Homework Assignment 3 Due Wednesday 4/13/2022, uploaded to Gradescope.

Each question part is worth 1 point. There are 17 question parts. You are on target for an A if you make a genuine attempt on at least half of them. We define $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$ to be the category whose objects are functors $\mathcal{C} \to \mathcal{D}$ and whose morphisms are natural transformations.

In these questions p is a prime. We will write an element $a_0 + a_1p + a_2p^2 + \cdots$ of the p-adic integers \mathbb{Z}_p^{\wedge} , where $0 \le a_i \le p - 1$, as a string $\cdots a_3a_2a_1a_0$. with a point to the right of a_0 .

1. a. Calculate the 3-adic expansion of $\frac{1}{2}$ in \mathbb{Z}_3^{\wedge} .

b. What fraction does the recurring 3-adic integer $\cdots \overline{012101211}$. represent?

c. Show that a *p*-adic integer is a negative (rational) integer if and only if it is of the form $(p-1)a_n \cdots a_3 a_2 a_1 a_0$.

d. Show that the localization $\mathbb{Z}_{(p)}$ of \mathbb{Z} at (p) is the subset of \mathbb{Z}_p^{\wedge} consisting of strings

$$\overline{a_m \cdots a_n} \cdots a_3 a_2 a_1 a_0.$$

that eventually recur to the left.

2. In this question consider the 10-adic topology on \mathbb{Z} , determined by the powers of the ideal (10), with completion the 10-adic integers $\mathbb{Z}^{\wedge}_{(10)}$, and also the 2-adic topology on \mathbb{Z} with completion $\mathbb{Z}^{\wedge}_{(2)}$

a. Show that a sequence of integers that is a Cauchy sequence in the 10-adic topology is also a Cauchy sequence in the 2-adic topology.

b. Show that the identity map $1: \mathbb{Z} \to \mathbb{Z}$ extends to a ring homomorphism $\mathbb{Z}^{\wedge}_{(10)} \to \mathbb{Z}^{\wedge}_{(2)}$.

c. Determine whether the identity map $1 : \mathbb{Z} \to \mathbb{Z}$ extends to a ring homomorphism $\mathbb{Z}^{\wedge}_{(2)} \to \mathbb{Z}^{\wedge}_{(10)}$.

d. Using the fact that $\mathbb{Z}/10\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ as a product of rings, show that $\mathbb{Z}^{\wedge}_{(10)} \cong A \times B$ for certain rings A, B that are also ideals of $\mathbb{Z}^{\wedge}_{(10)}$, with $A/(A \cap (10)) \cong \mathbb{Z}/2\mathbb{Z}$ and $B/(B \cap (10)) \cong \mathbb{Z}/5\mathbb{Z}$.

e. Show that $\mathbb{Z}^{\wedge}_{(10)}$ has just two maximal ideals, generated by 2 and 5.

f. Show that the composite morphism specified as the inclusion of the ideal $A \hookrightarrow \mathbb{Z}^{\wedge}_{(10)}$, followed by the ring homomorphism $\mathbb{Z}^{\wedge}_{(10)} \to \mathbb{Z}_{(2)}$ of part b, is surjective. (Consider using Nakayama's lemma.)

3. Find how many cube roots each of the following numbers has in $\mathbb{Z}^{\wedge}_{(7)}$: 1, 9, -4, 4, 12, 6. Also find how many cube roots each of the following numbers has in $\mathbb{Z}^{\wedge}_{(5)}$: 1, 2, 3, 4, 5.

4. Let I be an ideal of R. Consider the polynomial $f(x) = 3x^4 + x^2 + 5$ as a function $R \to R$. Show that f is continuous in the I-adic topology on R. (The I-adic topology on R is given by the distance function determined by the powers of I.)

5. For a category \mathcal{C} and commutative ring R we may take the R-linear category $R\mathcal{C}$ to have the same objects as \mathcal{C} , and with $\operatorname{Hom}_{R\mathcal{C}}(x, y) = R \operatorname{Hom}_{\mathcal{C}}(x, y)$, the set of formal linear combinations of morphism $x \to y$ in \mathcal{C} . Composition is R-bilinear. The constant functor $\underline{R}: R\mathcal{C} \to R$ -mod is the functor that assigns R to each object of \mathcal{C} , and the identity map 1_R to each morphism of \mathcal{C} .

a. Let \mathcal{C} be the category $\bullet \leftarrow \bullet \rightarrow \bullet$ with three objects, and five morphisms that are the two morphisms shown and the three identity morphisms for the objects. Show that the constant functor on \mathcal{C} is representable as a linear functor $R\mathcal{C} \rightarrow R$ -mod.

b. Let \mathcal{D} be the category $\bullet \to \bullet \leftarrow \bullet$ with three objects, and five morphisms, with the two non-identity morphisms pointing in the opposite direction to the last example. Show that the constant functor is not representable.

c. Show that the inverse limit functor \varprojlim : Fun(\mathcal{D}, R -mod) $\rightarrow R$ -mod is representable, represented by the constant functor.

6. Let Fun(\mathcal{C} , abgps) be the category of functors from \mathcal{C} to abelian groups, with natural transformations as morphisms. We may take as a definition that a sequence $F_1 \to F_2 \to F_3$ in Fun(\mathcal{C} , abgps) is exact if and only if, for all objects X in \mathcal{C} , the sequence of abelian groups $F_1(X) \to F_2(X) \to F_3(X)$ is exact. This is equivalent to other possible definitions of exactness. We may regard the inverse limit construction as a functor \varprojlim : Fun(\mathcal{C} , abgps) \to abgps.

a. Let \mathcal{C} be the category $\bullet \leftarrow \bullet \rightarrow \bullet$ with three objects, and five morphisms that are the two morphisms shown and the three identity morphisms for the objects. Show that the functor $\lim_{\to} : \operatorname{Fun}(\mathcal{C}, \operatorname{abgps}) \rightarrow \operatorname{abgps}$ is exact.

b. Let \mathcal{D} be the category $\bullet \to \bullet \leftarrow \bullet$ with three objects, and five morphisms, with the two non-identity morphisms pointing in the opposite direction to the last example. Show (by example, or by giving a reason) that the functor \varprojlim : Fun(\mathcal{D} , abgps) \to abgps is not exact in general.