Math 8211 Commutative and Homological Algebra I Fall 2021

Homework Assignment 4 Due Saturday 12/18/2021, uploaded to Gradescope.

1. Prove that if $0 \to L \to M \to N \to 0$ is a split short exact sequence of *R*-modules, then for every $n \ge 0$ the sequence $0 \to \operatorname{Ext}_R^n(D,L) \to \operatorname{Ext}_R^n(D,M) \to \operatorname{Ext}_R^n(D,N) \to 0$ is also short exact and split. [Use a splitting homomorphism and the fact that Ext is functorial in each variable.]

2. Let $0 \to A \to B \to C \to 0$ be a short exact sequence of right *R*-modules where both *A* and *C* are flat. Prove that *B* is flat.

3. (a) Suppose that U, V, and W are R-modules and that there are homomorphisms

$$U \xrightarrow[\delta]{\alpha} V \xrightarrow[\delta]{\beta} W$$

such that $\beta \alpha = 0$ and such that the identity map on V can be written $1_V = \alpha \delta + \gamma \beta$. Show that $\beta = \beta \gamma \beta$. Suppose in addition to all this that $\alpha = \alpha \delta \alpha$. Show that $V \cong \alpha \delta(V) \oplus \gamma \beta(V)$.

(b) Recall that a chain complex C of R-modules is called *contractible* if it is chain homotopy equivalent to the zero chain complex. Prove that C is contractible if and only if C can be written as a direct sum of chain complexes of the form $\cdots \to 0 \to A \xrightarrow{\alpha} B \to 0 \cdots$ where α is an isomorphism.

4. Let $R = k[X]/(X^3)$ where k is a field. Let C be the complex $R \xrightarrow{X^2} R$.

(a) Find $\dim_k \operatorname{Hom}(C, C)$, the dimension of the space of chain maps from C to C.

(b) Find the dimension of the subspace of chain maps $C \to C$ which are homotopic to zero. Hence find the dimension of the space $\underline{\text{Hom}}(C, C)$ of homotopy classes of chain maps $C \to C$.

Extra question parts for question 4: do **not** hand in parts (c), (d), (e) or (f).

(c) Show that, for this complex C, the set of chain maps $C \to C$ that are non-isomorphisms forms a vector subspace of the space of all endomorphisms of C. Find the dimension of this subspace.

(d) Show that it is possible to find another complex D for which the set of non-isomorphisms $D \to D$ does not form a vector subspace of all endomorphisms.

(e) Show that, for this complex C, all chain maps $C \to C$ which are equivalences are, in fact, automorphisms

(f) Determine, for this complex C, whether or not all invertible chain maps $C \to C$ are homotopic to each other.

5. Given a homomorphism of chain complexes of *R*-modules $\phi : \mathcal{C} \to \mathcal{D}$ we may define $E_n = C_{n-1} \oplus D_n$, and a mapping $e_n : E_n \to E_{n-1}$ by $e_n(a,b) = (-\partial a, \phi a + \partial b)$, where we denote the boundary maps on \mathcal{C} and \mathcal{D} by ∂ . The specification $\mathcal{E}(\phi) = \{E_n, e_n\}$ is called the *mapping cone* of ϕ .

(a) Show that $\mathcal{E} = \{E_n, e_n\}$ is indeed a chain complex.

(b) Show that there is a short exact sequence of chain complexes $0 \to \mathcal{D} \to \mathcal{E} \to \mathcal{C}[1] \to 0$ where $\mathcal{C}[1]$ denotes the chain complex with the same *R*-modules and boundary maps as \mathcal{C} but with the labeling of degrees shifted by 1 in an appropriate direction. Deduce that there is a long exact sequence

$$\cdots \to H_n(\mathcal{C}) \to H_n(\mathcal{D}) \to H_n(\mathcal{E}(\phi)) \to H_{n-1}(\mathcal{C}) \to \cdots$$

(c) Show that $\mathcal{E}(\phi)$ is acyclic if and only if ϕ induces an isomorphism $H_n(\mathcal{C}) \to H_n(\mathcal{D})$ for every n.

Extra question part: do **not** hand in part (d).

(d) Show that if $\phi \simeq \psi : \mathcal{C} \to \mathcal{D}$ then $\mathcal{E}(\phi) \cong \mathcal{E}(\psi)$.

6. (a) Suppose that we have chain maps $C \xrightarrow{f} D \xrightarrow{g} E$ and suppose that D is a contractible complex. Show that the composite gf is homotopic to zero (i.e. null homotopic). (b) Consider the diagram

where $\delta = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Show that I_C is contractible and that i_C is a one-to-one chain map. (c) Show that if $f = Td + eT : C \to D$ is any null-homotopic map of complexes then f defines a chain map $I_C \to D$ as follows:

such that the composite of this morphism with i_C is f. Deduce that any null-homotopic map factors through a contractible complex.

7. Show that the two extensions $0 \to \mathbb{Z} \xrightarrow{\mu} \mathbb{Z} \xrightarrow{\epsilon} \mathbb{Z}/3\mathbb{Z} \to 0$ and $0 \to \mathbb{Z} \xrightarrow{\mu'} \mathbb{Z} \xrightarrow{\epsilon'} \mathbb{Z}/3\mathbb{Z} \to 0$ are not equivalent, where $\mu = \mu'$ is multiplication by 3, $\epsilon(1) \equiv 1 \pmod{3}$ and $\epsilon'(1) \equiv 2 \pmod{3}$.

Extra questions: do not upload to Gradescope.

8. Let A be an abelian group. Prove that A is free abelian if and only if $\operatorname{Ext}_{\mathbb{Z}}^{1}(A, F) = 0$ for every free abelian group F.

9. Show that in any commutative diagram of R-modules

in which the right hand vertical morphism is the identity and the rows are exact, the left hand square is necessarily a pushout. Also the dual statement.

10. Let $0 \to A \to B \to C \to 0$ be a short exact sequence of *R*-modules. Show that in the long exact sequence

$$0 \to \operatorname{Hom}(C, A) \to \operatorname{Hom}(C, B) \to \operatorname{Hom}(C, C) \stackrel{\circ}{\to} \operatorname{Ext}^{1}(C, A) \to \cdots$$

the image of 1_C under the connecting homomorphism δ is the Ext class of the extension.

11. Let $R = k[x_1, \ldots, x_n]$ be a polynomial ring in *n* variables over a field *k*. Let us regard *k* as the unital *R*-module on which all of x_1, \ldots, x_n act as 0.

(a) Show that $\dim_k \operatorname{Ext}^1_R(k,k) = n$

(b) Let $0 \to k^n \to E \to k \to 0$ be an extension of *R*-modules whose Ext class, when written in terms of components with respect to the direct sum decomposition $\operatorname{Ext}_R^1(k, k^n) \cong \bigoplus_{i=1}^n \operatorname{Ext}_R^1(k, k)$, has components which are a basis of $\operatorname{Ext}_R^1(k, k)$. Show that k^n is the unique maximal submodule of *E* and that *E* is indecomposable as an *R*-module (i.e. *E* cannot be expressed as a direct sum of two non-zero submodules). Show that *E* is isomorphic to $R/(x_1, \ldots, x_n)^2$.

(c) Show that any extension of the form $0 \to k^{n+1} \to E' \to k \to 0$ must have a module E' in the middle which decomposes as an *R*-module.