Solutions 1

Each question part is worth 1 point.

1. Let $R \subseteq S \subseteq T$ be commutative rings and let M be an S-module.
(a) (4.1 of Eisenbud) Show that if S is finite over R and M is finitely generated as an S-module, then M is finitely generated as an R-module.
(b) Suppose that S is integral over R and T is integral over S. Show that T is integral over R.

Solution. (a) If S is generated as an R-module by elements s_{1}, \ldots, s_{c} and M is generated as an S-module by elements m_{1}, \ldots, m_{d} then we claim that M is generated as an R module by the elements $s_{i} m_{j}$. Every element of M can be written $m=\sum_{j} a_{j} m_{j}$ for certain elements $a_{j} \in S$. We may also write each $a_{j}=\sum_{i} b_{i j} s_{i}$ with $b_{i j} \in R$. Putting this together, $m=\sum_{j}\left(\sum_{i} b_{i j} s_{i}\right) m_{j}=\sum_{i, j} b_{i j} s_{i} m_{j}$. Thus M is finitely generated as an R-module.
(b) Each element a in T is the root of a monic polynomial $x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ with $a_{i} \in S$. The subring S^{\prime} of S generated by a_{0}, \ldots, a_{n-1} is finite over R by integrality and a lemma in class. Also the subring $S^{\prime}[a]$ is finitely generated as an S^{\prime}-module because the monic polynomial of which a is a root has coefficients in S^{\prime}, so a is also integral over S^{\prime}. Thus by part (a), $S^{\prime}(a)$ is finitely generated as an R-module. It follows that a is integral over R by another lemma in class. Hence T is integral over R.
2. (4.2 of Eisenbud with R and S interchanged.) Let k be a field, $R=k[t]$ and suppose $R \subseteq S$ is a containment of rings, where S is supposed to be a domain.
(a) Show that if S is finitely generated as an R-module, then S is free as an R-module.
(b) Show by giving a basis that if $S=k[x, y] /\left(x^{2}-y^{3}\right)$ and $t=x^{m} y^{n}$, then the rank of S as an R-module is $3 m+2 n$.
(c) Assuming again only that the domain S is finitely generated as an R-module, let \bar{S} be the integral closure of S in its field of fractions. Assume Noether's theorem 4.14 that \bar{S} is again finitely generated (and thus free) as an R-module. Show that it has the same rank as S.
[Feel free to make use of the structure theorem for finitely generated modules over a PID.]
Solution. (a) Because S is a domain, no non-zero element of R annihilates any non-zero element of S, so as an R-module S is torsion-free. Also R is a PID and S is finitely generated as an R-module, so by the structure theorem for such modules S is free.
(b) Because $\bar{x}^{2}=\bar{x}^{3}$ in S, the elements $1, \bar{y}, \bar{y}^{2}, \ldots, \bar{x}, \bar{x} \bar{y}, \bar{x} \bar{y}^{2}, \ldots$ form a basis of S as an R-module. Multiplying each basis element by $x^{m} y^{n}$ gives another basis element, and so S is the direct sum of cyclic R-modules that have subsets of these basis elements as a basis. Two basis elements $\bar{x}^{a} \bar{y}^{b}$ and $\bar{x}^{c} \bar{y}^{d}$ lie in the same R-submodule if and only if $(c-a, d-b)$ is a multiple of (m, n) modulo the subgroup of \mathbb{Z}^{2} generated by $(2,-3)$, if
and only if $(c-a, d-b)$ lie in the same coset of the subgroup of \mathbb{Z}^{2} generated by the rows of $\left(\begin{array}{cc}2 & -3 \\ m & n\end{array}\right)$. By the theory of Smith normal form, this subgroup has index the determinant of the matrix, which is $3 m+2 n$, so this is the number of such cosets.
(c) Let $K(R)$ be the field of fractions of R, realized as the subfield of $K(S)$ generated by R. The elements of S are algebraic over R, so $K(S)$ is an algebraic extension of $K(R)$. We claim that a basis for S as an R-module is also a basis for $K(S)$ as a $K(R)$-module. This is because a basis of S as an R-module is also independent over $K(R)$ (clear denominators in a relation over $K(R)$ to get a relation over R), and it spans $K(S)$ over $K(R)$ because each element in the span, being algebraic, has its inverse in the span of its powers, which lie in the $K(R)$-span of S. We also have that $K(S)=K(\bar{S})$, and again because \bar{S} is finitely generated as an R-module, a basis of \bar{S} over R is also a basis of $K(S)$ over $K(R)$. Such bases have the same size, so the ranks of S and \bar{S} are the same.
3. (4.7 of Eisenbud) Show that the Jacobson radical of R is

$$
J=\{r \in R \mid 1+r s \text { is a unit for every } s \in R\}
$$

Solution. Let $L=\{r \in R \mid 1+r s$ is a unit for every $s \in R\}$. If $r \in J$ and $1+r s$ is not a unit for some s then $1+r s$ generates a proper ideal of R, so $1+r s \in \mathfrak{m}$ for some maximal ideal \mathfrak{m}. Thus $1 \in \mathfrak{m}$, a contradiction, because r lies in every maximal ideal. Thus $J \subseteq L$. On the other hand, if $r \notin \mathfrak{m}$ for some maximal ideal \mathfrak{m} then $R r+\mathfrak{m}=R$, so that $1=-r s+\mathfrak{m}$ for some $s \in R$. This means that $1+r s \in \mathfrak{m}$ is not a unit, and shows that $L \subseteq J$.
4. (4.11 of Eisenbud minus the graded bit)
(a) Use Nakayama's lemma to show that if R is a commutative local ring and M is a finitely generated projective module, then M is free.
[Identify the radical, consider factoring out its action, produce a map from a free module that is an isomorphism with M.]
(b) Use Proposition 2.10 to show that a finitely presented module M is projective if and only if M is locally free, in the sense that the localization M_{P} is free over R_{P} for every maximal ideal P of R (and then of course M_{P} is free over R_{P} for every prime ideal P of R).

Solution. (a) If R is a local ring it has a unique maximal ideal P, and this is also the radical (the intersection of the maximal ideals). Let M be a finitely generated projective R-module. Now $M / P M$ is a finite dimensional vector space over the field R / P, and if it has dimension d we can take a surjection $F=R^{d} \rightarrow M / P M$. By projectivity of F it lifts to a homomorphism $\phi: F \rightarrow M$. This has the property that $\phi(F)+P M=M$ so $\phi(F)=M$, i.e. ϕ is surjective, by Nakayama's lemma. This ϕ is split because M is projective, so there is a homomorphism $\theta: M \rightarrow F$ with $\phi \theta=1_{M}$. Factoring out P, ϕ and θ induce inverse isomorphisms between $F / P F$ and $M / P M$, so $\theta(M)+P F=F$ and
$\theta(M)=F$ by Nakayama's lemma. Thus $\theta: M \rightarrow \theta(M) \oplus \operatorname{Ker} \phi$ is surjective. It follows that $\operatorname{Ker} \phi=0$ and ϕ is an isomorphism. Thus M is free.
(b) Assume M is finitely generated. The module M is projective if and only if for all exact sequences $B \rightarrow C \rightarrow 0$ the sequence $\operatorname{Hom}_{R}(M, B) \rightarrow \operatorname{Hom}_{R}(M, C) \rightarrow 0$ is exact. If this is so, then because localization is exact and by $2.10, \operatorname{Hom}_{R\left[U^{-1}\right]}\left(M\left[U^{-1}\right], B\left[U^{-1}\right]\right) \rightarrow$ $\operatorname{Hom}_{R\left[U^{-1}\right]}\left(M\left[U^{-1}\right], C\left[U^{-1}\right]\right) \rightarrow 0$ is exact, and every epimorphism has the form $B\left[U^{-1}\right] \rightarrow$ $C\left[U^{-1}\right] \rightarrow 0$, so $M\left[U^{-1}\right]$ is projective. Conversely, if all such locallized sequences at maximal ideals are exact then so is $\operatorname{Hom}_{R}(M, B) \rightarrow \operatorname{Hom}_{R}(M, C) \rightarrow 0$, because (by another result) it is the intersection of the localizations at the maximal ideals, so if M is projective on localization at all maximal ideals, it is projective.
5. (4.20 of Eisenbud) For each $n \in \mathbb{Z}$, find the integral closure of $\mathbb{Z}[\sqrt{n}]$ as follows:
(a) Reduce to the case where n is square-free.
(b) \sqrt{n} is integral, so what we want is the integral closure R of \mathbb{Z} in the field $\mathbb{Q}[\sqrt{n}]$. If $\alpha=a+b \sqrt{n}$ with $a, b \in \mathbb{Q}$, then the minimal polynomial of α is $x^{2}-\operatorname{Trace}(\alpha) x+\operatorname{Norm}(\alpha)$ where $\operatorname{Trace}(\alpha)=2 a$ and $\operatorname{Norm}(\alpha)=a^{2}-b^{2} n$. Thus $\alpha \in R$ if and only if Trace (α) and $\operatorname{Norm}(\alpha)$ are integers.
(c) Show that if $\alpha \in R$ then $a \in \frac{1}{2} \mathbb{Z}$. If $a=0$, show $\alpha \in R$ iff $b \in \mathbb{Z}$. If $a=\frac{1}{2}$ and $\alpha \in R$, show that $b \in \frac{1}{2} \mathbb{Z}$. Thus, subtracting a multiple of \sqrt{n}, we may assume $b=0$ or $\frac{1}{2}$. Observe $b=0$ is impossible.
(d) Conclude that the integral closure is $\mathbb{Z}[\sqrt{n}]$ if $n \not \equiv 1(\bmod 4)$, and is $\mathbb{Z}\left[\frac{1}{2}+\frac{1}{2} \sqrt{n}\right]$ if $n \equiv 1(\bmod 4)$.

Solution. (a) If $n=p^{2} n^{\prime}$ for some integers p and n^{\prime} then $\mathbb{Z}[\sqrt{n}]$ and $\mathbb{Z}\left[\sqrt{n}^{\prime}\right]$ have the same field of fractions and integral closure (because \sqrt{n} and \sqrt{n}^{\prime} are both integral over \mathbb{Z}), so we can assume n is square-free.
(b) We accept many of the assertions made in the question. Thus the minimal polynomial of α has that form because it equals $(x-(a+b \sqrt{n}))(x-(a-b \sqrt{n}))$. Also if Trace (α) and $\operatorname{Norm}(\alpha)$ are integers then $\alpha \in R$ because it is a root of a monic polynomial with coefficients in \mathbb{Z}. Conversely, if $\alpha \in R$ it is a root of a monic polynomial $f(x) \in \mathbb{Z}[x]$ of which the minimal polynomial $x^{2}-\operatorname{Trace}(\alpha) x+\operatorname{Norm}(\alpha)$ is a factor in $\mathbb{Q}[x]$. By Gauss's Lemma the minimal polynomial has integer coefficients.
(c) If $\alpha \in R$ then $\operatorname{Trace}(\alpha)=2 a$ is an integer, so $a \in \frac{1}{2} \mathbb{Z}$. If $a=0$ and $b \in \mathbb{Z}$ then $\alpha^{2}-b^{2} n=0$ so α is integral. If $a=0$ and $b \notin \mathbb{Z}$ then the minimal polynomial $\alpha^{2}-b^{2} n$ does not have coefficients in \mathbb{Z} because n is square-free, so α is not integral. If $a=\frac{1}{2}$ and $\alpha \in R$ then, because $\operatorname{Norm}(\alpha)=a^{2}-b^{2} n=\frac{1}{4}-b^{2} n \in \mathbb{Z}$, we deduce that $b \in \frac{1}{2} \mathbb{Z}$. The integrality of α is unchanged on adding or subtracting integer multiples of \sqrt{n}, so to determine the possibilities for b when $a=\frac{1}{2}$ it suffices to assume $b=0$ or $\frac{1}{2}$. If $b=0$ we get $\alpha=\frac{1}{2}$, which is not integral, so $b=0$ is impossible.
(d) From (c) we see that if the integral closure is larger than $\mathbb{Z}[\sqrt{n}]$ then it must be $\mathbb{Z}\left[\frac{1}{2}+\frac{1}{2} \sqrt{n}\right]$ because any integral element $a+b \sqrt{n}$ not in $\mathbb{Z}[\sqrt{n}]$ must have a, b not in \mathbb{Z} and with denominator 2 , and all such elements are equivalent to $\frac{1}{2}+\frac{1}{2} \sqrt{n}$ by adding
elements of $\mathbb{Z}[\sqrt{n}]$. Now $\frac{1}{2}+\frac{1}{2} \sqrt{n}$ is integral if and only if $\frac{1}{4}-\frac{1}{4} n=\frac{1-n}{4} \in \mathbb{Z}$, which means $n \equiv 1(\bmod 4)$.
6. (1.3 of Matsumura plus) Let A and B be rings, and $f: A \rightarrow B$ a surjective homomorphism.
(a) Prove that $f(\operatorname{Jac} A) \subseteq \operatorname{Jac} B$, and construct an example where the inclusion is strict.
(b) Prove that if A is a semilocal ring (a ring with only finitely many maximal ideals) then $f(\operatorname{Jac} A)=\operatorname{Jac} B$.
(c) Continue to assume that A is a semilocal ring. Show that, as an A-module, $A / \operatorname{Jac}(A)$ is a direct sum of finitely many simple A-modules, and that $\operatorname{Jac}(A)$ is the smallest ideal with this property. (That is, if J is an ideal so that A / J is a direct sum of simple A-modules, then $J \supseteq \operatorname{Jac}(A)$.)

Solution. (a) If. I is a maximal ideal of B then $f^{-1}(I)$ is a maximal ideal of A by the correspondence theorem for surjective maps. Thus if $r \in \operatorname{Jac}(A)$ then $r \in f^{-1}(I)$, so $f(r) \in I$. Since I was arbitrary, $f(r) \in \operatorname{Jac}(B)$, so $f(\operatorname{Jac} A) \subseteq \operatorname{Jac} B$. Consider the example $A=\mathbb{Z}$ and $B=\mathbb{Z} / 4 \mathbb{Z}$ where $\operatorname{Jac}(A)=0$ and $\operatorname{Jac}(B)=2 \mathbb{Z} / 4 \mathbb{Z}$, so the containment is strict. (b) We will show that $B / f(\operatorname{Jac}(A)=f(A / \operatorname{Jac}(A))$ has Jacobson radical 0 . From this it will follow that $\operatorname{Jac}(B)=f(\operatorname{Jac} A)$ because, by part (a) applied to the quotient homomorphism $B \rightarrow B / f(\operatorname{Jac} A)$, we have $\operatorname{Jac}(B)+f(\operatorname{Jac}(A)) \subseteq f(\operatorname{Jac}(A))$ and we already know $\operatorname{Jac}(B) \supseteq$ $f(\operatorname{Jac}(A))$. Now $\operatorname{Jac}(A)$ is the intersection of finitely many maximal ideals I_{1}, \ldots, I_{t}, so the Chinese Remainder Theorem (extended by induction to the case of more than 2 ideals) implies that $A / \operatorname{Jac} A \cong A / I_{1} \times \cdots \times A / I_{t}$ is a product of fields. The only ideals in such a ring are the products of certain of the fields, so $f(A / \operatorname{Jac}(A))$ is also a product of fields. This has Jacobson radical 0 because the maximal ideals are products of all except one of the fields, and such ideals intersect in 0 .
(c) In the expression $A / \operatorname{Jac} A \cong A / I_{1} \times \cdots \times A / I_{t}$ from part (b), each field is a simple A-module, which establishes the first statement. If J is an ideal of A with the property that $A / J=S_{1} \oplus \cdots \oplus S_{t}$ is a direct sum of simple modules, let I_{n} be the preimage in A of $\cdots S_{n-1} \oplus 0 \oplus S_{n+1} \cdots$ where S_{n} is omitted from the direct sum. Then I_{n} is a maximal ideal of A and $\bigcap_{n=1}^{t} I_{n}=J$. It follows that $J \supseteq \operatorname{Jac}(A)$.

Extra question: do not upload to Gradescope.

7. Show that the Jacobson radical of $k\left[x_{1}, \ldots, x_{n}\right]$ is 0 .
