Math 3593 Practice for exam 3.

You will be allowed to use books, notes and a calculator on this exam.
A Find the area of the plane elliptical region which is the part of the plane $z=4-x-2 y$ that lies above the circle $x^{2}+y^{2} \leq 1$ in the $x y$-plane.
B Find the surface area of the part of the graph of the function $z=y^{2}-x^{2}$ which lies above the circle $x^{2}+y^{2} \leq 1$ in the $x y$-plane.

C Let A be the unit circle $x^{2}+y^{2} \leq 1$ and let $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation given by $\Phi\binom{x}{y}=\binom{2 x+y}{x-y}$. Find the area of $\Phi(A)$.
D Calculate $\int_{B} e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d x d y d z$ where B is the unit ball $x^{2}+y^{2}+z^{2} \leq 1$.
E Find the length of the part of the helical spiral in \mathbb{R}^{3}, specified in cylindrical polar coordinates (r, θ, z) by $r=2, z=3 \theta$, for which $0 \leq \theta \leq 2 \pi$.

F Find the area of the plane elliptical region which is the part of the plane $z=4-x-2 y$ that lies above the circle $x^{2}+y^{2} \leq 1$ in the $x y$-plane.
G Let $\omega(\mathbf{v}, \mathbf{w})=e^{z} v_{2} w_{1}-e^{y} v_{1} w_{2}+\sin x v_{2} w_{3}-\sin x v_{3} w_{2}$. Express $d \omega$ as a linear combination of elementary forms.

H Find a 2 -form on \mathbb{R}^{4} which is zero on the 3 -space spanned by the first three coordinate directions.

I Find a 2 -form on \mathbb{R}^{4} which is zero on $w+x+y+z=0$.
J What is the dimension of the space of 2 -forms on \mathbb{R}^{4} which restrict to zero on the 3 -space spanned by the first three coordinate directions.
K Find a 2-form that orients the surface $e^{(x+y)}+e^{\sin z}=1$ in \mathbb{R}^{3}.
L Let $\omega(\mathbf{v}, \mathbf{w})=v_{1} w_{2}-v_{2} w_{1}, \psi(\mathbf{v}, \mathbf{w})=v_{1} w_{3}-v_{3} w_{1}+v_{3} w_{4}-v_{4} w_{3}$. Evaluate $\omega \wedge \psi$ on the list of four vectors which are the transposes of $(1,2,3,4),(4,3,2,1),(1,0,1,0)$, $(0,0,1,1)$.

M Consider the manifold $M \subset \mathbb{R}^{3}$ specified by $x+3 y^{2}+e^{y+z}=0$ and with parametrization

$$
\Phi\binom{y}{z}=\left(\begin{array}{c}
-3 y^{2}-e^{y+z} \\
y \\
z
\end{array}\right)
$$

where $y \geq 0$. Suppose that Φ is a direct parametrization. ∂M is parametrized by

$$
\gamma(z)=\left(\begin{array}{c}
-e^{z} \\
0 \\
z
\end{array}\right)
$$

Is ∂M correctly oriented by $d x$ or by $-d x$?

