Homework Assignment 2 Due Thursday 10/21/2021, uploaded to Gradescope.

1. (2.10 of Eisenbud) Let R be a commutative ring. Show that every finitely generated module over $R\left[U^{-1}\right]$ is the localization of a finitely generated module over R. (Eisenbud also notes that the same implication without the condition finitely generated looks deeper but is a triviality. Do not address this comment.)

Solution: Let M be a module for $R\left[U^{-1}\right]$ generated by elements x_{1}, \ldots, x_{d} over $R\left[U^{-1}\right]$. Thus every element of M can be expressed as a sum $\frac{a_{1}}{u_{1}} x_{1}+\cdots+\frac{a_{d}}{u_{d}} x_{d}$ for some elements $a_{i} \in R$ and $u_{i} \in U$. Let N be the R-submodue of M generated by x_{1}, \ldots, x_{d}. The inclusion of R-modules $N \rightarrow M$ gives an inclusion of $R\left[U^{-1}\right]$-modules $N\left[U^{-1}\right] \rightarrow M\left[U^{-1}\right] \cong M$ (by exactness of localization), and it is surjective because the element $\frac{a_{1}}{u_{1}} x_{1}+\cdots+\frac{a_{d}}{u_{d}} x_{d}$ can be written with a common denominator $\frac{a_{1}}{u_{1}} x_{1}+\cdots+\frac{a_{d}}{u_{d}} x_{d}=\frac{1}{v}\left(b_{1} x_{1}+\cdots+b_{d} x_{d}\right)$ where v is the product $u_{1} \cdots u_{d}$ and $b_{i} \in R$, so it lies in $N\left[U^{-1}\right]$.
2. Let $A=M_{m, m}(R)$ and $B=M_{n, n}(R)$ be matrix rings over a commutative ring R. Show that $A \otimes_{R} B \cong M_{m n, m n}(R)$, where the multiplication giving the ring structure on the tensor product is determined by $(a \otimes b)(c \otimes d):=a c \otimes b d$ as in class and on page 65 of Eisenbud.

Solution. Let A and B have bases denoted $E_{i, j}$, where this is the matrix with 1 in row i and column j, and 0 elsewhere. Then $A \otimes B$ has a basis of tensors $E_{i, j} \otimes E_{k, p}$ and we define a map of vector spaces $A \otimes_{R} B \rightarrow M_{m n, m n}(R)$ by specifying it on the basis elements as $E_{i, j} \otimes E_{k, p} \mapsto E_{i+k m, j+p m}$. To check that it preserves multiplication, we only need to check it on the basis elements, and $\left(E_{i, j} \otimes E_{k, p}\right)\left(E_{a, b} \otimes E_{c, d}\right)=0$ unles $(j, p)=(a, c)$, when it equals $E_{i, b} \otimes E_{k, d}$. This product is mapped to $E_{i+k m, j+p m} \cdot E_{a+c m, b+d m}$ which equals 0 unless $j+p m=a+c m$ or, in other words, $j=a$ and $p=c$. Thus multiplication is preserved and we have an isomorphism of algebras.
3. If R is any integral domain with quotient field Q, prove that

$$
(Q / R) \otimes_{R}(Q / R)=0
$$

Solution. The typical element of Q / R can be written as a coset $\frac{a}{b}+R$ with $b \neq 0$ and

$$
\begin{aligned}
\left(\frac{a}{b}+R\right) \otimes_{R}\left(\frac{c}{d}+R\right) & =\left(\frac{a}{b d} d+R\right) \otimes_{R}\left(\frac{c}{d}+R\right) \\
& =\left(\frac{a}{b d}+R\right) \otimes_{R}\left(d \frac{c}{d}+R\right) \\
& =\left(\frac{a}{b d}+R\right) \otimes_{R}(c+R) \\
& =\left(\frac{a}{b d}+R\right) \otimes_{R} 0 \\
& =0 .
\end{aligned}
$$

Thus the tensor product is 0 .
4. Let $\left\{e_{1}, e_{2}\right\}$ be a basis of $V=\mathbb{R}^{2}$. Show that the element $e_{1} \otimes e_{2}+e_{2} \otimes e_{1}$ in $V \otimes_{\mathbb{R}} V$ cannot be written as a simple tensor $v \otimes w$ for any $v, w \in \mathbb{R}^{2}$.

Solution. If it could be so written it would be
$e_{1} \otimes e_{2}+e_{2} \otimes e_{1}=\left(a e_{1}+b e_{2}\right) \otimes\left(c e_{1}+d e_{2}\right)=a c e_{1} \otimes e_{1}+a d e_{1} \otimes e_{2}+b c e_{2} \otimes e_{1}+b d e_{2} \otimes e_{2}$.
The four tensors $e_{i} \otimes e_{j}$ on the right are a basis for the tensor product, so we deduce $a c=0=b d$ and $a d=1=b c$. One of a and c must be 0 , so the second equations cannot be satisfied if this is so. The tensor cannot be so written.
5. (a) Let $K \supseteq \mathrm{Q}$ be a field containing Q . Show that $K \otimes \phi \mathrm{Q}[x] \cong K[x]$ as rings (b) Show that, as a ring, $\mathrm{Q}(\sqrt{2}) \otimes \mathrm{Q}(\sqrt{2})$ is the direct sum of two fields.
[The ring multiplication is $(a \otimes b)(c \otimes d):=a c \otimes b d$ on basic tensors. Use the isomorphism $\left.\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}[x] /\left(x^{2}-2\right).\right]$

Solution. (a) We define a map $K \otimes{ }_{Q} \mathbb{Q}[x] \rightarrow K[x]$ by the specification $a \otimes_{\mathcal{Q}} f \mapsto a f$, which is well defined because it is balanced. We define a map $K[x] \rightarrow K \otimes{ }_{Q} \mathbb{Q}[x]$ on monomials $b x^{n}$ by $b x^{n} \mapsto b \otimes x^{n}$ extended by linearity because these monomials span $K[x]$. These two maps are ring homomorphisms and are mutually inverse.
(b) $\mathbb{Q}(\sqrt{2}) \otimes_{\mathrm{Q}} \mathrm{Q}(\sqrt{2}) \cong \mathrm{Q}[x] /\left(x^{2}-2\right) \otimes \mathrm{Q} \mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}(\sqrt{2})[x] /\left(x^{2}-2\right)$ by an extension of part (a). In $\mathbb{Q}(\sqrt{2})[x]$ the polynomial $x^{2}-2$ factors as $(x-\sqrt{2})(x+\sqrt{2})$, so by the Chinese Remainder Theorem $\mathrm{Q}(\sqrt{2})[x] /\left(x^{2}-2\right) \cong \mathbb{Q}(\sqrt{2})[x] /(x-\sqrt{2}) \oplus \mathbb{Q}(\sqrt{2})[x] /(x+\sqrt{2}) \cong$ $\mathrm{Q}(\sqrt{2}) \oplus \mathrm{Q}(\sqrt{2})$.
6. Let $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$ be a short exact sequence of R-modules, for some ring R. Suppose that A can be generated as an R-module by a subset $X \subseteq A$ and that C can be generated as an R-module by a subset $Y \subseteq C$. For each $y \in Y$, choose $y^{\prime} \in B$ with $\beta\left(y^{\prime}\right)=y$. Prove that B is generated by the set $\alpha(X) \cup\left\{y^{\prime} \mid y \in Y\right\}$.
Solution. Let B_{1} be the submodule of B generated by $\alpha(X) \cup\left\{y^{\prime} \mid y \in Y\right\}$. Now B_{1} contains $\alpha(A)$ and by the correspondence theorem corresponds to a submodule of $B / \alpha(A)$, which is isomorphic to C via a map induced by β. Because C is generated by Y that submodule is $B / \alpha(A)$. Because B also corresponds to this submodule, $B=B_{1}$.
7. Let A, B be left R-modules and let $r \in Z(R)=\{s \in R \mid$ st $=t s$ for all $t \in R\}$, the center of R. Let $\mu_{r}: B \rightarrow B$ be multiplication by r. Prove that the induced map $\left(\mu_{r}\right)_{*}: \operatorname{Hom}_{R}(A, B) \rightarrow \operatorname{Hom}_{R}(A, B)$ is also multiplication by r.

Solution. Let $f: A \rightarrow B$ be an R-module homomorphism. The effect of $\left(\mu_{r}\right)_{*} f$ on an element $a \in A$ is $\left(\left(\mu_{r}\right)_{*} f\right)(a)=\mu_{r}(f(a))=r f(a)$. This equals the effect of $r f$ on a by the definition of the R-module structure on $\operatorname{Hom}_{R}(A, B)$.

Extra questions: do not upload to Gradescope.

8. Let A be a finite abelian group of order n and let p^{k} be the largest power of the prime p dividing n. Prove that $\mathbb{Z} / p^{k} \mathbb{Z} \otimes_{\mathbb{Z}} A$ is isomorphic to the Sylow p-subgroup of A.
9. (Part of 2.4 of Eisenbud) Let k be a field and let m, n be integers. Describe as explicitly as possible the following. (For example, if the object is a finite-dimensional vector space, what is its dimension?)
a. $\operatorname{Hom}_{k[x]}\left(k[x] /\left(x^{n}\right), k[x] /\left(x^{m}\right)\right)$
b. $k[x] /\left(x^{n}\right), \otimes_{k[x]} k[x] /\left(x^{m}\right)$
c. $k[x] \otimes_{k} k[x]$ (describe this as an algebra).
10. Eisenbud question 2.11 (It is very similar for modules to something we did for rings.
11. Let $U \subset R$ be a multiplicative subset not containing any zero divisors of a commutative ring R. We can regard R as the set of elements $\frac{r}{1}$ of $R\left[U^{-1}\right]$ where r ranges through R. If S is a ring with $R \subseteq S \subseteq R\left[U^{-1}\right]$, show that $S\left[U^{-1}\right]=R\left[U^{-1}\right]$.
12. Suppose that U and V are two multiplicative subsets of the commutative ring R with $U \subseteq V$. Writing V^{\prime} for the image of V in $R\left[U^{-1}\right]$, show that $R\left[U^{-1}\right]\left[V^{\prime-1}\right]=R\left[V^{-1}\right]$.
