Homework Assignment 3 - Solutions Due Sunday 4/17/2022, uploaded to Gradescope.
Each question part is worth 1 point. There are 17 question parts. You are on target for an A if you make a genuine attempt on at least half of them. We define $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$ to be the category whose objects are functors $\mathcal{C} \rightarrow \mathcal{D}$ and whose morphisms are natural transformations.

In these questions p is a prime. We will write an element $a_{0}+a_{1} p+a_{2} p^{2}+\cdots$ of the p-adic integers \mathbb{Z}_{p}^{\wedge}, where $0 \leq a_{i} \leq p-1$, as a string $\cdots a_{3} a_{2} a_{1} a_{0}$. with a point to the right of a_{0}.

1. a. Calculate the 3-adic expansion of $\frac{1}{2}$ in \mathbb{Z}_{3}^{\wedge}.
b. What fraction does the recurring 3 -adic integer $\cdots \overline{0121} 01211$. represent?
c. Show that a p-adic integer is a negative (rational) integer if and only if it is of the form $\overline{(p-1)} a_{n} \cdots a_{3} a_{2} a_{1} a_{0}$.
d. Show that the localization $\mathbb{Z}_{(p)}$ of \mathbb{Z} at (p) is the subset of \mathbb{Z}_{p}^{\wedge} consisting of strings

$$
\overline{a_{m} \cdots a_{n}} \cdots a_{3} a_{2} a_{1} a_{0} .
$$

that eventually recur to the left.
Solution: a. The multiplication sum
$\cdots \begin{array}{lllll}\cdots & 1 & 1 & 1 & 2 .\end{array}$

\times		2.
${ }_{10} 0 \quad{ }_{1} 0 \quad 10 \quad 1$.		

shows that $\cdots \overline{1} 2$. multiplied by 2 equals 1 , so $\cdots \overline{1} 2 .=\frac{1}{2}$.
b. Let $x=\cdots \overline{0121} 01211$. The subtraction $\cdots \overline{0121} 10000 .-\cdots \overline{0121} 01211 .=1012$., which is $27+3+2$ in decimal notation, shows that $3^{4} x-x=32$. Thus $x=80 / 32=2 / 5$.
c. The positive integers are precisely the p-adic integers that are eventually 0 to the left. Any subtraction sum of the form

\cdots	${ }^{1} 0$	${ }^{1} 0$	${ }^{1} 0$	${ }^{1} 0$	${ }^{1} 0$.
$-\cdots$	0	0	a	b	c.
\cdots	$p-1$	$p-1$	d	e	f.

finishes with recurring $p-1$ in the answer, because each 0 in the top line has to borrow 1 from the next place, causing 1 to be added in the column to the left in the second row, producing a sum $10-1=p-1$ in p-adic notation. Conversely any subtraction sum
$\ldots \quad{ }^{1} 0 \quad{ }^{1} 0{ }^{1} 0{ }^{1} 0{ }^{1} 0$.

| $-\cdots$ | $p-1$ | $p-1$ | a | b | c. |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| \cdots | 0 | 0 | d | e | f. |

finishes with 0 to the left because 1 must always be borrowed, increasing $p-1$ to 10 , giving an eventual computation $10-10=0$ in each place.
d. The computation of the p-adic expansion of a / b where $p \nmid b$ always gives a recurring string, by the pigeon hole principle, because at each stage in the division the p-adic remainder is one of the digits $\{1, \ldots, p-1\}$ and the calculation must repeat after some time. Equally, every p-adic integer x with a recurring expansion of length n is a rational integer because $p^{n} x-x=a$ is an integer, and now $x=\frac{a}{p^{n}-1}$. The map $\mathbb{Z}_{(p)} \rightarrow \mathbb{Z}_{p}^{\wedge}$ specified by $\frac{a}{b} \mapsto\left(p\right.$-adic expansion of $\left.\frac{a}{b}\right)$ is an injective ring homomorphism.
2. In this question consider the 10 -adic topology on \mathbb{Z}, determined by the powers of the ideal (10), with completion the 10 -adic integers $\mathbb{Z}_{(10)}^{\wedge}$, and also the 2-adic topology on \mathbb{Z} with completion $\mathbb{Z}_{(2)}^{\wedge}$
a. Show that a sequence of integers that is a Cauchy sequence in the 10 -adic topology is also a Cauchy sequence in the 2 -adic topology.
b. Show that the identity map $1: \mathbb{Z} \rightarrow \mathbb{Z}$ extends to a ring homomorphism $\mathbb{Z}_{(10)}^{\wedge} \rightarrow \mathbb{Z}_{(2)}^{\wedge}$.
c. Determine whether the identity map $1: \mathbb{Z} \rightarrow \mathbb{Z}$ extends to a ring homomorphism $\mathbb{Z}_{(2)}^{\wedge} \rightarrow \mathbb{Z}_{(10)}^{\wedge}$.
d. Using the fact that $\mathbb{Z} / 10 \mathbb{Z} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}$ as a product of rings, show that $\mathbb{Z}_{(10)}^{\wedge} \cong$ $A \times B$ for certain rings A, B that are also ideals of $\mathbb{Z}_{(10)}^{\wedge}$, with $A /(A \cap(10)) \cong \mathbb{Z} / 2 \mathbb{Z}$ and $B /(B \cap(10)) \cong \mathbb{Z} / 5 \mathbb{Z}$.
e. Show that $\mathbb{Z}_{(10)}^{\wedge}$ has just two maximal ideals, generated by 2 and 5 .
f. Show that the composite morphism specified as the inclusion of the ideal $A \hookrightarrow \mathbb{Z}_{(10)}^{\wedge}$, followed by the ring homomorphism $\mathbb{Z}_{(10)}^{\wedge} \rightarrow \mathbb{Z}_{(2)}$ of part b, is surjective. (Consider using Nakayama's lemma.)

Solution: a. Taking the distance in the m-adic topology to be $d_{m}(a, b)=\frac{1}{m^{t}}$ if m^{t} is the largest power of m that divides $a-b$, if $\left(a_{n}\right)$ is a Cauchy sequence in the 10-adic topology then, given $\epsilon>0$, we can find u so that $\frac{1}{2^{u}}<\epsilon$. Now find N so that $i, j \geq N$ implies $d_{10}\left(a_{i}, a_{j}\right)<\frac{1}{10^{u}}$, that is, $10^{u} \mid\left(a_{i}-a_{j}\right)$. Now $2^{u} \mid\left(a_{i}-a_{j}\right)$ so $d_{2}\left(a_{i}, a_{j}\right) \leq \frac{1}{2^{u}}<\epsilon$ for all $i, j \geq N$. This shows that $\left(a_{n}\right)$ is a Cauchy sequence in the 2 -adic topology.
b. Regarding the completion as the set of equivalence classes of Cauchy sequences, the identity provides a map of sets

$$
\{10 \text {-adic Cauchy sequences }\} \rightarrow\{2 \text {-adic Cauchy sequences }\} \rightarrow \mathbb{Z}_{(2)}^{\wedge}
$$

by part a. Equivalent 10 -adic Cauchy sequences are also 2 -adic equivalent by a similar argument, so we get a map of sets $\mathbb{Z}_{(10)}^{\wedge} \rightarrow \mathbb{Z}_{(2)}^{\wedge}$, and it is a ring homomorphism because the identity map is.
c. The identity on \mathbb{Z} does not extend to a ring homomorphism $f: \mathbb{Z}_{(2)}^{\wedge} \rightarrow \mathbb{Z}_{(10)}^{\wedge}$. Consider the composite of such an f with the quotient map $\mathbb{Z}_{(10)}^{\wedge} \rightarrow \mathbb{Z}_{(10)}^{\wedge} / 10 \mathbb{Z}_{(10)}^{\wedge} \cong \mathbb{Z} / 10 \mathbb{Z}$ (the last isomorphism was done in class). Under this map 1 is sent to 1 , which generates $\mathbb{Z} / 10 \mathbb{Z}$ as a ring, so the composite is surjective. The kernel contains 10 , and $\mathbb{Z}_{(2)}^{\wedge} / 10 \mathbb{Z}_{(2)}^{\wedge}=$
$\mathbb{Z}_{(2)}^{\wedge} / 2 \mathbb{Z}_{(2)}^{\wedge} \cong \mathbb{Z} / 2 \mathbb{Z}$ because 5 is invertible in $\mathbb{Z}_{(2)}^{\wedge}$. This ring has size 2 , so the composite cannot be surjective. Thus no such f can exist.
d. The decomposition of $\mathbb{Z} / 10 \mathbb{Z}$ (assumed, but FYI it is a consequence of the Chinese Remainder Theorem) gives an expression $1=e+(1-e)$ as a sum of two non-zero orthogonal idempotents, where e is the identity in $\mathbb{Z} / 2 \mathbb{Z}$ and $1-e$ is the identity in $\mathbb{Z} / 5 \mathbb{Z}$. We did in class that $\mathbb{Z}_{(10)}^{\wedge} / 10 \mathbb{Z}_{(10)}^{\wedge} \cong \mathbb{Z} / 10 \mathbb{Z}$, and we also did in class using Hensel's lemma that there exists an idempotent $f \in \mathbb{Z}_{(10)}^{\wedge}$ with $f+10 \mathbb{Z}_{(10)}^{\wedge}=e$, giving a ring decomposition $\mathbb{Z}_{(10)}^{\wedge}=A \times B$ where $A=\mathbb{Z}_{(10)}^{\wedge} f$ and $B=\mathbb{Z}_{(10)}^{\wedge}(1-f)$. The quotient map $A \times B \rightarrow \mathbb{Z} / 10 \mathbb{Z}$ has kernel $A \cap(10) \times B \cap(10)$ with the summands mapping to $\mathbb{Z} / 2 \mathbb{Z}$ and $\mathbb{Z} / 5 \mathbb{Z}$, respectively, so $A /(A \cap(10)) \cong \mathbb{Z} / 2 \mathbb{Z}$ and $B /(B \cap(10)) \cong \mathbb{Z} / 5 \mathbb{Z}$.
e. Every element of $\mathbb{Z}_{(10)}^{\wedge}$ not in (2) or (5) is invertible, by the same argument that showed that that the completion at a maximal ideal is a local ring: if x is not in either ideal we can find y so that $x y-1 \in(10)$, so $x y=1+a$ with $a \in(10)$. Now $(x y)^{-1}=1-a+a^{2}-a^{3}+\cdots$ and $x^{-1}=y(x y)^{-1}$. From this it follows that if I is an ideal then $I \subset(2) \cup(5)$. Now if I contains an element a not in (2) and b not in (5) then it contains $a+b$ which lies in neither (2) nor (5), so is invertible, and I is the whole ring. This means that every ideal is contained in either (2) or (5) so these ideals are maximal and are the only such.
f. The composite $\mathbb{Z}_{(10)}^{\wedge} \rightarrow \mathbb{Z}_{(2)}^{\wedge} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ is surjective because 1 is sent to 1 , and this generates $\mathbb{Z} / 2 \mathbb{Z}$. It gives rise to a surjective map of groups $A /(A \cap(10)) \times B /(B \cap(10)) \rightarrow$ $\mathbb{Z} / 2 \mathbb{Z}$, and the component $B /(B \cap(10)) \cong \mathbb{Z} / 5 \mathbb{Z}$ it goes to 0 . Thus the map $A /(A \cap(10)) \rightarrow$ $\mathbb{Z} / 2 \mathbb{Z}$ is surjective, as is $A \rightarrow \mathbb{Z} / 2 \mathbb{Z}$. Now $\mathbb{Z}_{(2)}^{\wedge}$ is a local ring, so that its Jacobson radical is $2 \mathbb{Z}_{(2)}^{\wedge}$. Together with this radical, the image of A generates $\mathbb{Z}_{(2)}^{\wedge}$. By Nakayama's lemma, the image of A equals $\mathbb{Z}_{(2)}^{\wedge}$. and the map is surjective.
3. Find how many cube roots each of the following numbers has in $\mathbb{Z}_{(7)}^{\wedge}: 1,9,-4,4,12,6$. Also find how many cube roots each of the following numbers has in $\mathbb{Z}_{(5)}^{\wedge}: 1,2,3,4,5$.

Solution. We find roots of $f(x)=x^{3}-t$ where t is prime to 7 . Now $f^{\prime}(x)=3 x$ so if a in $\mathbb{Z}_{(7)}^{\wedge}$ has $a^{3} \equiv t$ (prime to 7) then a is a unit $(\bmod 7)$, as is $f^{\prime}(a)=3 a$. For such a, Hensel's lemma applies and there is a cube root b of t with $b \equiv a(\bmod 7)$. This means the number cube roots of t in $\mathbb{Z}_{(7)}^{\wedge}$ equals the number of cube roots of t in $\mathbb{Z} / 7 \mathbb{Z}$. In $\mathbb{Z} / 7 \mathbb{Z}$ the cubes of $1,2,3,4,5,6$ are $1,1,6,1,6,6$. This means the numbers 1,6 both have 3 cube roots in v and the other numbers $9,-4,4,12$ have no cube root in $\mathbb{Z}_{(7)}^{\wedge}$.
Doing the same thing module 5 , the cubes of $1,2,3,4$ are $1,3,2,4$. This means that each $1,2,3,4$ has a unique cube root in $\mathbb{Z}_{(5)}^{\wedge}$. The question probably should not have asked about cube roots of 5 , but if $x \in \mathbb{Z}_{(5)}^{\wedge}$ lies in $(5)^{d}$ then x^{3} lies in $(5)^{3 d}$. From this we see that $x^{3}=5$ has no solutions, because $5 \notin(5)^{3 d}$ with $d \geq 1$.
4. Let I be an ideal of R. Consider the polynomial $f(x)=3 x^{4}+x^{2}+5$ as a function $R \rightarrow R$. Show that f is continuous in the I-adic topology on R. (The I-adic topology on R is given by the distance function determined by the powers of I.)

Solution. We use the distance function $d(u, v)=\frac{1}{2^{n}}$ if $u-v \in I^{n}-I^{n+1}$, and write $|u|=d(u, 0)$. We show first that the function x^{r} is continuous. Given $\epsilon>0$ take $\delta=\epsilon$. Now if $|u|<\delta$ then $u \in I^{N}$ where $\frac{1}{2^{n}}<\delta$, and $d\left(x^{r},(x+u)^{r}\right)=\left|(x+u)^{r}-x^{r}\right|=|u v|<\epsilon$ (for some v) because $u v \in I^{N}$ also (I^{N} is an ideal). This shows that x^{r} is continuous. We next show that if f and g are continuous functions then $f+g$ is continuous. For each x, given $\epsilon>0$ we can find δ so that $|u|<\delta$ implies both $|f(x+u)-f(x)|<\epsilon$ and $|g(x+u)-g(x)|<\epsilon$. This means that $f(x+u)-f(x) \in I^{N}$ and $g(x+u)-g(x) \in I^{N}$ for some N with $\frac{1}{2^{N}}<\epsilon$ and now $f(x+u)+g(x+u)-(f(x)+g(x))=(f(x+u)-f(x))+$ $(g(x+u)-g(x)) \in I^{N}$ so $|f(x+u)+g(x+u)-(f(x)+g(x))|<\epsilon$. This shows that $f+g$ is continuous. Scalar multiplication is continuous, similarly. Putting this together we see that polynomials are continuous.
5. For a category \mathcal{C} and commutative ring R we may take the R-linear category $R \mathcal{C}$ to have the same objects as \mathcal{C}, and with $\operatorname{Hom}_{R \mathcal{C}}(x, y)=R \operatorname{Hom}_{\mathcal{C}}(x, y)$, the set of formal linear combinations of morphism $x \rightarrow y$ in \mathcal{C}. Composition is R-bilinear. The constant functor $\underline{R}: R \mathcal{C} \rightarrow R-\bmod$ is the functor that assigns R to each object of \mathcal{C}, and the identity map 1_{R} to each morphism of \mathcal{C}.
a. Let \mathcal{C} be the category $\bullet \leftarrow \bullet \rightarrow \bullet$ with three objects, and five morphisms that are the two morphisms shown and the three identity morphisms for the objects. Show that the constant functor on \mathcal{C} is representable as a linear functor $R \mathcal{C} \rightarrow R$-mod.
b. Let \mathcal{D} be the category $\bullet \rightarrow \bullet \bullet$ with three objects, and five morphisms, with the two non-identity morphisms pointing in the opposite direction to the last example. Show that the constant functor is not representable.
c. Show that the inverse limit functor $\underset{\longleftarrow}{\lim }: \operatorname{Fun}(\mathcal{D}, R$-mod $) \rightarrow R$-mod is representable, represented by the constant functor.

Solution. a. Label the three objects a, b, c from left to right, and the non-identity morphisms $\alpha: b \rightarrow a$ and $\beta: b \rightarrow c$. We claim that the constant functor is represented by object b. This is because $\operatorname{Hom}_{R \mathcal{C}}(b, x) \cong R$ for each object x, and each morphism of \mathcal{C} is sent by this functor to an isomorphism. Specifically, $\operatorname{Hom}_{R \mathcal{C}}(b, a)=R \alpha, \operatorname{Hom}_{R \mathcal{C}}(b, b)=R 1_{b}$ and $\operatorname{Hom}_{R \mathcal{C}}(b, c)=R \beta$. The functorial effect on α is postcomposition with α, namely $\alpha_{*}: \operatorname{Hom}_{R \mathcal{C}}(b, b) \rightarrow \operatorname{Hom}_{R \mathcal{C}}(b, a)$, so $\alpha_{*}\left(1_{x}\right)=\alpha$, and it is similar with β. This functor is thus naturally isomorphic to the constant functor, by a natural isomorphism that sends each of $\alpha, 1_{b}, \beta$ to 1 in R.
b. Label the three objects a, b, c from left to right. If the constant functor were representable, it would be representable by one of a, b, c. The representable functor at a is non-zero only on a and b, the representable functor at b is non-zero only on b, and the representable functor at c is non-zero only on b and c. None of these is the constant functor, so it is not representable.
c. We have seen in class exactly that $\underset{\rightleftarrows}{\lim } F \cong \operatorname{Hom}_{\text {Fun }}(\underline{R}, F)$ where \underline{R} is the constant functor on \mathcal{D}, Fun is short for $\operatorname{Fun}(\mathcal{D}, R$-mod) and the Hom denotes natural transformations. Thus $\underset{\longleftarrow}{\lim }$ and $\operatorname{Hom}_{\text {Fun }}(\underline{R},-)$ are naturally isomorphic functors, and are representable.
6. Let $\operatorname{Fun}(\mathcal{C}$, abgps $)$ be the category of functors from \mathcal{C} to abelian groups, with natural transformations as morphisms. We may take as a definition that a sequence $F_{1} \rightarrow F_{2} \rightarrow F_{3}$ in $\operatorname{Fun}(\mathcal{C}, \operatorname{abgps})$ is exact if and only if, for all objects X in \mathcal{C}, the sequence of abelian groups $F_{1}(X) \rightarrow F_{2}(X) \rightarrow F_{3}(X)$ is exact. This is equivalent to other possible definitions of exactness. We may regard the inverse limit construction as a functor $\underset{\longleftarrow}{\lim }: \operatorname{Fun}(\mathcal{C}, \operatorname{abgps}) \rightarrow$ abgps.
a. Let \mathcal{C} be the category $\bullet \leftarrow \bullet \rightarrow \bullet$ with three objects, and five morphisms that are the two morphisms shown and the three identity morphisms for the objects. Show that the functor $\underset{\longleftarrow}{\lim }: \operatorname{Fun}(\mathcal{C}, \operatorname{abgps}) \rightarrow$ abgps is exact.
b. Let \mathcal{D} be the category $\bullet \bullet \leftarrow \bullet$ with three objects, and five morphisms, with the two non-identity morphisms pointing in the opposite direction to the last example. Show (by example, or by giving a reason) that the functor $\underset{\longleftarrow}{\lim }: \operatorname{Fun}(\mathcal{D}$, abgps $) \rightarrow$ abgps is not exact in general.

Solution. a. The constant functor \underline{R} is representable and hence projective in $\operatorname{Fun}(\mathcal{C}, \operatorname{abgps})$, by something we did in class. This means that $\operatorname{Hom}_{\text {Fun }}(\underline{R},-) \simeq \lim _{\longleftarrow}$ is exact.
b. We have seen that \underline{R} is not representable in this case, and in fact it is not projective. We could see this from our knowledge of representations of the quiver $\bullet \rightarrow \bullet \leftarrow \bullet$. A more rudimentary approach is to product a short exact sequence of functors $0 \rightarrow F_{1} \rightarrow F_{2} \rightarrow$ $F_{3} \rightarrow 0$ on which $\underset{\longleftarrow}{\lim }$ is not exact. Let F_{1} be the functor described by $0 \rightarrow R \leftarrow 0$, meaning that $F_{1}(a)=0, F_{1}(b)=R$ and $F_{1}(c)=0$. Similarly, let F_{2} be $(R \rightarrow R \leftarrow 0) \oplus(0 \rightarrow R \leftarrow R)$ and let F_{3} be $\underline{R}=R \rightarrow R \leftarrow R$. All morphisms in describing these functors and the short exact sequence are either 1_{R} or 0 . Now $\underset{\longleftarrow}{\lim } F_{3}=R$ and $\underset{\longleftarrow}{\lim } F_{2}=0$, so $\underset{\longleftarrow}{\lim } F_{2} \rightarrow \underset{\longleftarrow}{\lim } F_{3}$ is not surjective. This shows that $\underset{\longleftarrow}{\lim }$ is not exact.

