
Math 8212 Commutative and Homological Algebra I Spring 2022

Solutions 1

Each question part is worth 1 point.

1. Let R ⊆ S ⊆ T be commutative rings and let M be an S-module.

(a) (4.1 of Eisenbud) Show that if S is finite over R and M is finitely generated as an

S-module, then M is finitely generated as an R-module.

(b) Suppose that S is integral over R and T is integral over S. Show that T is integral

over R.

Solution. (a) If S is generated as an R-module by elements s1, . . . , sc and M is generated

as an S-module by elements m1, . . . ,md then we claim that M is generated as an R-

module by the elements simj . Every element of M can be written m =
∑

j ajmj for

certain elements aj ∈ S. We may also write each aj =
∑

i bijsi with bij ∈ R. Putting

this together, m =
∑

j(
∑

i bijsi)mj =
∑

i,j bijsimj . Thus M is finitely generated as an

R-module.

(b) Each element a in T is the root of a monic polynomial xn + an−1x
n−1 + · · ·+ a0 with

ai ∈ S. The subring S′ of S generated by a0, . . . , an−1 is finite over R by integrality and

a lemma in class. Also the subring S′[a] is finitely generated as an S′-module because the

monic polynomial of which a is a root has coefficients in S′, so a is also integral over S′.

Thus by part (a), S′(a) is finitely generated as an R-module. It follows that a is integral

over R by another lemma in class. Hence T is integral over R.

2. (4.2 of Eisenbud with R and S interchanged.) Let k be a field, R = k[t] and suppose

R ⊆ S is a containment of rings, where S is supposed to be a domain.

(a) Show that if S is finitely generated as an R-module, then S is free as an R-module.

(b) Show by giving a basis that if S = k[x, y]/(x2 − y3) and t = xmyn, then the rank of S

as an R-module is 3m+ 2n.

(c) Assuming again only that the domain S is finitely generated as an R-module, let S̄ be

the integral closure of S in its field of fractions. Assume Noether’s theorem 4.14 that S̄ is

again finitely generated (and thus free) as an R-module. Show that it has the same rank

as S.

[Feel free to make use of the structure theorem for finitely generated modules over a PID.]

Solution. (a) Because S is a domain, no non-zero element of R annihilates any non-zero

element of S, so as an R-module S is torsion-free. Also R is a PID and S is finitely

generated as an R-module, so by the structure theorem for such modules S is free.

(b) Because x̄2 = x̄3 in S, the elements 1, ȳ, ȳ2, . . . , x̄, x̄ȳ, x̄ȳ2, . . . form a basis of S as

an R-module. Multiplying each basis element by xmyn gives another basis element, and

so S is the direct sum of cyclic R-modules that have subsets of these basis elements as

a basis. Two basis elements x̄aȳb and x̄cȳd lie in the same R-submodule if and only if

(c − a, d − b) is a multiple of (m,n) modulo the subgroup of Z2 generated by (2,−3), if



and only if (c − a, d − b) lie in the same coset of the subgroup of Z2 generated by the

rows of

(
2 −3
m n

)
. By the theory of Smith normal form, this subgroup has index the

determinant of the matrix, which is 3m+ 2n, so this is the number of such cosets.

(c) Let K(R) be the field of fractions of R, realized as the subfield of K(S) generated by

R. The elements of S are algebraic over R, so K(S) is an algebraic extension of K(R). We

claim that a basis for S as an R-module is also a basis for K(S) as a K(R)-module. This is

because a basis of S as an R-module is also independent over K(R) (clear denominators in

a relation over K(R) to get a relation over R), and it spans K(S) over K(R) because each

element in the span, being algebraic, has its inverse in the span of its powers, which lie

in the K(R)-span of S. We also have that K(S) = K(S̄), and again because S̄ is finitely

generated as an R-module, a basis of S̄ over R is also a basis of K(S) over K(R). Such

bases have the same size, so the ranks of S and S̄ are the same.

3. (4.7 of Eisenbud) Show that the Jacobson radical of R is

J = {r ∈ R
∣∣ 1 + rs is a unit for every s ∈ R}.

Solution. Let L = {r ∈ R
∣∣ 1 + rs is a unit for every s ∈ R}. If r ∈ J and 1 + rs is

not a unit for some s then 1 + rs generates a proper ideal of R, so 1 + rs ∈ m for some

maximal ideal m. Thus 1 ∈ m, a contradiction, because r lies in every maximal ideal. Thus

J ⊆ L. On the other hand, if r 6∈ m for some maximal ideal m then Rr + m = R, so that

1 = −rs + m for some s ∈ R. This means that 1 + rs ∈ m is not a unit, and shows that

L ⊆ J .

4. (4.11 of Eisenbud minus the graded bit)

(a) Use Nakayama’s lemma to show that if R is a commutative local ring and M is a

finitely generated projective module, then M is free.

[Identify the radical, consider factoring out its action, produce a map from a free module

that is an isomorphism with M .]

(b) Use Proposition 2.10 to show that a finitely presented module M is projective if and

only if M is locally free, in the sense that the localization MP is free over RP for every

maximal ideal P of R (and then of course MP is free over RP for every prime ideal P of

R).

Solution. (a) If R is a local ring it has a unique maximal ideal P , and this is also the

radical (the intersection of the maximal ideals). Let M be a finitely generated projective

R-module. Now M/PM is a finite dimensional vector space over the field R/P , and if

it has dimension d we can take a surjection F = Rd → M/PM . By projectivity of F

it lifts to a homomorphism φ : F → M . This has the property that φ(F ) + PM = M

so φ(F ) = M , i.e. φ is surjective, by Nakayama’s lemma. This φ is split because M is

projective, so there is a homomorphism θ : M → F with φθ = 1M . Factoring out P , φ

and θ induce inverse isomorphisms between F/PF and M/PM , so θ(M) + PF = F and



θ(M) = F by Nakayama’s lemma. Thus θ : M → θ(M) ⊕ Kerφ is surjective. It follows

that Kerφ = 0 and φ is an isomorphism. Thus M is free.

(b) Assume M is finitely generated. The module M is projective if and only if for all

exact sequences B → C → 0 the sequence HomR(M,B) → HomR(M,C) → 0 is exact. If

this is so, then because localization is exact and by 2.10, HomR[U−1](M [U−1], B[U−1])→
HomR[U−1](M [U−1], C[U−1])→ 0 is exact, and every epimorphism has the form B[U−1]→
C[U−1] → 0, so M [U−1] is projective. Conversely, if all such locallized sequences at

maximal ideals are exact then so is HomR(M,B) → HomR(M,C) → 0, because (by

another result) it is the intersection of the localizations at the maximal ideals, so if M is

projective on localization at all maximal ideals, it is projective.

5. (4.20 of Eisenbud) For each n ∈ Z, find the integral closure of Z[
√
n] as follows:

(a) Reduce to the case where n is square-free.

(b)
√
n is integral, so what we want is the integral closure R of Z in the field Q[

√
n]. If

α = a+ b
√
n with a, b ∈ Q, then the minimal polynomial of α is x2−Trace(α)x+Norm(α)

where Trace(α) = 2a and Norm(α) = a2 − b2n. Thus α ∈ R if and only if Trace(α) and

Norm(α) are integers.

(c) Show that if α ∈ R then a ∈ 1
2Z. If a = 0, show α ∈ R iff b ∈ Z. If a = 1

2 and

α ∈ R, show that b ∈ 1
2Z. Thus, subtracting a multiple of

√
n, we may assume b = 0 or 1

2 .

Observe b = 0 is impossible.

(d) Conclude that the integral closure is Z[
√
n] if n 6≡ 1 (mod 4), and is Z[ 12 + 1

2

√
n] if

n ≡ 1 (mod 4).

Solution. (a) If n = p2n′ for some integers p and n′ then Z[
√
n] and Z[

√
n
′
] have the same

field of fractions and integral closure (because
√
n and

√
n
′

are both integral over Z), so

we can assume n is square-free.

(b) We accept many of the assertions made in the question. Thus the minimal polynomial

of α has that form because it equals (x − (a + b
√
n))(x − (a − b

√
n)). Also if Trace(α)

and Norm(α) are integers then α ∈ R because it is a root of a monic polynomial with

coefficients in Z. Conversely, if α ∈ R it is a root of a monic polynomial f(x) ∈ Z[x] of

which the minimal polynomial x2 − Trace(α)x+ Norm(α) is a factor in Q[x]. By Gauss’s

Lemma the minimal polynomial has integer coefficients.

(c) If α ∈ R then Trace(α) = 2a is an integer, so a ∈ 1
2Z. If a = 0 and b ∈ Z then

α2 − b2n = 0 so α is integral. If a = 0 and b 6∈ Z then the minimal polynomial α2 − b2n
does not have coefficients in Z because n is square-free, so α is not integral. If a = 1

2

and α ∈ R then, because Norm(α) = a2 − b2n = 1
4 − b

2n ∈ Z, we deduce that b ∈ 1
2Z.

The integrality of α is unchanged on adding or subtracting integer multiples of
√
n, so to

determine the possibilities for b when a = 1
2 it suffices to assume b = 0 or 1

2 . If b = 0 we

get α = 1
2 , which is not integral, so b = 0 is impossible.

(d) From (c) we see that if the integral closure is larger than Z[
√
n] then it must be

Z[ 12 + 1
2

√
n] because any integral element a + b

√
n not in Z[

√
n] must have a, b not in

Z and with denominator 2, and all such elements are equivalent to 1
2 + 1

2

√
n by adding



elements of Z[
√
n]. Now 1

2 + 1
2

√
n is integral if and only if 1

4 −
1
4n = 1−n

4 ∈ Z, which means

n ≡ 1 (mod 4).

6. (1.3 of Matsumura plus) Let A and B be rings, and f : A→ B a surjective homomor-

phism.

(a) Prove that f(JacA) ⊆ JacB, and construct an example where the inclusion is strict.

(b) Prove that if A is a semilocal ring (a ring with only finitely many maximal ideals) then

f(JacA) = JacB.

(c) Continue to assume that A is a semilocal ring. Show that, as an A-module, A/ Jac(A) is

a direct sum of finitely many simple A-modules, and that Jac(A) is the smallest ideal with

this property. (That is, if J is an ideal so that A/J is a direct sum of simple A-modules,

then J ⊇ Jac(A).)

Solution. (a) If.I is a maximal ideal of B then f−1(I) is a maximal ideal of A by the

correspondence theorem for surjective maps. Thus if r ∈ Jac(A) then r ∈ f−1(I), so

f(r) ∈ I. Since I was arbitrary, f(r) ∈ Jac(B), so f(JacA) ⊆ JacB. Consider the example

A = Z and B = Z/4Z where Jac(A) = 0 and Jac(B) = 2Z/4Z, so the containment is strict.

(b) We will show that B/f(Jac(A) = f(A/ Jac(A)) has Jacobson radical 0. From this it will

follow that Jac(B) = f(JacA) because, by part (a) applied to the quotient homomorphism

B → B/f(JacA), we have Jac(B)+f(Jac(A)) ⊆ f(Jac(A)) and we already know Jac(B) ⊇
f(Jac(A)). Now Jac(A) is the intersection of finitely many maximal ideals I1, . . . , It, so

the Chinese Remainder Theorem (extended by induction to the case of more than 2 ideals)

implies that A/ JacA ∼= A/I1 × · · · × A/It is a product of fields. The only ideals in such

a ring are the products of certain of the fields, so f(A/ Jac(A)) is also a product of fields.

This has Jacobson radical 0 because the maximal ideals are products of all except one of

the fields, and such ideals intersect in 0.

(c) In the expression A/ JacA ∼= A/I1 × · · · × A/It from part (b), each field is a simple

A-module, which establishes the first statement. If J is an ideal of A with the property

that A/J = S1 ⊕ · · · ⊕ St is a direct sum of simple modules, let In be the preimage in A

of · · ·Sn−1 ⊕ 0⊕ Sn+1 · · · where Sn is omitted from the direct sum. Then In is a maximal

ideal of A and
⋂t

n=1 In = J . It follows that J ⊇ Jac(A).

Extra question: do not upload to Gradescope.

7. Show that the Jacobson radical of k[x1, . . . , xn] is 0.


