Homework Assignment 2 - Solutions Due Saturday 3/5/2022, uploaded to Gradescope.
Each question part is worth 1 point. There are 12 question parts. Assume that all categories are small. We define $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$ to be the category whose objects are functors $\mathcal{C} \rightarrow \mathcal{D}$ and whose morphisms are natural transformations.

1. Suppose that $F: \mathcal{C} \rightarrow \mathcal{D}$ is an equivalence of categories.
(a) Show that, for all objects $x, y \in \mathrm{ObC}$, the functor F provides a bijection

$$
\operatorname{Hom}_{\mathcal{C}}(x, y) \leftrightarrow \operatorname{Hom}_{\mathcal{D}}(F(x), F(y))
$$

that preserves composition, so that $\operatorname{End}_{\mathcal{C}}(x) \cong \operatorname{End}_{\mathcal{D}}(F(x))$ as monoids.
(b) Show that $x \cong y$ in \mathcal{C} if and only if $F(x) \cong F(y)$ in \mathcal{D}, so that F provides a bijection between the isomorphism classes of \mathcal{C}, and of \mathcal{D}.
(c) Let \mathcal{E} be a further category. Show that the functor categories $\operatorname{Fun}(\mathcal{C}, \mathcal{E})$ and $\operatorname{Fun}(\mathcal{D}, \mathcal{E})$ are naturally equivalent.

Solution. (a) For each morphism $\alpha: x \rightarrow y$ in \mathcal{C} there is a morphism $F(\alpha): F(x) \rightarrow F(y)$, so F provides a mapping $\operatorname{Hom}_{\mathcal{C}}(x, y) \leftrightarrow \operatorname{Hom}_{\mathcal{D}}(F(x), F(y))$, and this mapping preserves composition. Because F is an equivalence, there is another functor $G: \mathcal{D} \rightarrow \mathcal{C}$ with natural isomorphisms $\theta: F G \rightarrow 1_{\mathcal{D}}$ and $\eta: G F \rightarrow 1_{\mathcal{C}}$. This means that for each $\alpha: x \rightarrow y$ in \mathcal{C} we have $\alpha=\eta_{y}(G F(\alpha)) \eta_{x}^{-1}$ which shows that $\alpha \mapsto F(\alpha)$ is one-to-one. Similarly the existence of θ shows that $\alpha \mapsto F(\alpha)$ is onto. Thus we have a bijection as claimed.
(b) If $x \cong y$ in \mathcal{C} there are morphisms $\alpha: x \rightarrow y$ and $\beta: y \rightarrow x$ so that $\beta \alpha=1_{x}$ and $\alpha \beta=1_{y}$. Applying F these equations we get $F(\beta) F(\alpha)=1_{F(x)}$ and $F(\alpha) F(\beta)=1_{F(y)}$ so $F(x) \cong F(y)$. Conversely, using the functor G from part (a), if $F(x) \cong F(y)$ then $G F(x) \cong G F(y)$ by the argument already used. Now $\eta_{z}: G F(z) \rightarrow z$ is an isomorphism for all z, so $x \cong G F(x) \cong G F(y) \cong y$.
(c) With the previous notation, we get functors $F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{E}) \rightarrow \operatorname{Fun}(\mathcal{C}, \mathcal{E})$ and $G^{*}:$ $\operatorname{Fun}(\mathcal{C}, \mathcal{E}) \rightarrow \operatorname{Fun}(\mathcal{D}, \mathcal{E})$ given by precomposition with F and with G, so that if $\Phi: \mathcal{D} \rightarrow \mathcal{E}$ is a functor then $F^{*}(\Phi)=\Phi \circ F$ and similarly if $\Psi: \mathcal{C} \rightarrow \mathcal{E}$ is a functor then $G^{*}(\Psi)=\Psi \circ G$. We get a natural transformation $\eta^{*}: F^{*} G^{*}=(G F)^{*} \rightarrow 1_{\mathrm{Fun}(\mathcal{C}, \mathcal{E})}$ given at a functor Ψ by $\eta_{\Psi}^{*}:(G F)^{*}(\Psi)=\Psi G F \rightarrow \Psi$ where $\eta_{\Psi}^{*}(x)=\Psi\left(\eta_{x}\right)$. This is a natural isomorphism with inverse given by a similar construction applied to the inverse of η. Also by a similar construction we get a natural isomorphism $\theta^{*}: G^{*} F^{*}=(F G)^{*} \rightarrow 1_{\text {Fun }(\mathcal{D}, \mathcal{E})}$ given at a functor $\Phi: \mathcal{D} \rightarrow \mathcal{E}$ by $\theta_{\Phi}^{*}(z)=\Phi\left(\theta_{z}\right)$. This shows that the functor categories are naturally equivalent.
2. Let \mathcal{C} be a category and let $x, y \in \operatorname{ObC}$. Prove that if $x \cong y$ then $\operatorname{Hom}_{\mathcal{C}}(x,-)$ and $\operatorname{Hom}_{\mathcal{C}}(y,-)$ are naturally isomorphic functors $\mathcal{C} \rightarrow$ Set.

Solution. Let $\alpha: x \rightarrow y$ and $\beta: y \rightarrow x$ be inverse isomorphisms. For each object z in \mathcal{C} we have mappings $\alpha_{z}^{*}: \operatorname{Hom}_{\mathcal{C}}(y, z) \rightarrow \operatorname{Hom}_{\mathcal{C}}(x, z)$ and $\beta_{z}^{*}: \operatorname{Hom}_{\mathcal{C}}(x, z) \rightarrow \operatorname{Hom}_{\mathcal{C}}(y, z)$ given by $\alpha_{z}^{*}(f)=f \alpha$ and $\beta_{z}^{*}(g)=g \beta$. Now α^{*} and β^{*} are natural transformations because if $u: z \rightarrow w$ then $u_{*} \alpha_{z}^{*}(f)=u f \alpha=\alpha_{w}^{*}\left(u_{*}(f)\right)$, and similarly with β^{*}. They are inverse to each other because, for each z, we have $\beta_{z}^{*} \alpha_{z}^{*}=1_{\operatorname{Hom}_{\mathcal{C}}(y, z)}$ and $\alpha_{z}^{*} \beta_{z}^{*}=1_{\operatorname{Hom}_{\mathcal{C}}(x, z)}$.
3. Let $F, G: \mathcal{C} \rightarrow \mathcal{D}$ be functors and $\eta: F \rightarrow G$ a natural transformation.
(a) Show that if, for all $x \in \mathrm{ObC}$, the mapping $\eta_{x}: F(x) \rightarrow G(x)$ is an isomorphism in \mathcal{D}, then η is a natural isomorphism (meaning that it has a 2 -sided inverse natural transformation $\theta: G \rightarrow F)$.
(b) Suppose that F is an equivalence of categories and that F is naturally isomorphic to G, so $F \simeq G$. Show that G is an equivalence of categories.

Solution. (a) If η_{x} is an isomorphism for all x we may define mappings $\theta_{x}:=\eta_{x}^{-1}$. These θ_{x} define a natural transformation $\theta: G \rightarrow F$ because we know that for all morphisms $\alpha: x \rightarrow y$ we have $G(\alpha) \eta_{x}=\eta_{y} F(\alpha)$, so that $\theta_{y} G(\alpha)=\eta_{y}^{-1} G(\alpha) \eta_{x} \eta_{x}^{-1}=\eta_{y}^{-1} \eta_{y} F(\alpha) \eta_{x}^{-1}=$ $F(\alpha) \theta_{x}$. It is inverse to η.
(b) We will use the fact that if $F_{1}: \mathcal{D} \rightarrow \mathcal{E}$ is another functor and $F \simeq G$ then $F_{1} F \simeq F_{1} G$. This is because the natural transformation $\eta: F \rightarrow G$ provides a natural transformation $F_{1} \eta: F_{1} F \rightarrow F_{1} G$ where, for each object x of \mathcal{C}, we have $\left(F_{1} \eta\right)_{x}=F_{1}\left(\eta_{x}\right): F_{1} F(x) \rightarrow$ $F_{1} G(x)$. If each η_{x} is an isomorphism, so is $\left(F_{1} \eta\right)_{x}$, because functors take isomorphisms to isomorphisms. We will take $F_{1}: \mathcal{D} \rightarrow \mathcal{C}$ to be an inverse equivalence to F, so that $F_{1} F \simeq 1_{\mathcal{C}}$ and $F F_{1} \simeq 1_{\mathcal{D}}$. Now $F_{1} G \simeq F_{1} F \simeq 1_{\mathcal{C}}$, and similarly $G F_{1} \simeq F F_{1} \simeq 1_{\mathcal{D}}$. Finally we show that equivalence \simeq is transitive. Suppose we have natural equivalences $\eta: F \rightarrow G$ and $\theta: G \rightarrow H$. Then $\theta \eta: F \rightarrow H$ is a natural transformation, where $(\theta \eta)_{x}:=\theta_{x} \eta_{x}$ and if both θ_{x} and η_{x} are isomorphisms, so is $(\theta \eta)_{x}$. It follows that $F_{1} G \simeq 1_{\mathcal{C}}$ and $G F_{1} \simeq 1_{\mathcal{D}}$ so that F_{1} is a natural inverse of G.
4. Let G be a group, which we regard as a category \mathcal{G} with a single object, and with the elements of G as morphisms. Let $F: \mathcal{G} \rightarrow \mathcal{G}$ be a functor.
(a) Show that F is naturally isomorphic to the identity functor $1_{\mathcal{G}}: \mathcal{G} \rightarrow \mathcal{G}$ if and only if the mapping $F: G \rightarrow G$, induced by F on the set of morphisms, is an inner automorphism; that is, an automorphism of the form $c_{g}: G \rightarrow G$ for some $g \in G$, where $c_{g}(h)=g h g^{-1}$ for all $h \in G$.
(b) Show that self equivalences of \mathcal{G} are automorphisms of \mathcal{G}.
(c) Show that the group of natural isomorphism classes of self equivalences of \mathcal{G} is isomorphic to $\operatorname{Aut}(G) / \operatorname{Inn}(G)$. (In the context of group theory, $\operatorname{Inn}(G)$ denotes the set of inner automorphisms of G, and $\operatorname{Out}(G):=\operatorname{Aut}(G) / \operatorname{Inn}(G)$ is called the group of outer (or non-inner) automorphisms.)

Solution. (a) Writing the object of \mathcal{G} as $*$, there is a natural isomorphism $\theta: F \simeq 1$ if and only if there is an isomorphism θ_{*} in \mathcal{G} so that, for all morphisms α in \mathcal{G} the following diagram commutes:

The morphisms θ_{*}, α and $F(\alpha)$ are all elements of G, and F is a homomorphism $G \rightarrow G$. The diagram means that F is c_{g} where $g=\theta_{*}$.
(b) If F is a self equivalence of \mathcal{G} then $F(*)=*$ because \mathcal{G} has only one object, and F is an isomorphism on the morphisms of \mathcal{G} by exercise 1 (a).
(c) Each automorphism F of \mathcal{G} provides a bijective map f of the morphisms of \mathcal{G} to itself preserving composition, so an automorphism $f: G \rightarrow G$, and from part (b) we see that the correspondence $F \leftrightarrow f$ is an isomorphism $\operatorname{Aut}(\mathcal{G}) \cong \operatorname{Aut}(G)$. We show that two automorphisms F_{1}, F_{2} are equivalent if and only if the corresponding f_{1}, f_{2} lie in the same coset of $\operatorname{Inn}(G)$. Now $F_{1} \simeq F_{2}$ if and only if $F_{2}^{-1} F_{1} \simeq 1_{\mathcal{G}}$ by an argument from question $3(\mathrm{~b})$, which happens if and only if $f_{2}^{-1} f_{1} \in \operatorname{Inn}(G)$ by part (a) or, in other words, f_{1}, f_{2} lie in the same coset of $\operatorname{Inn}(G)$.
5. Let I be the poset with two elements 0 and 1 , and with $0<1$. If P and Q are posets we can regard them as categories \mathcal{P} and \mathcal{Q} whose objects are the elements of the posets, and where there is a unique morphism $x \rightarrow y$ if and only if $x \leq y$.
(a) Show that if P and Q are posets then a functor $\mathcal{P} \rightarrow \mathcal{Q}$ is 'the same thing as' an order-preserving map. (Don't worry about any fancy interpretation of 'the same thing as'!)
(b) Now consider two functors $F, G: \mathcal{P} \rightarrow \mathcal{Q}$, which we may regard as order-preserving maps $f, g: P \rightarrow Q$ by part (a). Show that the following three conditions are equivalent:
(i) there exists a natural transformation $F \rightarrow G$,
(ii) $f(x) \leq g(x)$ for all $x \in P$,
(iii) there is an order-preserving map $h: P \times I \rightarrow Q$ such that $h(x, 0)=f(x)$ and $h(x, 1)=g(x)$ for all $x \in \mathcal{P}$. Here $P \times I$ denotes the product poset with order relation $\left(a_{1}, b_{1}\right) \leq\left(a_{2}, b_{2}\right)$ if and only if $a_{1} \leq a_{2}$ and $b_{1} \leq b_{2}$, where $a_{i} \in P$ and $b_{i} \in I$.

Solution: (a) Let $F: \mathcal{P} \rightarrow \mathcal{Q}$ be a functor. If $x \leq y$ in P we can regard this as a morphism $\alpha: x \rightarrow y$ in \mathcal{P}, so that $F(\alpha): F(x) \rightarrow F(y)$ is a morphism in \mathcal{Q}, and $F(x) \leq F(y)$. Thus F is an order preserving map. Conversely, given an order preserving map $f: P \rightarrow Q$ we obtain a functor $\mathcal{P} \rightarrow \mathcal{Q}$ that on objects is the same as f, and where if $x \rightarrow y$ is a morphism in \mathcal{P} we define the effect of the functor to be the unique morphism $f(x) \rightarrow f(y)$, which exists because $f(x) \leq f(y)$.
(b) Suppose (i) Then for each object x of \mathcal{P} there is a morphism $\tau_{x}: F(x) \rightarrow G(x)$, so that $f(x) \leq g(x)$ for all $x \in P$. Thus (ii) holds.

Assuming (ii) holds, we show that the mapping defined in (iii) is order preserving. Suppose that $\left(a_{1}, b_{1}\right) \leq\left(a_{2}, b_{2}\right)$ and apply h. If $b_{1}=b_{2}$ then $h\left(a_{1}, b_{1}\right) \leq h\left(a_{2}, b_{2}\right)$ because either f or g is order preserving. The other possibility is $b_{1}=0$ and $b_{2}=1$, in which case this inequality holds because, in addition, $f(x) \leq g(x)$ for all x. Thus (iii) holds.
Assuming (iii) we define τ_{x} to be the unique map $f(x) \rightarrow g(x)$, which exists because $f(x)=h(x, 0) \leq h(x, 1)=g(x)$. This shows that (i) holds.
6. Let $1_{R-\bmod }: R-\bmod \rightarrow R-\bmod$ denote the identity functor. Let $\operatorname{Nat}\left(1_{R-\bmod }, 1_{R-\bmod }\right)$ denote the set of natural transformations from this functor to itself, noting that this set has the structure of a ring (multiplication is composition and addition comes because we can add homomorphisms of R-modules, so that for two natural transformations θ, ψ at an object x we have $\left.(\theta+\psi)_{x}=\theta_{x}+\psi_{x}\right)$. Show that $\operatorname{Nat}\left(1_{R-\bmod }, 1_{R-\bmod }\right) \cong Z(R)$.

Solution. We define mappings

$$
f: \operatorname{Nat}\left(1_{R-\mathrm{mod}}, 1_{R-\mathrm{mod}}\right) \rightarrow R \quad \text { and } \quad g: Z(R) \rightarrow \operatorname{Nat}\left(1_{R-\bmod }, 1_{R-\bmod }\right)
$$

as follows. If η is such a natural transformation note that $\eta_{R}: R \rightarrow R$ is an R-module homomorphism. We put $f(\eta)=\eta_{R}\left(1_{R}\right) \in R$. If $r \in Z(R)$ we define $g(r)$ to be the natural transformation with $g(r)_{M}: M \rightarrow M$ the mapping $m \mapsto r m$. This is an R-module homomorphism because r lies in the center of R, and $g(r)$ is a natural transformation because if $\alpha: M \rightarrow M$ is a homomorphism of R-modules then $g(r)_{M} \alpha(m)=r \alpha(m)=$ $\alpha(r m)=\alpha g(r)_{M}(m)$. We should verify several more things: $f(\eta)$ lies in $Z(R)$ and the two composite mappings $f g$ and $g f$ are the identity. If x is any element of R we have an R-module homomorphism $\mu_{x}: R \rightarrow R$ where $\mu_{x}(s)=s x$. Naturality of η means that $\eta_{R} \mu_{x}=\mu_{x} \eta_{R}$. Applying these to $1 \in R$ we get $\eta_{R}(x)=\eta_{R}(x 1)=x \eta_{R}(1)=\eta_{R}(1) x$, showing $f(\eta)$ lies in $Z(R)$. It is immediate that $f g$ is the identity on $Z(R)$. Finally we show that $\eta=g\left(\eta_{R}\left(1_{R}\right)\right)$ to see this consider the commutative diagram of R-modules

where the vertical arrows are determined by $1 \mapsto m$ for some arbitrary element $m \in M$. Commutativity shows that $\eta_{M}(m)=\eta_{R}\left(1_{R}\right) m$, which is what is needed.

Extra question: do not upload to Gradescope.

7. Let \mathcal{C} be a small category and let $F, G: \mathcal{C} \rightarrow$ Set be functors. Show that a natural transformation of functors $\tau: F \rightarrow G$ is an epimorphism in $\operatorname{Fun}(\mathcal{C}$, Set) if and only if for every object x of $\mathcal{C}, \tau_{x}: F(x) \rightarrow G(x)$ is a surjection; and it is a monomorphism if and only if for every object x of $\mathcal{C}, \tau_{x}: F(x) \rightarrow G(x)$ is a 1-1 map.
8. Write out a proof that if G is the right adjoint of a functor F with the property that F preserves monomorphisms, then G sends injective objects to injective objects.
9. Let $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ be functors with F left adjoint to G, and with adjunction unit η and counit ϵ. Write out a proof that the second triangular identity holds, namely the following triangle commutes:

10. Assume the axiom of choice in this question, or else make some assumption such as: everything is finite. Let \mathcal{C} be a category, and for each isomorphism class \hat{x} of objects x, choose a fixed representative $u_{\hat{x}}$. For each object x choose a fixed isomorphism $i_{x}: x \rightarrow u_{\hat{x}}$. Let \mathcal{D} be the full subcategory whose objects are the $u_{\hat{x}}$ where $x \in$ ObC. 'Full' means that for each pair of objects y, z of \mathcal{D} we have $\operatorname{Hom}_{\mathcal{D}}(y, z)=\operatorname{Hom}_{\mathcal{C}}(y, z)$. Define $F(x)=\hat{x}$, and for each morphism $\alpha: x \rightarrow y$ define $F(\alpha): F(x) \rightarrow F(y)$ to be $i_{y} \alpha i_{x}^{-1}$.
(a) Show that F is a functor.
(b) Show that F and the inclusion functor inc : $\mathcal{D} \rightarrow \mathcal{C}$ are inverse equivalences of categories $\mathcal{D} \simeq \mathcal{C}$. (It will help to assume that when $x=u_{\hat{x}}$, the chosen isomorphism is the identity 1_{x}.)
(c) Deduce that the category Set of finite sets is equivalent to the category with objects $\mathbb{N}:=\{0,1,2, \ldots\}$ and where $\operatorname{Hom}(n, m)$ is the set of all mappings of sets from $\mathbf{n}:=$ $\{1, \ldots, n\}$ to $\mathbf{m}:=\{1, \ldots, m\}$. We take $\mathbf{0}=\emptyset$.
(d) Deduce also the following: let K be a field. Show that the category Vec of finite dimensional vectors spaces over K is equivalent to the category \mathcal{C} with objects $\mathbb{N}:=$ $\{0,1,2, \ldots\}$, where $\operatorname{Hom}_{\mathcal{C}}(n, m)$ is the set $M_{m, n}(K)$ of $m \times n$ matrices with entries in K, and where composition of morphisms is matrix multiplication. In case m or n is zero, give a definition of $\operatorname{Hom}_{\mathcal{C}}(n, m)$ that will make this question make sense.
11. Let \mathcal{C} be a small category. A self-equivalence of \mathcal{C} is an equivalence of categories $F: \mathcal{C} \rightarrow \mathcal{C}$. Show that the set of natural isomorphism classes of self equivalences of \mathcal{C} is a group, with multiplication induced by composition of functors.
