Homework Assignment 1 Due Saturday 2/12/2022, uploaded to Gradescope.
Each question part is worth 1 point.

1. Let $R \subseteq S \subseteq T$ be commutive rings and let M be an S-module.
(a) (4.1 of Eisenbud) Show that if S is finite over R and M is finitely generated as an S-module, then M is finitely generated as an R-module.
(b) Suppose that S is integral over R and T is integral over S. Show that T is integral over R.
2. (4.2 of Eisenbud with R and S interchanged.) Let k be a field, $R=k[t]$ and suppose $R \subseteq S$ is a containment of rings, where S is supposed to be a domain.
(a) Show that if S is finitely generated as an R-module, then S is free as an R-module.
(b) Show by giving a basis that if $S=k[x, y] /\left(x^{2}-y^{3}\right)$ and $t=x^{m} y^{n}$, then the rank of S as an R-module is $3 m+2 n$.
(c) Assuming again only that the domain S is finitely generated as an R-module, let \bar{S} be the integral closure of S in its field of fractions. Assume Noether's theorem 4.14 that \bar{S} is again finitely generated (and thus free) as an R-module. Show that it has the same rank as S.
[Feel free to make use of the structure theorem for finitely generated modules over a PID.]
3. (4.7 of Eisenbud) Show that the Jacobson radical of R is

$$
J=\{r \in R \mid 1+r s \text { is a unit for every } s \in R\}
$$

4. (4.11 of Eisenbud minus the graded bit)
(a) Use Nakayama's lemma to show that if R is a commutative local ring and M is a finitely generated projective module, then M is free.
[Identify the radical, consider factoring out its action, produce a map from a free module that is an isomorphism with M.]
(b) Use Proposition 2.10 to show that a finitely presented module M is projective if and only if M is locally free, in the sense that the localization M_{P} is free over R_{P} for every maximal ideal P of R (and then of course M_{P} is free over R_{P} for every prime ideal P of R).
5. (4.20 of Eisenbud) For each $n \in \mathbb{Z}$, find the integral closure of $\mathbb{Z}[\sqrt{n}]$ as follows:
(a) Reduce to the case where n is square-free.
(b) \sqrt{n} is integral, so what we want is the integral closure R of \mathbb{Z} in the field $\mathbb{Q}[\sqrt{n}]$. If $\alpha=a+b \sqrt{n}$ with $a, b \in \mathbb{Q}$, then the minimal polynomial of α is $x^{2}-\operatorname{Trace}(\alpha) x+\operatorname{Norm}(\alpha)$ where $\operatorname{Trace}(\alpha)=2 a$ and $\operatorname{Norm}(\alpha)=a^{2}-b^{2} n$. Thus $\alpha \in R$ if and only if Trace (α) and Norm (α) are integers.
(c) Show that if $\alpha \in R$ then $a \in \frac{1}{2} \mathbb{Z}$. If $a=0$, show $\alpha \in R$ iff $b \in \mathbb{Z}$. If $a=\frac{1}{2}$ and $\alpha \in R$, show that $b \in \frac{1}{2} \mathbb{Z}$. Thus, subtracting a multiple of \sqrt{n}, we may assume $b=0$ or $\frac{1}{2}$. Observe $b=0$ is impossible.
(d) Conclude that the integral closure is $\mathbb{Z}[\sqrt{n}]$ if $n \not \equiv 1(\bmod 4)$, and is $\mathbb{Z}\left[\frac{1}{2}+\frac{1}{2} \sqrt{n}\right]$ if $n \equiv 1(\bmod 4)$.
6. (1.3 of Matsumura plus) Let A and B be rings, and $f: A \rightarrow B$ a surjective homomorphism.
(a) Prove that $f(\operatorname{Jac} A) \subseteq \operatorname{Jac} B$, and construct an example where the inclusion is strict.
(b) Prove that if A is a semilocal ring (a ring with only finitely many maximal ideals) then $f(\operatorname{Jac} A)=\operatorname{Jac} B$.
(c) Continue to assume that A is a semilocal ring. Show that, as an A-module, $A / \operatorname{Jac}(A)$ is a direct sum of finitely many simple A-modules, and that $\operatorname{Jac}(A)$ is the smallest ideal with this property. (That is, if J is an ideal so that A / J is a direct sum of simple A-modules, then $J \supseteq \operatorname{Jac}(A)$.)

Extra question: do not upload to Gradescope.
7. Show that the Jacobson radical of $k\left[x_{1}, \ldots, x_{n}\right]$ is 0 .

