Homework Assignment 4 Due Saturday 12/18/2021, uploaded to Gradescope.

1. Prove that if $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is a split short exact sequence of $R$-modules, then for every $n \geq 0$ the sequence $0 \rightarrow \operatorname{Ext}_{R}^{n}(D, L) \rightarrow \operatorname{Ext}_{R}^{n}(D, M) \rightarrow \operatorname{Ext}_{R}^{n}(D, N) \rightarrow 0$ is also short exact and split. [Use a splitting homomorphism and the fact that Ext is functorial in each variable.]
Solution. Labelling the arrows $0 \rightarrow L \xrightarrow{\alpha} M \xrightarrow{\beta} N \rightarrow 0$ we also have splitting morphisms $L \stackrel{f}{\longleftarrow} M \stackrel{g}{\longleftarrow} N$ so that $f \alpha=1_{L}$ and $\beta g=1_{N}$. Functoriality gives us morphisms

$$
\operatorname{Ext}_{R}^{n}(D, L) \xrightarrow{\alpha_{*}} \operatorname{Ext}_{R}^{n}(D, M) \xrightarrow{\beta_{*}} \operatorname{Ext}_{R}^{n}(D, N)
$$

and

$$
\operatorname{Ext}_{R}^{n}(D, L) \stackrel{f_{*}}{\leftarrow} \operatorname{Ext}_{R}^{n}(D, M) \stackrel{g_{*}}{\leftarrow} \operatorname{Ext}_{R}^{n}(D, N)
$$

so that $f_{*} \alpha_{*}=(f \alpha)_{*}=1_{*}=1_{L}$ and $\beta_{*} g_{*}=(\beta g)_{*}=1_{*}=1$. This means that $\alpha_{*}$ is split mono and $\beta_{*}$ is split epi, so the short sequence in question is exact (it is always exact in the middle) and split.
2. Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a short exact sequence of right $R$-modules where both $A$ and $C$ are flat. Prove that $B$ is flat.

Solution. For any left $R$-module $N$ the long exact sequence

$$
\cdots \rightarrow \operatorname{Tor}_{1}^{R}(A, N) \rightarrow \operatorname{Tor}_{1}^{R}(B, N) \rightarrow \operatorname{Tor}_{1}^{R}(C, N) \rightarrow A \otimes_{R} N \rightarrow \cdots
$$

has $\operatorname{Tor}_{1}^{R}(A, N)=\operatorname{Tor}_{1}^{R}(C, N)=0$, which forces $\operatorname{Tor}_{1}^{R}(B, N)=0$, and hence $B$ is flat.
3. (a) Suppose that $U, V$, and $W$ are $R$-modules and that there are homomorphisms

such that $\beta \alpha=0$ and such that the identity map on $V$ can be written $1_{V}=\alpha \delta+\gamma \beta$. Show that $\beta=\beta \gamma \beta$. Suppose in addition to all this that $\alpha=\alpha \delta \alpha$. Show that $V \cong$ $\alpha \delta(V) \oplus \gamma \beta(V)$.
(b) Recall that a chain complex $C$ of $R$-modules is called contractible if it is chain homotopy equivalent to the zero chain complex. Prove that $C$ is contractible if and only if $C$ can be written as a direct sum of chain complexes of the form $\cdots \rightarrow 0 \rightarrow A \xrightarrow{\alpha} B \rightarrow 0 \cdots$ where $\alpha$ is an isomorphism.

Solution. (a) We calculate $\beta=\beta 1_{V}=\beta \alpha \delta+\beta \gamma \beta=\beta \gamma \beta$ because $\beta \alpha=0$.
We see that $(\beta \gamma)^{2}=(\beta \gamma \beta) \gamma=\beta \gamma$ and similarly $(\alpha \delta)^{2}=\alpha \delta$ so that $\alpha \delta$ and $\beta \gamma$ are idempotent. They are orthogonal because $\beta \gamma=1-\alpha \delta$ so $\alpha \delta \beta \gamma=\alpha \delta-(\alpha \delta)^{2}=0$
and similarly $\beta \gamma \alpha \delta=0$. We have seen before in a different exercise that this implies $V \cong \alpha \delta(V) \oplus \gamma \beta(V)$.
(b) Suppose that $C$ is contractible. This means there are maps $T_{n}: C_{n} \rightarrow C_{n+1}$ so that for all $n$ we have $1_{C_{n}}=T_{n-1} d_{n}+d_{n+1} T_{n}$. By part (a) this implies that $d_{n} T_{n-1} d_{n}=d_{n}$ for all $n$ and $C_{n} \cong d_{n+1} T_{n}\left(C_{n}\right) \oplus T_{n-1} d_{n}\left(C_{n}\right)$. Now each $d_{n}$ is zero on $d_{n+1} T_{n}\left(C_{n}\right)$ so Ker $d_{n} \supseteq d_{n+1} T_{n}\left(C_{n}\right)$ and also $d_{n+1}\left(C_{n+1}\right)=d_{n+1} T_{n} d_{n+1}\left(C_{n+1}\right) \subseteq d_{n+1} T_{n}\left(C_{n}\right)$. Because $C$ is contractible it is acyclic, so $\operatorname{Ker} d_{n}=d_{n+1} T_{n}\left(C_{n}\right)=d_{n+1}\left(C_{n+1}\right)$ and $d_{n}$ sends the summand $T_{n-1} d_{n}\left(C_{n}\right)$ isomorphically to the summand $d_{n} T_{n-1}\left(C_{n-1}\right)$. From this we see that $C$ is the direct sum of complexes

$$
\cdots \rightarrow 0 \rightarrow T_{n-1} d_{n}\left(C_{n}\right) \rightarrow d_{n} T_{n-1}\left(C_{n-1}\right) \rightarrow 0 \rightarrow \cdots
$$

where the middle morphism is an isomorphism.
Conversely, complexes $\cdots \rightarrow 0 \rightarrow A \xrightarrow{\alpha} B \rightarrow 0 \cdots$, where $\alpha$ is an isomorphism, are contractible, using the degree +1 map which, on $B$, is the inverse of the isomorphism. A direct sum of contractible complexes is contractible.
4. Let $R=k[X] /\left(X^{3}\right)$ where $k$ is a field. Let $C$ be the complex $R \xrightarrow{X^{2}} R$.
(a) Find $\operatorname{dim}_{k} \operatorname{Hom}(C, C)$, the dimension of the space of chain maps from $C$ to $C$.
(b) Find the dimension of the subspace of chain maps $C \rightarrow C$ which are homotopic to zero. Hence find the dimension of the space $\underline{\operatorname{Hom}}(C, C)$ of homotopy classes of chain maps $C \rightarrow C$.

Extra question parts for question 4: do not hand in parts (c), (d), (e) or (f).
(c) Show that, for this complex $C$, the set of chain maps $C \rightarrow C$ that are non-isomorphisms forms a vector subspace of the space of all endomorphisms of $C$. Find the dimension of this subspace.
(d) Show that it is possible to find another complex $D$ for which the set of non-isomorphisms $D \rightarrow D$ does not form a vector subspace of all endomorphisms.
(e) Show that, for this complex $C$, all chain maps $C \rightarrow C$ which are equivalences are, in fact, automorphisms
(f) Determine, for this complex $C$, whether or not all invertible chain maps $C \rightarrow C$ are homotopic to each other.
Solution (a) The symbols $X$ that follow should mostly be $\bar{X}$ to indicate that we are really working with their images in $R$. A chain map $C \rightarrow C$ is a commutative diagram

where the vertical maps are multiplication by $a$ and $b$ in $R$, respectively. Thus $X^{2} a=b X^{2}$ in $R$, and because $R$ is commutative, $(a-b) X^{2} \in\left(X^{3}\right)$, so $a=b+c$ for some $c \in(X)$.

Thus $a$ is determined once we have determined $b$ (three dimensions) and $c$ (two dimensions). Thus the space of chain maps has dimension 5 .
(b) Such a chain map is homotopic to 0 if and only if it has the form $T d+d T$ for some degree 1 map $T$, whose only non-zero component will be a map $R \rightarrow R$ that is multiplication by some $t \in R$. Thus $a=t X^{2}$ and $b=X^{2} t$, so that $a=b$ and this element is divisible by $X^{2}$. A basis for such maps is $(a, b)=\left(X^{2}, X^{2}\right)$, so the maps homotopic to 0 have dimension 1 . It follows that $\operatorname{Hom}(C, C)$ has dimension $5-1=4$.
5. Given a homomorphism of chain complexes of $R$-modules $\phi: \mathcal{C} \rightarrow \mathcal{D}$ we may define $E_{n}=C_{n-1} \oplus D_{n}$, and a mapping $e_{n}: E_{n} \rightarrow E_{n-1}$ by $e_{n}(a, b)=(-\partial a, \phi a+\partial b)$, where we denote the boundary maps on $\mathcal{C}$ and $\mathcal{D}$ by $\partial$. The specification $\mathcal{E}(\phi)=\left\{E_{n}, e_{n}\right\}$ is called the mapping cone of $\phi$.
(a) Show that $\mathcal{E}=\left\{E_{n}, e_{n}\right\}$ is indeed a chain complex.
(b) Show that there is a short exact sequence of chain complexes $0 \rightarrow \mathcal{D} \rightarrow \mathcal{E} \rightarrow \mathcal{C}[1] \rightarrow 0$ where $\mathcal{C}[1]$ denotes the chain complex with the same $R$-modules and boundary maps as $\mathcal{C}$ but with the labeling of degrees shifted by 1 in an appropriate direction. Deduce that there is a long exact sequence

$$
\cdots \rightarrow H_{n}(\mathcal{C}) \rightarrow H_{n}(\mathcal{D}) \rightarrow H_{n}(\mathcal{E}(\phi)) \rightarrow H_{n-1}(\mathcal{C}) \rightarrow \cdots
$$

(c) Show that $\mathcal{E}(\phi)$ is acyclic if and only if $\phi$ induces an isomorphism $H_{n}(\mathcal{C}) \rightarrow H_{n}(\mathcal{D})$ for every $n$.
Extra question part: do not hand in part (d).
(d) Show that if $\phi \simeq \psi: \mathcal{C} \rightarrow \mathcal{D}$ then $\mathcal{E}(\phi) \cong \mathcal{E}(\psi)$.

Solution (a) We check that $e_{n-1} e_{n}=0$. Thus

$$
e_{n-1}(-\partial a, \phi a+\partial b)=(-\partial(-\partial a), \phi(-\partial a)+\partial(\phi a+\partial b))=(0,0)
$$

because $\partial \partial=0$ and $\phi \partial=\partial \phi$.
(b) The mapping $\mathcal{D} \rightarrow \mathcal{E}$ specified by $b \mapsto(0, b)$ in each degree is a chain map because $e_{n}(0, b)=(0, \partial b)$, and it is a monomorphism. The surjective map $\mathcal{E} \rightarrow \mathcal{C}[1]$ specified by $(a, b) \mapsto(-1)^{n} a$ if $a \in C_{n-1}$ is also a chain map, with kernel the previous map $\mathcal{D} \rightarrow \mathcal{E}$, and so we have a short exact sequence of chain complexes as claimed. The exact sequence follows, noting that $H_{n}(\mathcal{C}[1])=H_{n-1}(\mathcal{C})$ because the term in degree $n$ of $\mathcal{C}[1]$ is $C_{n-1}$.
(c) This is immediate from the long exact sequence: $\mathcal{E}(\phi)$ is acyclic if and only if all the terms $H_{n}(\mathcal{E}(\phi))$ in the sequence are 0 , which happens if and only if all the maps $H_{n}(\mathcal{C}) \rightarrow H_{n}(\mathcal{D})$ are isomorphisms.
6. (a) Suppose that we have chain maps $C \xrightarrow{f} D \xrightarrow{g} E$ and suppose that $D$ is a contractible complex. Show that the composite $g f$ is homotopic to zero (i.e. null homotopic).
(b) Consider the diagram

where $\delta=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. Show that $I_{C}$ is contractible and that $i_{C}$ is a one-to-one chain map. (c) Show that if $f=T d+e T: C \rightarrow D$ is any null-homotopic map of complexes then $f$ defines a chain map $I_{C} \rightarrow D$ as follows:

such that the composite of this morphism with $i_{C}$ is $f$. Deduce that any null-homotopic map factors through a contractible complex.

Solution. (a) One approach is to quote that if $u_{1} \simeq u_{2}$ and $v_{1} \simeq v_{2}$ then $u_{1} v_{1} \simeq u_{2} v_{2}$ (where these maps can be suitably composed). If $D$ is contractible then the identity map $1_{D} \simeq 0$ so $g f=g 1_{D} f \simeq g 0 f=0$. Writing this out more fully, let the differentials on $C, D$ and $E$ be denoted $c, d$ and $e$. The identity on $D$ can be written $1_{D}=T d+d T$. Now $g f=g 1_{D} f=g T d f+g d T f=(g T f) c+e(g T f)$ which shows that $g f \simeq 0$ using the degree 1 map $g T f$.
(b) We verify that the squares commute to see that $i_{C}$ is a chain map, and it is one-to-one because the second component of $i_{C}$ is the identity. To show that $I_{C}$ is contractible let $T: I_{C} \rightarrow I_{C}$ be the degree 1 map that in degree $n$ maps $C_{n}$ identically to $C_{n}$ in degree $n+1$, and is zero on $C_{n-1}$. Then the identity on $I_{C}$ has the form $\delta T+T \delta$.
(c) We check that the squares in the complex commute. Going round the left side gives $\left(e T, e^{2} T\right)=(e T, 0)$, and round the right side we get $(T, e T) \delta=(e T, 0)$. The composite of the vertical morphism with $i_{C}$ is $T d+e T$, which is $f$. Any null-homotopic map $f$ can be written the way $f$ is, and so factors through $I_{C}$.
7. Show that the two extensions $0 \rightarrow \mathbb{Z} \xrightarrow{\mu} \mathbb{Z} \xrightarrow{\epsilon} \mathbb{Z} / 3 \mathbb{Z} \rightarrow 0$ and $0 \rightarrow \mathbb{Z} \xrightarrow{\mu^{\prime}} \mathbb{Z} \xrightarrow{\epsilon^{\prime}} \mathbb{Z} / 3 \mathbb{Z} \rightarrow 0$ are not equivalent, where $\mu=\mu^{\prime}$ is multiplication by $3, \epsilon(1) \equiv 1(\bmod 3)$ and $\epsilon^{\prime}(1) \equiv 2(\bmod 3)$.

Solution. If the extensions are equivalent there is an automorphism $f: \mathbb{Z} \rightarrow \mathbb{Z}$ so that $\left.f\right|_{3 \mathbb{Z}}$ is the identity on $3 \mathbb{Z}$, and $\epsilon=\epsilon^{\prime} f$. Such $f$ must be multiplication by 1 or by -1 , and the restriction to $3 \mathbb{Z}$ being the identity forces $f=1$. This $f$ does not satisfy $\epsilon=\epsilon^{\prime} f$, so no such $f$ exists.

