Homework Assignment 3 Due Wednesday 4/13/2022, uploaded to Gradescope.
Each question part is worth 1 point. There are 17 question parts. You are on target for an A if you make a genuine attempt on at least half of them. We define $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$ to be the category whose objects are functors $\mathcal{C} \rightarrow \mathcal{D}$ and whose morphisms are natural transformations.

In these questions p is a prime. We will write an element $a_{0}+a_{1} p+a_{2} p^{2}+\cdots$ of the p-adic integers \mathbb{Z}_{p}^{\wedge}, where $0 \leq a_{i} \leq p-1$, as a string $\cdots a_{3} a_{2} a_{1} a_{0}$. with a point to the right of a_{0}.

1. a. Calculate the 3 -adic expansion of $\frac{1}{2}$ in \mathbb{Z}_{3}^{\wedge}.
b. What fraction does the recurring 3 -adic integer $\cdots \overline{0121} 01211$. represent?
c. Show that a p-adic integer is a negative (rational) integer if and only if it is of the form $(p-1) a_{n} \cdots a_{3} a_{2} a_{1} a_{0}$.
d. Show that the localization $\mathbb{Z}_{(p)}$ of \mathbb{Z} at (p) is the subset of \mathbb{Z}_{p}^{\wedge} consisting of strings

$$
\overline{a_{m} \cdots a_{n}} \cdots a_{3} a_{2} a_{1} a_{0}
$$

that eventually recur to the left.
2. In this question consider the 10 -adic topology on \mathbb{Z}, determined by the powers of the ideal (10), with completion the 10 -adic integers $\mathbb{Z}_{(10)}^{\wedge}$, and also the 2 -adic topology on \mathbb{Z} with completion $\mathbb{Z}_{(2)}^{\wedge}$
a. Show that a sequence of integers that is a Cauchy sequence in the 10-adic topology is also a Cauchy sequence in the 2-adic topology.
b. Show that the identity map $1: \mathbb{Z} \rightarrow \mathbb{Z}$ extends to a ring homomorphism $\mathbb{Z}_{(10)}^{\wedge} \rightarrow \mathbb{Z}_{(2)}^{\wedge}$.
c. Determine whether the identity map $1: \mathbb{Z} \rightarrow \mathbb{Z}$ extends to a ring homomorphism $\mathbb{Z}_{(2)}^{\wedge} \rightarrow \mathbb{Z}_{(10)}^{\wedge}$.
d. Using the fact that $\mathbb{Z} / 10 \mathbb{Z} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}$ as a product of rings, show that $\mathbb{Z}_{(10)}^{\wedge} \cong$ $A \times B$ for certain rings A, B that are also ideals of $\mathbb{Z}_{(10)}^{\wedge}$, with $A /(A \cap(10)) \cong \mathbb{Z} / 2 \mathbb{Z}$ and $B /(B \cap(10)) \cong \mathbb{Z} / 5 \mathbb{Z}$.
e. Show that $\mathbb{Z}_{(10)}^{\wedge}$ has just two maximal ideals, generated by 2 and 5 .
f. Show that the composite morphism specified as the inclusion of the ideal $A \hookrightarrow \mathbb{Z}_{(10)}^{\wedge}$, followed by the ring homomorphism $\mathbb{Z}_{(10)}^{\wedge} \rightarrow \mathbb{Z}_{(2)}$ of part b, is surjective. (Consider using Nakayama's lemma.)
3. Find how many cube roots each of the following numbers has in $\mathbb{Z}_{(7)}^{\wedge}: 1,9,-4,4,12,6$. Also find how many cube roots each of the following numbers has in $\mathbb{Z}_{(5)}^{\wedge}: 1,2,3,4,5$.
4. Let I be an ideal of R. Consider the polynomial $f(x)=3 x^{4}+x^{2}+5$ as a function $R \rightarrow R$. Show that f is continuous in the I-adic topology on R. (The I-adic topology on R is given by the distance function determined by the powers of I.)
5. For a category \mathcal{C} and commutative ring R we may take the R-linear category $R \mathcal{C}$ to have the same objects as \mathcal{C}, and with $\operatorname{Hom}_{R \mathcal{C}}(x, y)=R \operatorname{Hom}_{\mathcal{C}}(x, y)$, the set of formal linear combinations of morphism $x \rightarrow y$ in \mathcal{C}. Composition is R-bilinear. The constant functor $\underline{R}: R \mathcal{C} \rightarrow R$-mod is the functor that assigns R to each object of \mathcal{C}, and the identity map 1_{R} to each morphism of \mathcal{C}.
a. Let \mathcal{C} be the category $\bullet \leftarrow \bullet \rightarrow \bullet$ with three objects, and five morphisms that are the two morphisms shown and the three identity morphisms for the objects. Show that the constant functor on \mathcal{C} is representable as a linear functor $R \mathcal{C} \rightarrow R$-mod.
b. Let \mathcal{D} be the category $\bullet \bullet \leftarrow \bullet$ with three objects, and five morphisms, with the two non-identity morphisms pointing in the opposite direction to the last example. Show that the constant functor is not representable.
c. Show that the inverse limit functor $\underset{\rightleftarrows}{\lim }: \operatorname{Fun}(\mathcal{D}, R$-mod $) \rightarrow R$-mod is representable, represented by the constant functor.
6. Let $\operatorname{Fun}(\mathcal{C}$, abgps) be the category of functors from \mathcal{C} to abelian groups, with natural transformations as morphisms. We may take as a definition that a sequence $F_{1} \rightarrow F_{2} \rightarrow F_{3}$ in $\operatorname{Fun}(\mathcal{C}$, abgps) is exact if and only if, for all objects X in \mathcal{C}, the sequence of abelian groups $F_{1}(X) \rightarrow F_{2}(X) \rightarrow F_{3}(X)$ is exact. This is equivalent to other possible definitions of exactness. We may regard the inverse limit construction as a functor $\underset{\longleftarrow}{\lim }: \operatorname{Fun}(\mathcal{C}, \operatorname{abg} p s) \rightarrow$ abgps.
a. Let \mathcal{C} be the category $\bullet \leftarrow \bullet \rightarrow \bullet$ with three objects, and five morphisms that are the two morphisms shown and the three identity morphisms for the objects. Show that the functor $\underset{\rightleftarrows}{\lim }: \operatorname{Fun}(\mathcal{C}$, abgps $) \rightarrow$ abgps is exact.
b. Let \mathcal{D} be the category $\bullet \bullet \leftarrow \bullet$ with three objects, and five morphisms, with the two non-identity morphisms pointing in the opposite direction to the last example. Show (by example, or by giving a reason) that the functor $\lim _{\longleftarrow}: \operatorname{Fun}(\mathcal{D}$, abgps) \rightarrow abgps is not exact in general.

