Homework Assignment 2 - Solutions Due Saturday 3/5/2022, uploaded to Gradescope.

Each question part is worth 1 point. There are 12 question parts. Assume that all categories are small. We define $\operatorname{Fun}(\mathcal{C},\mathcal{D})$ to be the category whose objects are functors $\mathcal{C} \to \mathcal{D}$ and whose morphisms are natural transformations.

- 1. Suppose that $F: \mathcal{C} \to \mathcal{D}$ is an equivalence of categories.
- (a) Show that, for all objects $x, y \in \text{Ob}\mathcal{C}$, the functor F provides a bijection

$$\operatorname{Hom}_{\mathcal{C}}(x,y) \leftrightarrow \operatorname{Hom}_{\mathcal{D}}(F(x),F(y)),$$

that preserves composition, so that $\operatorname{End}_{\mathcal{C}}(x) \cong \operatorname{End}_{\mathcal{D}}(F(x))$ as monoids.

- (b) Show that $x \cong y$ in \mathcal{C} if and only if $F(x) \cong F(y)$ in \mathcal{D} , so that F provides a bijection between the isomorphism classes of \mathcal{C} , and of \mathcal{D} .
- (c) Let \mathcal{E} be a further category. Show that the functor categories $\operatorname{Fun}(\mathcal{C}, \mathcal{E})$ and $\operatorname{Fun}(\mathcal{D}, \mathcal{E})$ are naturally equivalent.
- Solution. (a) For each morphism $\alpha: x \to y$ in \mathcal{C} there is a morphism $F(\alpha): F(x) \to F(y)$, so F provides a mapping $\operatorname{Hom}_{\mathcal{C}}(x,y) \leftrightarrow \operatorname{Hom}_{\mathcal{D}}(F(x),F(y))$, and this mapping preserves composition. Because F is an equivalence, there is another functor $G: \mathcal{D} \to \mathcal{C}$ with natural isomorphisms $\theta: FG \to 1_{\mathcal{D}}$ and $\eta: GF \to 1_{\mathcal{C}}$. This means that for each $\alpha: x \to y$ in \mathcal{C} we have $\alpha = \eta_y(GF(\alpha))\eta_x^{-1}$ which shows that $\alpha \mapsto F(\alpha)$ is one-to-one. Similarly the existence of θ shows that $\alpha \mapsto F(\alpha)$ is onto. Thus we have a bijection as claimed.
- (b) If $x \cong y$ in \mathcal{C} there are morphisms $\alpha : x \to y$ and $\beta : y \to x$ so that $\beta \alpha = 1_x$ and $\alpha \beta = 1_y$. Applying F these equations we get $F(\beta)F(\alpha) = 1_{F(x)}$ and $F(\alpha)F(\beta) = 1_{F(y)}$ so $F(x) \cong F(y)$. Conversely, using the functor G from part (a), if $F(x) \cong F(y)$ then $GF(x) \cong GF(y)$ by the argument already used. Now $\eta_z : GF(z) \to z$ is an isomorphism for all z, so $x \cong GF(x) \cong GF(y) \cong y$.
- (c) With the previous notation, we get functors $F^*: \operatorname{Fun}(\mathcal{D},\mathcal{E}) \to \operatorname{Fun}(\mathcal{C},\mathcal{E})$ and $G^*: \operatorname{Fun}(\mathcal{C},\mathcal{E}) \to \operatorname{Fun}(\mathcal{D},\mathcal{E})$ given by precomposition with F and with G, so that if $\Phi: \mathcal{D} \to \mathcal{E}$ is a functor then $F^*(\Phi) = \Phi \circ F$ and similarly if $\Psi: \mathcal{C} \to \mathcal{E}$ is a functor then $G^*(\Psi) = \Psi \circ G$. We get a natural transformation $\eta^*: F^*G^* = (GF)^* \to 1_{\operatorname{Fun}(\mathcal{C},\mathcal{E})}$ given at a functor Ψ by $\eta_{\Psi}^*: (GF)^*(\Psi) = \Psi GF \to \Psi$ where $\eta_{\Psi}^*(x) = \Psi(\eta_x)$. This is a natural isomorphism with inverse given by a similar construction applied to the inverse of η . Also by a similar construction we get a natural isomorphism $\theta^*: G^*F^* = (FG)^* \to 1_{\operatorname{Fun}(\mathcal{D},\mathcal{E})}$ given at a functor $\Phi: \mathcal{D} \to \mathcal{E}$ by $\theta_{\Phi}^*(z) = \Phi(\theta_z)$. This shows that the functor categories are naturally equivalent.
- 2. Let \mathcal{C} be a category and let $x, y \in \text{Ob}\mathcal{C}$. Prove that if $x \cong y$ then $\text{Hom}_{\mathcal{C}}(x, -)$ and $\text{Hom}_{\mathcal{C}}(y, -)$ are naturally isomorphic functors $\mathcal{C} \to \text{Set}$.

Solution. Let $\alpha: x \to y$ and $\beta: y \to x$ be inverse isomorphisms. For each object z in $\mathcal C$ we have mappings $\alpha_z^*: \operatorname{Hom}_{\mathcal C}(y,z) \to \operatorname{Hom}_{\mathcal C}(x,z)$ and $\beta_z^*: \operatorname{Hom}_{\mathcal C}(x,z) \to \operatorname{Hom}_{\mathcal C}(y,z)$ given by $\alpha_z^*(f) = f\alpha$ and $\beta_z^*(g) = g\beta$. Now α^* and β^* are natural transformations because if $u: z \to w$ then $u_*\alpha_z^*(f) = uf\alpha = \alpha_w^*(u_*(f))$, and similarly with β^* . They are inverse to each other because, for each z, we have $\beta_z^*\alpha_z^* = 1_{\operatorname{Hom}_{\mathcal C}(y,z)}$ and $\alpha_z^*\beta_z^* = 1_{\operatorname{Hom}_{\mathcal C}(x,z)}$.

- 3. Let $F,G:\mathcal{C}\to\mathcal{D}$ be functors and $\eta:F\to G$ a natural transformation.
- (a) Show that if, for all $x \in \text{Ob}\mathcal{C}$, the mapping $\eta_x : F(x) \to G(x)$ is an isomorphism in \mathcal{D} , then η is a natural isomorphism (meaning that it has a 2-sided inverse natural transformation $\theta : G \to F$).
- (b) Suppose that F is an equivalence of categories and that F is naturally isomorphic to G, so $F \simeq G$. Show that G is an equivalence of categories.
- Solution. (a) If η_x is an isomorphism for all x we may define mappings $\theta_x := \eta_x^{-1}$. These θ_x define a natural transformation $\theta : G \to F$ because we know that for all morphisms $\alpha : x \to y$ we have $G(\alpha)\eta_x = \eta_y F(\alpha)$, so that $\theta_y G(\alpha) = \eta_y^{-1} G(\alpha)\eta_x \eta_x^{-1} = \eta_y^{-1} \eta_y F(\alpha)\eta_x^{-1} = F(\alpha)\theta_x$. It is inverse to η .
- (b) We will use the fact that if $F_1: \mathcal{D} \to \mathcal{E}$ is another functor and $F \simeq G$ then $F_1F \simeq F_1G$. This is because the natural transformation $\eta: F \to G$ provides a natural transformation $F_1\eta: F_1F \to F_1G$ where, for each object x of \mathcal{C} , we have $(F_1\eta)_x = F_1(\eta_x): F_1F(x) \to F_1G(x)$. If each η_x is an isomorphism, so is $(F_1\eta)_x$, because functors take isomorphisms to isomorphisms. We will take $F_1: \mathcal{D} \to \mathcal{C}$ to be an inverse equivalence to F, so that $F_1F \simeq 1_{\mathcal{C}}$ and $FF_1 \simeq 1_{\mathcal{D}}$. Now $F_1G \simeq F_1F \simeq 1_{\mathcal{C}}$, and similarly $GF_1 \simeq FF_1 \simeq 1_{\mathcal{D}}$. Finally we show that equivalence \simeq is transitive. Suppose we have natural equivalences $\eta: F \to G$ and $\theta: G \to H$. Then $\theta\eta: F \to H$ is a natural transformation, where $(\theta\eta)_x := \theta_x\eta_x$ and if both θ_x and η_x are isomorphisms, so is $(\theta\eta)_x$. It follows that $F_1G \simeq 1_{\mathcal{C}}$ and $GF_1 \simeq 1_{\mathcal{D}}$ so that F_1 is a natural inverse of G.
- 4. Let G be a group, which we regard as a category \mathcal{G} with a single object, and with the elements of G as morphisms. Let $F: \mathcal{G} \to \mathcal{G}$ be a functor.
- (a) Show that F is naturally isomorphic to the identity functor $1_{\mathcal{G}}: \mathcal{G} \to \mathcal{G}$ if and only if the mapping $F: G \to G$, induced by F on the set of morphisms, is an inner automorphism; that is, an automorphism of the form $c_g: G \to G$ for some $g \in G$, where $c_g(h) = ghg^{-1}$ for all $h \in G$.
- (b) Show that self equivalences of \mathcal{G} are automorphisms of \mathcal{G} .
- (c) Show that the group of natural isomorphism classes of self equivalences of \mathcal{G} is isomorphic to $\operatorname{Aut}(G)/\operatorname{Inn}(G)$. (In the context of group theory, $\operatorname{Inn}(G)$ denotes the set of inner automorphisms of G, and $\operatorname{Out}(G) := \operatorname{Aut}(G)/\operatorname{Inn}(G)$ is called the group of *outer* (or *non-inner*) automorphisms.)

Solution. (a) Writing the object of \mathcal{G} as *, there is a natural isomorphism $\theta : F \simeq 1$ if and only if there is an isomorphism θ_* in \mathcal{G} so that, for all morphisms α in \mathcal{G} the following diagram commutes:

 $\begin{array}{ccc}
* & \xrightarrow{F(\alpha)} & * \\
\downarrow \theta_* & & \downarrow \theta, \\
* & \xrightarrow{\alpha} & *
\end{array}$

The morphisms θ_* , α and $F(\alpha)$ are all elements of G, and F is a homomorphism $G \to G$. The diagram means that F is c_g where $g = \theta_*$.

- (b) If F is a self equivalence of \mathcal{G} then F(*) = * because \mathcal{G} has only one object, and F is an isomorphism on the morphisms of \mathcal{G} by exercise 1(a).
- (c) Each automorphism F of \mathcal{G} provides a bijective map f of the morphisms of \mathcal{G} to itself preserving composition, so an automorphism $f: G \to G$, and from part (b) we see that the correspondence $F \leftrightarrow f$ is an isomorphism $\operatorname{Aut}(\mathcal{G}) \cong \operatorname{Aut}(G)$. We show that two automorphisms F_1, F_2 are equivalent if and only if the corresponding f_1, f_2 lie in the same coset of $\operatorname{Inn}(G)$. Now $F_1 \simeq F_2$ if and only if $F_2^{-1}F_1 \simeq 1_{\mathcal{G}}$ by an argument from question 3(b), which happens if and only if $f_2^{-1}f_1 \in \operatorname{Inn}(G)$ by part (a) or, in other words, f_1, f_2 lie in the same coset of $\operatorname{Inn}(G)$.
- 5. Let I be the poset with two elements 0 and 1, and with 0 < 1. If P and Q are posets we can regard them as categories P and Q whose objects are the elements of the posets, and where there is a unique morphism $x \to y$ if and only if $x \le y$.
- (a) Show that if P and Q are posets then a functor $\mathcal{P} \to Q$ is 'the same thing as' an order-preserving map. (Don't worry about any fancy interpretation of 'the same thing as'!)
- (b) Now consider two functors $F, G : \mathcal{P} \to \mathcal{Q}$, which we may regard as order-preserving maps $f, g : P \to Q$ by part (a). Show that the following three conditions are equivalent:
- (i) there exists a natural transformation $F \to G$,
- (ii) $f(x) \le g(x)$ for all $x \in P$,
- (iii) there is an order-preserving map $h: P \times I \to Q$ such that h(x,0) = f(x) and h(x,1) = g(x) for all $x \in \mathcal{P}$. Here $P \times I$ denotes the product poset with order relation $(a_1,b_1) \leq (a_2,b_2)$ if and only if $a_1 \leq a_2$ and $b_1 \leq b_2$, where $a_i \in P$ and $b_i \in I$.

Solution: (a) Let $F: \mathcal{P} \to \mathcal{Q}$ be a functor. If $x \leq y$ in P we can regard this as a morphism $\alpha: x \to y$ in \mathcal{P} , so that $F(\alpha): F(x) \to F(y)$ is a morphism in \mathcal{Q} , and $F(x) \leq F(y)$. Thus F is an order preserving map. Conversely, given an order preserving map $f: P \to \mathcal{Q}$ we obtain a functor $\mathcal{P} \to \mathcal{Q}$ that on objects is the same as f, and where if $x \to y$ is a morphism in \mathcal{P} we define the effect of the functor to be the unique morphism $f(x) \to f(y)$, which exists because $f(x) \leq f(y)$.

(b) Suppose (i) Then for each object x of \mathcal{P} there is a morphism $\tau_x : F(x) \to G(x)$, so that $f(x) \leq g(x)$ for all $x \in P$. Thus (ii) holds.

Assuming (ii) holds, we show that the mapping defined in (iii) is order preserving. Suppose that $(a_1, b_1) \leq (a_2, b_2)$ and apply h. If $b_1 = b_2$ then $h(a_1, b_1) \leq h(a_2, b_2)$ because either f or g is order preserving. The other possibility is $b_1 = 0$ and $b_2 = 1$, in which case this inequality holds because, in addition, $f(x) \leq g(x)$ for all x. Thus (iii) holds.

Assuming (iii) we define τ_x to be the unique map $f(x) \to g(x)$, which exists because $f(x) = h(x, 0) \le h(x, 1) = g(x)$. This shows that (i) holds.

6. Let $1_{R-\text{mod}}: R\text{-mod} \to R\text{-mod}$ denote the identity functor. Let $\text{Nat}(1_{R-\text{mod}}, 1_{R-\text{mod}})$ denote the set of natural transformations from this functor to itself, noting that this set has the structure of a ring (multiplication is composition and addition comes because we can add homomorphisms of R-modules, so that for two natural transformations θ, ψ at an object x we have $(\theta + \psi)_x = \theta_x + \psi_x$). Show that $\text{Nat}(1_{R-\text{mod}}, 1_{R-\text{mod}}) \cong Z(R)$.

Solution. We define mappings

$$f: \operatorname{Nat}(1_{R-\operatorname{mod}}, 1_{R-\operatorname{mod}}) \to R$$
 and $g: Z(R) \to \operatorname{Nat}(1_{R-\operatorname{mod}}, 1_{R-\operatorname{mod}})$

as follows. If η is such a natural transformation note that $\eta_R: R \to R$ is an R-module homomorphism. We put $f(\eta) = \eta_R(1_R) \in R$. If $r \in Z(R)$ we define g(r) to be the natural transformation with $g(r)_M: M \to M$ the mapping $m \mapsto rm$. This is an R-module homomorphism because r lies in the center of R, and g(r) is a natural transformation because if $\alpha: M \to M$ is a homomorphism of R-modules then $g(r)_M \alpha(m) = r\alpha(m) = \alpha(rm) = \alpha g(r)_M(m)$. We should verify several more things: $f(\eta)$ lies in Z(R) and the two composite mappings fg and gf are the identity. If x is any element of R we have an R-module homomorphism $\mu_x: R \to R$ where $\mu_x(s) = sx$. Naturality of η means that $\eta_R \mu_x = \mu_x \eta_R$. Applying these to $1 \in R$ we get $\eta_R(x) = \eta_R(x) = x\eta_R(1) = \eta_R(1)x$, showing $f(\eta)$ lies in Z(R). It is immediate that fg is the identity on Z(R). Finally we show that $\eta = g(\eta_R(1_R))$ to see this consider the commutative diagram of R-modules

$$\begin{array}{ccc} R & \xrightarrow{\eta_R} & R \\ \downarrow & & \downarrow \\ M & \xrightarrow{\eta_M} & M \end{array}$$

where the vertical arrows are determined by $1 \mapsto m$ for some arbitrary element $m \in M$. Commutativity shows that $\eta_M(m) = \eta_R(1_R)m$, which is what is needed.

Extra question: do not upload to Gradescope.

7. Let \mathcal{C} be a small category and let $F, G : \mathcal{C} \to \operatorname{Set}$ be functors. Show that a natural transformation of functors $\tau : F \to G$ is an epimorphism in $\operatorname{Fun}(\mathcal{C}, \operatorname{Set})$ if and only if for every object x of \mathcal{C} , $\tau_x : F(x) \to G(x)$ is a surjection; and it is a monomorphism if and only if for every object x of \mathcal{C} , $\tau_x : F(x) \to G(x)$ is a 1-1 map.

- 8. Write out a proof that if G is the right adjoint of a functor F with the property that F preserves monomorphisms, then G sends injective objects to injective objects.
- 9. Let $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ be functors with F left adjoint to G, and with adjunction unit η and counit ϵ . Write out a proof that the second triangular identity holds, namely the following triangle commutes:

$$\begin{array}{cccc} G & \xrightarrow{1_G} & & G \\ & & & & \nearrow & \\ & & & & GFG & & \end{array}$$

- 10. Assume the axiom of choice in this question, or else make some assumption such as: everything is finite. Let \mathcal{C} be a category, and for each isomorphism class \hat{x} of objects x, choose a fixed representative $u_{\hat{x}}$. For each object x choose a fixed isomorphism $i_x: x \to u_{\hat{x}}$. Let \mathcal{D} be the full subcategory whose objects are the $u_{\hat{x}}$ where $x \in \text{Ob}\mathcal{C}$. 'Full' means that for each pair of objects y, z of \mathcal{D} we have $\text{Hom}_{\mathcal{D}}(y, z) = \text{Hom}_{\mathcal{C}}(y, z)$. Define $F(x) = \hat{x}$, and for each morphism $\alpha: x \to y$ define $F(\alpha): F(x) \to F(y)$ to be $i_y \alpha i_x^{-1}$.
- (a) Show that F is a functor.
- (b) Show that F and the inclusion functor inc : $\mathcal{D} \to \mathcal{C}$ are inverse equivalences of categories $\mathcal{D} \simeq \mathcal{C}$. (It will help to assume that when $x = u_{\hat{x}}$, the chosen isomorphism is the identity 1_x .)
- (c) Deduce that the category Set of finite sets is equivalent to the category with objects $\mathbb{N} := \{0, 1, 2, \ldots\}$ and where $\operatorname{Hom}(n, m)$ is the set of all mappings of sets from $\mathbf{n} := \{1, \ldots, n\}$ to $\mathbf{m} := \{1, \ldots, m\}$. We take $\mathbf{0} = \emptyset$.
- (d) Deduce also the following: let K be a field. Show that the category Vec of finite dimensional vectors spaces over K is equivalent to the category \mathcal{C} with objects $\mathbb{N} := \{0,1,2,\ldots\}$, where $\operatorname{Hom}_{\mathcal{C}}(n,m)$ is the set $M_{m,n}(K)$ of $m \times n$ matrices with entries in K, and where composition of morphisms is matrix multiplication. In case m or n is zero, give a definition of $\operatorname{Hom}_{\mathcal{C}}(n,m)$ that will make this question make sense.
- 11. Let \mathcal{C} be a small category. A *self-equivalence* of \mathcal{C} is an equivalence of categories $F: \mathcal{C} \to \mathcal{C}$. Show that the set of natural isomorphism classes of self equivalences of \mathcal{C} is a group, with multiplication induced by composition of functors.