite dimensional algebra. We still get a vector space with a product defined,
but it has no identity. In this situation we could work with such an algebraic structure,
but we do not get an equivalence of categories as above, and it is more elegant to work
with functors.

Exercise 7.0.4. Consider the Auslander algebra B of the path algebra of the quiver
1 → 2 over some field. Find its dimension and the structure of its projective and
injective modules. Compute its Auslander-Reiten quiver. Show that submodules of
projective modules need not be projective.

We have seen before with representations of a category C that for each object x of
C there is a projective KC-module KC · 1x, and that it corresponds to the linearization
of a representable functor: K HomC(x,−) that, at each object y, returns the vector
space with basis HomC(x, y). There is something similar for linear functors from linear
categories. We now do IV.6.1 - IV.6.11 of Assem-Simson-Skowronski.

Definition 7.0.5. Let C be a K-linear category and x and object of C. A functor
M : C → K -mod is called representable at x if M is naturally isomorphic to the
functor Fx := HomC(x,−). It is representable if it is representable at x for some x.

Theorem 7.0.6 (Linearized Yoneda Lemma). Let C be a K-linear category and x
an object of C. For any K-linear functor M → K -mod there is a natural bijection
HomC(Fx,M)↔M(x).

Proof. The bijection is given as follows: given a natural transformation η : Fx → M
we map it to the element ηx(1x) ∈M(x) and this defines a mapping from left to right.
Given an element a ∈M(x) we map it to the natural transformation θ : Fx →M where,
at an object y, we have θy(φ) = M(φ)(a) ∈M(y). Here φ ∈ Fx(y) is a morphism from
x to y. We must check various things: this does define a natural transformation θ, and
the two mappings are inverse and natural.

Corollary 7.0.7. Let x and y be objects in a K-linear category C.
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1. There is an isomorphism of K-vector spaces Hom(Fy, Fx) ∼= HomC(x, y). Every
natural transformation Fy → Fx has the form α∗ where α : x → y and α∗ is
composition with α.

2. Fx ∼= Fy if and only if x ∼= y.

3. Fx is a projective object in the category of K-linear functors C → K -mod.

Proof. 1. The isomorphism of vector spaces is immediate. To see that every natural
transformation Fy → Fx has the form α∗ we examine the construction in the proof of
Yoneda’s Lemma. Given α : x→ y we construct a natural transformation θ : Fy → Fx
that is, at each object z, a linear map θz : Fy(z) → Fx(z), specified by θz(φ) =
Fx(φ)(α) = φα = α∗(φ). This is because the definition of the functor Fx = Hom(x,−)
on morphisms is by composition of morphisms.

2. is 6.3 of ASS and 3. is 6.4.

Corollary 7.0.8. Let A be a finite dimensional algebra and U an A-module.

1. The projective functor FU has endomorphism ring isomorphic to EndA(U)

2. FU is indecomposable if and only if U is indecomposable.

Definition 7.0.9. Assem-Simson-Skowronski choose to define a functor M ∈ FunA to
be finitely generated if and only if there is a finitely generated A-module U so that M
is a quotient of FU .

It does not seem obvious that this has much to do with the concept of finite gen-
eration we know in module theory. To make this connection we make the following
definition. Given a functor M : C → K -mod and elements ai ∈ M(xi), where the
xi are various objects of C and i lies in some indexing set I, then 〈ai

∣∣ i ∈ I〉 is the
smallest subfunctor of M that contains the ai. We say that M is generated by the ai
if M = 〈ai

∣∣ i ∈ I〉.
Proposition 7.0.10. Fx is generated by 1x ∈ Fx(x) or, indeed, by any automorphism
in Fx(x).

Class Activity. Is the last proposition obvious? If A is a ring with an idempotent
e ∈ A, is it obvious that the projective module Ae is generated by e?

Proposition 7.0.11. The following are equivalent for a functor M ∈ FunA.

1. There is a finitely generated A-module U so that M is a quotient of FU .

2. There is a finitely generated A-module U and an element b ∈ M(U) so that
M = 〈b〉.

3. There are finitely many finitely generated A-modules Ui and elements ai ∈M(Ui)
so that M is generated by the ai.

Class Activity. How much of this is obvious?
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Corollary 7.0.12. The FU , for finitely generated A-modules U , provide a complete list
of finitely-generated projective objects in FunA. The projective FU is indecomposable
if and only if the module U is indecomposable.

Proof. This is 6.5 of Assem-Simson-Skowronski.

Theorem 7.0.13. Let U be an indecomposable A-module.

1. The functor RadA(U,−) is the unique maximal subfunctor of FU . The quotient
SU = FU/RadA(U,−) is the unique simple quotient of FU .

2. The SU form a complete list of simple functors in FunA.

3. FU is the projective cover of SU .

Proof. See 6.6 - 6.8 of ASS.
1. We have seen that for each indecomposable A-module V we have RadA(U, V ) =

FU (V ) if V 6∼= U , and if V = U then FU (U)−RadA(U,U) consists of the isomorphisms
U → U . Thus if M is a subfunctor of FU that is not contained in RadA(U,−) then
M(U) contains an isomorphism of U . Such an isomorphism generates FU , so this means
M = FU .

2. If T is a simple functor then T (U) 6= 0 for some indecomposable module U .
Because T is simple it is generated by any non-zero element a ∈ T (U), and the unique
homomorphism FU → T determined by a is surjective. Because FU has SU as its
unique simple quotient, T ∼= SU .

3. The fact that the quotient map is essential is the same as a homework exercise.

We now do 6.9, 6.10, 6.11 of Assem-Simson-Skowronski.

Proposition 7.0.14. Let α : U → V be a morphism of A-modules with U indecom-
posable.

1. α is left almost split if and only if the image of α∗ : FV → FU is RadA(FU ); if
and only if Cokerα∗ ∼= SU

2. α is left minimal if and only if α∗ : FV → FU is right minimal; if and only if
FV → Imα∗ is minimal; if and only if FV → Imα∗ is a projective cover.

Proof. 1. For any homomorphism θ : U → X there exists γ : V → X with θ = αγ
if and only if θ lies in the image of α∗X : HomA(V,X) → HomA(U,X). Thus α is left
almost split if and only if, whenever X is indecomposable, the image of α∗X consists of
the non-isomorphisms. This happens if and only if the image of α∗ is Rad(FU ).

2. To prove the first implication ‘⇒’, suppose that α is left minimal and suppose
that α∗ = α∗θ for some θ ∈ End(FV ) ∼= End(V ). Then θ = β∗ for some β ∈ End(V )
and α∗ = α∗β∗ = (βα)∗. We deduce from the bijection of morphisms that α = βα.
Thus β is an isomorphism, and so is β∗.
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We now prove the first ‘⇐’. Suppose that α∗ is right minimal and α = hα for some
h. Then α∗ = α∗h∗ so h∗ is an isomorphism, hence so is β∗.

Writing ᾱ∗ : FV → Imα∗ for the map determined by α∗, it is evident that there
exists θ with α∗ = α∗θ if and only if there exists θ with ᾱ∗ = ᾱ∗θ, and this proves the
middle equivalence.

For the final ‘⇒’, suppose that ᾱ∗ is right minimal. We show that it is essential epi,
and for this we only need to show that it is essential. Suppose that M ⊂ FV has the
property that ᾱ∗(M) = ᾱ∗(FV ). By projectivity of FV there exists φ : FV →M so that
ᾱ∗ = φ(ᾱ∗)|M , and if φ̄ is the composite of φ and inclusion M ⊂ FV then ᾱ∗ = φ̄ᾱ∗

thus φ̄ is an isomorphism and this forces M = FU . We leave the implication ‘⇐’ as an
exercise.

Theorem 7.0.15. 1. Let 0 → U → V → W → 0 be a short exact sequence of
A-modules. It is an almost split sequence if and only if U is indecomposable and

0→ FW → FV → FU → SU → 0

is a minimal projective resolution.

2. Let U be indecomposable and injective. Then

0→ FU/ SocU → FU → SU → 0

is a minimal projective resolution.

Proof. 1. Observe that 0→ FW → FV → FU is necessarily exact, because Hom(−, X)
is always left exact. The rest follows from the preceding proposition and the observation
that if the second sequence is exact then the first cannot be split.

2. If X is indecomposable then any non-isomorphism θ : U → X has SocU in its
kernel, because otherwise U would embed in X and be a direct summand. This means
that θ factors through U/ SocU and so lies in the image of FU/ SocU → FU , which
therefore contains Rad(FU ). This map cannot be surjective because FU is projective.
Therefore the sequence is exact in the middle and at the right. We get exactness at
the left because Hom is left exact.

Corollary 7.0.16. The simple functors in FunA are finitely presented and have pro-
jective dimension at most 2. When A has finite representation type, FunA and the
Auslander algebra of A have global dimension at most 2.

Corollary 7.0.17. Let U be a finite dimensional A-module. Then Rad(FU ) is finitely
generated.

Corollary 7.0.18. Let 0→ U → V1 ⊕ · · · ⊕ Vn → W → 0 be an almost split sequence
where V1, . . . , Vn are indecomposable. Then Rad(FU )/Rad2(FU ) ∼= SV1⊕· · ·⊕SVn. We
deduce from this that for each indecomposable module V , the multiplicity of V as a sum-
mand of the middle term of the almost split sequence starting at U is dimDV Irr(U, V )

Exercise 7.0.19. Characterize the kinds of indecomposable modules U for which the
simple functor SU has projective dimension 2, 1 and 0.



Chapter 8

Torsion pairs and tilting

Example: Morita theory.

88



Chapter 9

The bounded derived category

Triangulated categories; Auslander-Reiten triangles; tilting complexes and derived
equivalence.
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