
Math 8212 Commutative and Homological Algebra 2 Spring 2022

Homework Assignment 3 - Solutions Due Sunday 4/17/2022, uploaded to Grade-

scope.

Each question part is worth 1 point. There are 17 question parts. You are on target

for an A if you make a genuine attempt on at least half of them. We define Fun(C,D)

to be the category whose objects are functors C → D and whose morphisms are natural

transformations.

In these questions p is a prime. We will write an element a0 +a1p+a2p
2 + · · · of the p-adic

integers Z∧p , where 0 ≤ ai ≤ p− 1, as a string · · · a3a2a1a0. with a point to the right of a0.

1. a. Calculate the 3-adic expansion of 1
2 in Z∧3 .

b. What fraction does the recurring 3-adic integer · · · 012101211. represent?

c. Show that a p-adic integer is a negative (rational) integer if and only if it is of the form

(p− 1)an · · · a3a2a1a0.

d. Show that the localization Z(p) of Z at (p) is the subset of Z∧p consisting of strings

am · · · an · · · a3a2a1a0.

that eventually recur to the left.

Solution: a. The multiplication sum

· · · 1 1 1 2.

× 2.

10 10 10 11.

shows that · · · 1̄2. multiplied by 2 equals 1, so · · · 1̄2. = 1
2 .

b. Let x = · · · 012101211. The subtraction · · · 012110000.− · · · 012101211. = 1012., which

is 27 + 3 + 2 in decimal notation, shows that 34x− x = 32. Thus x = 80/32 = 2/5.

c. The positive integers are precisely the p-adic integers that are eventually 0 to the left.

Any subtraction sum of the form

· · · 10 10 10 10 10.

− · · · 0 0 a b c.
· · · p− 1 p− 1 d e f.

finishes with recurring p − 1 in the answer, because each 0 in the top lline has to borrow

1 from the next place, causing 1 to be added in the column to the left in the second row,

producing a sum 10− 1 = p− 1 in p-adic notation. Conversely any subtraction sum

· · · 10 10 10 10 10.

− · · · p− 1 p− 1 a b c.
· · · 0 0 d e f.

finishes with 0 to the left because 1 must always be borrowed, increasing p−1 to 10, giving

an eventual computation 10− 10 = 0 in each place.



d. The computation of the p-adic expansion of a/b where p 6
∣∣ b always gives a recurring

string, by the pigeon hole principle, because at each stage in the division the p-adic re-

mainder is one of the digits {1, . . . , p−1} and the calculation must repeat after some time.

Equally, every p-adic integer x with a recurring expansion of length n is a rational integer

because pnx − x = a is an integer, and now x = a
pn−1 . The map Z(p) → Z∧p specified by

a
b 7→ (p-adic expansion of a

b ) is an injective ring homomorphism.

2. In this question consider the 10-adic topology on Z, determined by the powers of the

ideal (10), with completion the 10-adic integers Z∧(10), and also the 2-adic topology on Z
with completion Z∧(2)
a. Show that a sequence of integers that is a Cauchy sequence in the 10-adic topology is

also a Cauchy sequence in the 2-adic topology.

b. Show that the identity map 1 : Z→ Z extends to a ring homomorphism Z∧(10) → Z∧(2).

c. Determine whether the identity map 1 : Z → Z extends to a ring homomorphism

Z∧(2) → Z∧(10).

d. Using the fact that Z/10Z ∼= Z/2Z × Z/5Z as a product of rings, show that Z∧(10) ∼=
A× B for certain rings A,B that are also ideals of Z∧(10), with A/(A ∩ (10)) ∼= Z/2Z and

B/(B ∩ (10)) ∼= Z/5Z.

e. Show that Z∧(10) has just two maximal ideals, generated by 2 and 5.

f. Show that the composite morphism specified as the inclusion of the ideal A ↪→ Z∧(10),
followed by the ring homomorphism Z∧(10) → Z(2) of part b, is surjective. (Consider using

Nakayama’s lemma.)

Solution: a. Taking the distance in the m-adic topology to be dm(a, b) = 1
mt if mt is the

largest power of m that divides a− b, if (an) is a Cauchy sequence in the 10-adic topology

then, given ε > 0, we can find u so that 1
2u < ε. Now find N so that i, j ≥ N implies

d10(ai, aj) <
1

10u , that is, 10u|(ai − aj). Now 2u|(ai − aj) so d2(ai, aj) ≤ 1
2u < ε for all

i, j ≥ N . This shows that (an) is a Cauchy sequence in the 2-adic topology.

b. Regarding the completion as the set of equivalence classes of Cauchy sequences, the

identity provides a map of sets

{10-adic Cauchy sequences} → {2-adic Cauchy sequences} → Z∧(2)

by part a. Equivalent 10-adic Cauchy sequences are also 2-adic equivalent by a similar

argument, so we get a map of sets Z∧(10) → Z∧(2), and it is a ring homomorphism because

the identity map is.

c. The identity on Z does not extend to a ring homomorphism f : Z∧(2) → Z∧(10). Consider

the composite of such an f with the quotient map Z∧(10) → Z∧(10)/10Z∧(10) ∼= Z/10Z (the

last isomorphism was done in class). Under this map 1 is sent to 1, which generates

Z/10Z as a ring, so the composite is surjective. The kernel contains 10, and Z∧(2)/10Z∧(2) =



Z∧(2)/2Z
∧
(2)
∼= Z/2Z because 5 is invertible in Z∧(2). This ring has size 2, so the composite

cannot be surjective. Thus no such f can exist.

d. The decomposition of Z/10Z (assumed, but FYI it is a consequence of the Chinese

Remainder Theorem) gives an expression 1 = e+(1−e) as a sum of two non-zero orthogonal

idempotents, where e is the identity in Z/2Z and 1 − e is the identity in Z/5Z. We did

in class that Z∧(10)/10Z∧(10) ∼= Z/10Z, and we also did in class using Hensel’s lemma that

there exists an idempotent f ∈ Z∧(10) with f + 10Z∧(10) = e, giving a ring decomposition

Z∧(10) = A×B where A = Z∧(10)f and B = Z∧(10)(1−f). The quotient map A×B → Z/10Z
has kernel A∩(10)×B∩(10) with the summands mapping to Z/2Z and Z/5Z, respectively,

so A/(A ∩ (10)) ∼= Z/2Z and B/(B ∩ (10)) ∼= Z/5Z.

e. Every element of Z∧(10) not in (2) or (5) is invertible, by the same argument that showed

that that the completion at a maximal ideal is a local ring: if x is not in either ideal we can

find y so that xy−1 ∈ (10), so xy = 1+a with a ∈ (10). Now (xy)−1 = 1−a+a2−a3 + · · ·
and x−1 = y(xy)−1. From this it follows that if I is an ideal then I ⊂ (2) ∪ (5). Now if

I contains an element a not in (2) and b not in (5) then it contains a + b which lies in

neither (2) nor (5), so is invertible, and I is the whole ring. This means that every ideal

is contained in either (2) or (5) so these ideals are maximal and are the only such.

f. The composite Z∧(10) → Z∧(2) → Z/2Z is surjective because 1 is sent to 1, and this

generates Z/2Z. It gives rise to a surjective map of groups A/(A∩ (10))×B/(B ∩ (10))→
Z/2Z, and the component B/(B∩(10)) ∼= Z/5Z it goes to 0. Thus the map A/(A∩(10))→
Z/2Z is surjective, as is A→ Z/2Z. Now Z∧(2) is a local ring, so that its Jacobson radical is

2Z∧(2). Together with this radical, the image of A generates Z∧(2). By Nakayama’s lemma,

the image of A equals Z∧(2). and the map is surjective.

3. Find how many cube roots each of the following numbers has in Z∧(7): 1, 9, -4, 4, 12, 6.

Also find how many cube roots each of the following numbers has in Z∧(5): 1, 2, 3, 4, 5.

Solution. We find roots of f(x) = x3 − t where t is prime to 7. Now f ′(x) = 3x so if a in

Z∧(7) has a3 ≡ t (prime to 7) then a is a unit (mod 7), as is f ′(a) = 3a. For such a, Hensel’s

lemma applies and there is a cube root b of t with b ≡ a (mod 7). This means the number

cube roots of t in Z∧(7) equals the number of cube roots of t in Z/7Z. In Z/7Z the cubes

of 1, 2, 3, 4, 5, 6 are 1, 1, 6, 1, 6, 6. This means the numbers 1, 6 both have 3 cube roots in v

and the other numbers 9, -4, 4, 12 have no cube root in Z∧(7).
Doing the same thing module 5, the cubes of 1, 2, 3, 4 are 1, 3, 2, 4. This means that each

1, 2, 3, 4 has a unique cube root in Z∧(5). The question probably should not have asked

about cube roots of 5, but if x ∈ Z∧(5) lies in (5)d then x3 lies in (5)3d. From this we see

that x3 = 5 has no solutions, because 5 6∈ (5)3d with d ≥ 1.

4. Let I be an ideal of R. Consider the polynomial f(x) = 3x4 + x2 + 5 as a function

R→ R. Show that f is continuous in the I-adic topology on R. (The I-adic topology on

R is given by the distance function determined by the powers of I.)



Solution. We use the distance function d(u, v) = 1
2n if u − v ∈ In − In+1, and write

|u| = d(u, 0). We show first that the function xr is continuous. Given ε > 0 take δ = ε.

Now if |u| < δ then u ∈ IN where 1
2n < δ, and d(xr, (x+ u)r) = |(x+ u)r − xr| = |uv| < ε

(for some v) because uv ∈ IN also (IN is an ideal). This shows that xr is continuous.

We next show that if f and g are continuous functions then f + g is continuous. For

each x, given ε > 0 we can find δ so that |u| < δ implies both |f(x + u) − f(x)| < ε and

|g(x+ u)− g(x)| < ε. This means that f(x+ u)− f(x) ∈ IN and g(x+ u)− g(x) ∈ IN for

some N with 1
2N

< ε and now f(x+ u) + g(x+ u)− (f(x) + g(x)) = (f(x+ u)− f(x)) +

(g(x+ u)− g(x)) ∈ IN so |f(x+ u) + g(x+ u)− (f(x) + g(x))| < ε. This shows that f + g

is continuous. Scalar multiplication is continuous, similarly. Putting this together we see

that polynomials are continuous.

5. For a category C and commutative ring R we may take the R-linear category RC to

have the same objects as C, and with HomRC(x, y) = RHomC(x, y), the set of formal linear

combinations of morphism x → y in C. Composition is R-bilinear. The constant functor

R : RC → R-mod is the functor that assigns R to each object of C, and the identity map

1R to each morphism of C.

a. Let C be the category • ← • → • with three objects, and five morphisms that are the

two morphisms shown and the three identity morphisms for the objects. Show that the

constant functor on C is representable as a linear functor RC → R-mod.

b. Let D be the category • → • ← • with three objects, and five morphisms, with the two

non-identity morphisms pointing in the opposite direction to the last example. Show that

the constant functor is not representable.

c. Show that the inverse limit functor lim←− : Fun(D, R-mod) → R-mod is representable,

represented by the constant functor.

Solution. a. Label the three objects a, b, c from left to right, and the non-identity mor-

phisms α : b→ a and β : b→ c. We claim that the constant functor is represented by object

b. This is because HomRC(b, x) ∼= R for each object x, and each morphism of C is sent

by this functor to an isomorphism. Specifically, HomRC(b, a) = Rα, HomRC(b, b) = R1b
and HomRC(b, c) = Rβ. The functorial effect on α is postcomposition with α, namely

α∗ : HomRC(b, b) → HomRC(b, a), so α∗(1x) = α, and it is similar with β. This functor is

thus naturally isomorphic to the constant functor, by a natural isomorphism that sends

each of α, 1b, β to 1 in R.

b. Label the three objects a, b, c from left to right. If the constant functor were repre-

sentable, it would be representable by one of a, b, c. The representable functor at a is

non-zero only on a and b, the representable functor at b is non-zero only on b, and the rep-

resentable functor at c is non-zero only on b and c. None of these is the constant functor,

so it is not representable.



c. We have seen in class exactly that lim←−F
∼= HomFun(R,F ) where R is the constant func-

tor on D, Fun is short for Fun(D, R-mod) and the Hom denotes natural transformations.

Thus lim←− and HomFun(R,−) are naturally isomorphic functors, and are representable.

6. Let Fun(C, abgps) be the category of functors from C to abelian groups, with natural

transformations as morphisms. We may take as a definition that a sequence F1 → F2 → F3

in Fun(C, abgps) is exact if and only if, for all objects X in C, the sequence of abelian groups

F1(X) → F2(X) → F3(X) is exact. This is equivalent to other possible definitions of

exactness. We may regard the inverse limit construction as a functor lim←− : Fun(C, abgps)→
abgps.

a. Let C be the category • ← • → • with three objects, and five morphisms that are the

two morphisms shown and the three identity morphisms for the objects. Show that the

functor lim←− : Fun(C, abgps)→ abgps is exact.

b. Let D be the category • → • ← • with three objects, and five morphisms, with the two

non-identity morphisms pointing in the opposite direction to the last example. Show (by

example, or by giving a reason) that the functor lim←− : Fun(D, abgps)→ abgps is not exact

in general.

Solution. a. The constant functor R is representable and hence projective in Fun(C, abgps),

by something we did in class. This means that HomFun(R,−) ' lim←− is exact.

b. We have seen that R is not representable in this case, and in fact it is not projective.

We could see this from our knowledge of representations of the quiver • → • ← •. A more

rudimentary approach is to product a short exact sequence of functors 0 → F1 → F2 →
F3 → 0 on which lim←− is not exact. Let F1 be the functor described by 0→ R← 0, meaning

that F1(a) = 0, F1(b) = R and F1(c) = 0. Similarly, let F2 be (R→ R← 0)⊕(0→ R← R)

and let F3 be R = R→ R← R. All morphisms in describing these functors and the short

exact sequence are either 1R or 0. Now lim←−F3 = R and lim←−F2 = 0, so lim←−F2 → lim←−F3 is

not surjective. This shows that lim←− is not exact.


