Homework Assignment 3 - Solutions Due Sunday 4/17/2022, uploaded to Gradescope.

Each question part is worth 1 point. There are 17 question parts. You are on target for an A if you make a genuine attempt on at least half of them. We define $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$ to be the category whose objects are functors $\mathcal{C} \to \mathcal{D}$ and whose morphisms are natural transformations.

In these questions p is a prime. We will write an element $a_0 + a_1 p + a_2 p^2 + \cdots$ of the p-adic integers \mathbb{Z}_p^{\wedge} , where $0 \leq a_i \leq p-1$, as a string $\cdots a_3 a_2 a_1 a_0$. with a point to the right of a_0 .

- 1. a. Calculate the 3-adic expansion of $\frac{1}{2}$ in \mathbb{Z}_3^{\wedge} .
- b. What fraction does the recurring 3-adic integer $\cdots \overline{0121}01211$. represent?
- c. Show that a p-adic integer is a negative (rational) integer if and only if it is of the form $(p-1)a_n \cdots a_3 a_2 a_1 a_0$.
- d. Show that the localization $\mathbb{Z}_{(p)}$ of \mathbb{Z} at (p) is the subset of \mathbb{Z}_p^{\wedge} consisting of strings

$$\overline{a_m \cdots a_n} \cdots a_3 a_2 a_1 a_0$$
.

that eventually recur to the left.

Solution: a. The multiplication sum

shows that $\cdots \bar{1}2$. multiplied by 2 equals 1, so $\cdots \bar{1}2 = \frac{1}{2}$.

- b. Let $x = \cdots \overline{0121}01211$. The subtraction $\cdots \overline{0121}10000$. $-\cdots \overline{0121}01211$. = 1012., which is 27 + 3 + 2 in decimal notation, shows that $3^4x x = 32$. Thus x = 80/32 = 2/5.
- c. The positive integers are precisely the p-adic integers that are eventually 0 to the left. Any subtraction sum of the form

finishes with recurring p-1 in the answer, because each 0 in the top lline has to borrow 1 from the next place, causing 1 to be added in the column to the left in the second row, producing a sum 10-1=p-1 in p-adic notation. Conversely any subtraction sum

$$\cdots$$
 10 10 10 10 10.

$$\frac{- \ \cdots \ p-1 \ p-1}{\cdots} \ \frac{p-1}{0} \ \frac{a}{0} \ \frac{b}{d} \ \frac{c.}{e} \ f.$$

finishes with 0 to the left because 1 must always be borrowed, increasing p-1 to 10, giving an eventual computation 10-10=0 in each place.

- d. The computation of the p-adic expansion of a/b where $p \not\mid b$ always gives a recurring string, by the pigeon hole principle, because at each stage in the division the p-adic remainder is one of the digits $\{1, \ldots, p-1\}$ and the calculation must repeat after some time. Equally, every p-adic integer x with a recurring expansion of length n is a rational integer because $p^n x x = a$ is an integer, and now $x = \frac{a}{p^n 1}$. The map $\mathbb{Z}_{(p)} \to \mathbb{Z}_p^{\wedge}$ specified by $\frac{a}{b} \mapsto (p$ -adic expansion of $\frac{a}{b}$ is an injective ring homomorphism.
- 2. In this question consider the 10-adic topology on \mathbb{Z} , determined by the powers of the ideal (10), with completion the 10-adic integers $\mathbb{Z}^{\wedge}_{(10)}$, and also the 2-adic topology on \mathbb{Z} with completion $\mathbb{Z}^{\wedge}_{(2)}$
- a. Show that a sequence of integers that is a Cauchy sequence in the 10-adic topology is also a Cauchy sequence in the 2-adic topology.
- b. Show that the identity map $1: \mathbb{Z} \to \mathbb{Z}$ extends to a ring homomorphism $\mathbb{Z}^{\wedge}_{(10)} \to \mathbb{Z}^{\wedge}_{(2)}$.
- c. Determine whether the identity map $1: \mathbb{Z} \to \mathbb{Z}$ extends to a ring homomorphism $\mathbb{Z}^{\wedge}_{(2)} \to \mathbb{Z}^{\wedge}_{(10)}$.
- d. Using the fact that $\mathbb{Z}/10\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ as a product of rings, show that $\mathbb{Z}^{\wedge}_{(10)} \cong A \times B$ for certain rings A, B that are also ideals of $\mathbb{Z}^{\wedge}_{(10)}$, with $A/(A \cap (10)) \cong \mathbb{Z}/2\mathbb{Z}$ and $B/(B \cap (10)) \cong \mathbb{Z}/5\mathbb{Z}$.
- e. Show that $\mathbb{Z}^{\wedge}_{(10)}$ has just two maximal ideals, generated by 2 and 5.
- f. Show that the composite morphism specified as the inclusion of the ideal $A \hookrightarrow \mathbb{Z}^{\wedge}_{(10)}$, followed by the ring homomorphism $\mathbb{Z}^{\wedge}_{(10)} \to \mathbb{Z}_{(2)}$ of part b, is surjective. (Consider using Nakayama's lemma.)

Solution: a. Taking the distance in the m-adic topology to be $d_m(a,b) = \frac{1}{m^t}$ if m^t is the largest power of m that divides a-b, if (a_n) is a Cauchy sequence in the 10-adic topology then, given $\epsilon > 0$, we can find u so that $\frac{1}{2^u} < \epsilon$. Now find N so that $i, j \geq N$ implies $d_{10}(a_i, a_j) < \frac{1}{10^u}$, that is, $10^u | (a_i - a_j)$. Now $2^u | (a_i - a_j)$ so $d_2(a_i, a_j) \leq \frac{1}{2^u} < \epsilon$ for all $i, j \geq N$. This shows that (a_n) is a Cauchy sequence in the 2-adic topology.

b. Regarding the completion as the set of equivalence classes of Cauchy sequences, the identity provides a map of sets

$$\{10\text{-adic Cauchy sequences}\} \to \{2\text{-adic Cauchy sequences}\} \to \mathbb{Z}_{(2)}^{\wedge}$$

by part a. Equivalent 10-adic Cauchy sequences are also 2-adic equivalent by a similar argument, so we get a map of sets $\mathbb{Z}^{\wedge}_{(10)} \to \mathbb{Z}^{\wedge}_{(2)}$, and it is a ring homomorphism because the identity map is.

c. The identity on \mathbb{Z} does not extend to a ring homomorphism $f: \mathbb{Z}_{(2)}^{\wedge} \to \mathbb{Z}_{(10)}^{\wedge}$. Consider the composite of such an f with the quotient map $\mathbb{Z}_{(10)}^{\wedge} \to \mathbb{Z}_{(10)}^{\wedge}/10\mathbb{Z}_{(10)}^{\wedge} \cong \mathbb{Z}/10\mathbb{Z}$ (the last isomorphism was done in class). Under this map 1 is sent to 1, which generates $\mathbb{Z}/10\mathbb{Z}$ as a ring, so the composite is surjective. The kernel contains 10, and $\mathbb{Z}_{(2)}^{\wedge}/10\mathbb{Z}_{(2)}^{\wedge} = \mathbb{Z}/10\mathbb{Z}$

- $\mathbb{Z}_{(2)}^{\wedge}/2\mathbb{Z}_{(2)}^{\wedge} \cong \mathbb{Z}/2\mathbb{Z}$ because 5 is invertible in $\mathbb{Z}_{(2)}^{\wedge}$. This ring has size 2, so the composite cannot be surjective. Thus no such f can exist.
- d. The decomposition of $\mathbb{Z}/10\mathbb{Z}$ (assumed, but FYI it is a consequence of the Chinese Remainder Theorem) gives an expression 1 = e + (1 e) as a sum of two non-zero orthogonal idempotents, where e is the identity in $\mathbb{Z}/2\mathbb{Z}$ and 1 e is the identity in $\mathbb{Z}/5\mathbb{Z}$. We did in class that $\mathbb{Z}^{\wedge}_{(10)}/10\mathbb{Z}^{\wedge}_{(10)} \cong \mathbb{Z}/10\mathbb{Z}$, and we also did in class using Hensel's lemma that there exists an idempotent $f \in \mathbb{Z}^{\wedge}_{(10)}$ with $f + 10\mathbb{Z}^{\wedge}_{(10)} = e$, giving a ring decomposition $\mathbb{Z}^{\wedge}_{(10)} = A \times B$ where $A = \mathbb{Z}^{\wedge}_{(10)} f$ and $B = \mathbb{Z}^{\wedge}_{(10)} (1 f)$. The quotient map $A \times B \to \mathbb{Z}/10\mathbb{Z}$ has kernel $A \cap (10) \times B \cap (10)$ with the summands mapping to $\mathbb{Z}/2\mathbb{Z}$ and $\mathbb{Z}/5\mathbb{Z}$, respectively, so $A/(A \cap (10)) \cong \mathbb{Z}/2\mathbb{Z}$ and $B/(B \cap (10)) \cong \mathbb{Z}/5\mathbb{Z}$.
- e. Every element of $\mathbb{Z}_{(10)}^{\wedge}$ not in (2) or (5) is invertible, by the same argument that showed that that the completion at a maximal ideal is a local ring: if x is not in either ideal we can find y so that $xy-1 \in (10)$, so xy=1+a with $a \in (10)$. Now $(xy)^{-1}=1-a+a^2-a^3+\cdots$ and $x^{-1}=y(xy)^{-1}$. From this it follows that if I is an ideal then $I \subset (2) \cup (5)$. Now if I contains an element a not in (2) and b not in (5) then it contains a+b which lies in neither (2) nor (5), so is invertible, and I is the whole ring. This means that every ideal is contained in either (2) or (5) so these ideals are maximal and are the only such.
- f. The composite $\mathbb{Z}^{\wedge}_{(10)} \to \mathbb{Z}^{\wedge}_{(2)} \to \mathbb{Z}/2\mathbb{Z}$ is surjective because 1 is sent to 1, and this generates $\mathbb{Z}/2\mathbb{Z}$. It gives rise to a surjective map of groups $A/(A \cap (10)) \times B/(B \cap (10)) \to \mathbb{Z}/2\mathbb{Z}$, and the component $B/(B \cap (10)) \cong \mathbb{Z}/5\mathbb{Z}$ it goes to 0. Thus the map $A/(A \cap (10)) \to \mathbb{Z}/2\mathbb{Z}$ is surjective, as is $A \to \mathbb{Z}/2\mathbb{Z}$. Now $\mathbb{Z}^{\wedge}_{(2)}$ is a local ring, so that its Jacobson radical is $2\mathbb{Z}^{\wedge}_{(2)}$. Together with this radical, the image of A generates $\mathbb{Z}^{\wedge}_{(2)}$. By Nakayama's lemma, the image of A equals $\mathbb{Z}^{\wedge}_{(2)}$. and the map is surjective.
- 3. Find how many cube roots each of the following numbers has in $\mathbb{Z}_{(7)}^{\wedge}$: 1, 9, -4, 4, 12, 6. Also find how many cube roots each of the following numbers has in $\mathbb{Z}_{(5)}^{\wedge}$: 1, 2, 3, 4, 5.

Solution. We find roots of $f(x) = x^3 - t$ where t is prime to 7. Now f'(x) = 3x so if a in $\mathbb{Z}^{\wedge}_{(7)}$ has $a^3 \equiv t$ (prime to 7) then a is a unit (mod 7), as is f'(a) = 3a. For such a, Hensel's lemma applies and there is a cube root b of t with $b \equiv a \pmod{7}$. This means the number cube roots of t in $\mathbb{Z}^{\wedge}_{(7)}$ equals the number of cube roots of t in $\mathbb{Z}/7\mathbb{Z}$. In $\mathbb{Z}/7\mathbb{Z}$ the cubes of 1, 2, 3, 4, 5, 6 are 1, 1, 6, 1, 6, 6. This means the numbers 1, 6 both have 3 cube roots in x and the other numbers x and x cube root in x and x cube root in x cube root in x cube root in x cube root in x cube root.

Doing the same thing module 5, the cubes of 1, 2, 3, 4 are 1, 3, 2, 4. This means that each 1, 2, 3, 4 has a unique cube root in $\mathbb{Z}_{(5)}^{\wedge}$. The question probably should not have asked about cube roots of 5, but if $x \in \mathbb{Z}_{(5)}^{\wedge}$ lies in $(5)^d$ then x^3 lies in $(5)^{3d}$. From this we see that $x^3 = 5$ has no solutions, because $5 \notin (5)^{3d}$ with $d \ge 1$.

4. Let I be an ideal of R. Consider the polynomial $f(x) = 3x^4 + x^2 + 5$ as a function $R \to R$. Show that f is continuous in the I-adic topology on R. (The I-adic topology on R is given by the distance function determined by the powers of I.)

Solution. We use the distance function $d(u,v)=\frac{1}{2^n}$ if $u-v\in I^n-I^{n+1}$, and write |u|=d(u,0). We show first that the function x^r is continuous. Given $\epsilon>0$ take $\delta=\epsilon$. Now if $|u|<\delta$ then $u\in I^N$ where $\frac{1}{2^n}<\delta$, and $d(x^r,(x+u)^r)=|(x+u)^r-x^r|=|uv|<\epsilon$ (for some v) because $uv\in I^N$ also (I^N is an ideal). This shows that x^r is continuous. We next show that if f and g are continuous functions then f+g is continuous. For each x, given $\epsilon>0$ we can find δ so that $|u|<\delta$ implies both $|f(x+u)-f(x)|<\epsilon$ and $|g(x+u)-g(x)|<\epsilon$. This means that $f(x+u)-f(x)\in I^N$ and $g(x+u)-g(x)\in I^N$ for some N with $\frac{1}{2^N}<\epsilon$ and now $f(x+u)+g(x+u)-(f(x)+g(x))=(f(x+u)-f(x))+(g(x+u)-g(x))\in I^N$ so $|f(x+u)+g(x+u)-(f(x)+g(x))|<\epsilon$. This shows that f+g is continuous. Scalar multiplication is continuous, similarly. Putting this together we see that polynomials are continuous.

- 5. For a category \mathcal{C} and commutative ring R we may take the R-linear category $R\mathcal{C}$ to have the same objects as \mathcal{C} , and with $\operatorname{Hom}_{\mathcal{RC}}(x,y) = R \operatorname{Hom}_{\mathcal{C}}(x,y)$, the set of formal linear combinations of morphism $x \to y$ in \mathcal{C} . Composition is R-bilinear. The constant functor $\underline{R}: R\mathcal{C} \to R$ -mod is the functor that assigns R to each object of \mathcal{C} , and the identity map 1_R to each morphism of \mathcal{C} .
- a. Let \mathcal{C} be the category $\bullet \leftarrow \bullet \rightarrow \bullet$ with three objects, and five morphisms that are the two morphisms shown and the three identity morphisms for the objects. Show that the constant functor on \mathcal{C} is representable as a linear functor $R\mathcal{C} \rightarrow R$ -mod.
- b. Let \mathcal{D} be the category $\bullet \to \bullet \leftarrow \bullet$ with three objects, and five morphisms, with the two non-identity morphisms pointing in the opposite direction to the last example. Show that the constant functor is not representable.
- c. Show that the inverse limit functor \varprojlim : Fun(\mathcal{D}, R -mod) $\to R$ -mod is representable, represented by the constant functor.
- Solution. a. Label the three objects a, b, c from left to right, and the non-identity morphisms $\alpha: b \to a$ and $\beta: b \to c$. We claim that the constant functor is represented by object b. This is because $\operatorname{Hom}_{R\mathcal{C}}(b,x) \cong R$ for each object x, and each morphism of \mathcal{C} is sent by this functor to an isomorphism. Specifically, $\operatorname{Hom}_{R\mathcal{C}}(b,a) = R\alpha$, $\operatorname{Hom}_{R\mathcal{C}}(b,b) = R1_b$ and $\operatorname{Hom}_{R\mathcal{C}}(b,c) = R\beta$. The functorial effect on α is postcomposition with α , namely $\alpha_*: \operatorname{Hom}_{R\mathcal{C}}(b,b) \to \operatorname{Hom}_{R\mathcal{C}}(b,a)$, so $\alpha_*(1_x) = \alpha$, and it is similar with β . This functor is thus naturally isomorphic to the constant functor, by a natural isomorphism that sends each of $\alpha, 1_b, \beta$ to 1 in R.
- b. Label the three objects a, b, c from left to right. If the constant functor were representable, it would be representable by one of a, b, c. The representable functor at a is non-zero only on a and b, the representable functor at b is non-zero only on b, and the representable functor at c is non-zero only on b and c. None of these is the constant functor, so it is not representable.

- c. We have seen in class exactly that $\varprojlim F \cong \operatorname{Hom}_{\operatorname{Fun}}(\underline{R},F)$ where \underline{R} is the constant functor on \mathcal{D} , Fun is short for $\operatorname{Fun}(\mathcal{D},R\operatorname{-mod})$ and the Hom denotes natural transformations. Thus \varprojlim and $\operatorname{Hom}_{\operatorname{Fun}}(\underline{R},-)$ are naturally isomorphic functors, and are representable.
- 6. Let Fun(\mathcal{C} , abgps) be the category of functors from \mathcal{C} to abelian groups, with natural transformations as morphisms. We may take as a definition that a sequence $F_1 \to F_2 \to F_3$ in Fun(\mathcal{C} , abgps) is exact if and only if, for all objects X in \mathcal{C} , the sequence of abelian groups $F_1(X) \to F_2(X) \to F_3(X)$ is exact. This is equivalent to other possible definitions of exactness. We may regard the inverse limit construction as a functor \varprojlim : Fun(\mathcal{C} , abgps) \to abgps.
- a. Let \mathcal{C} be the category $\bullet \leftarrow \bullet \rightarrow \bullet$ with three objects, and five morphisms that are the two morphisms shown and the three identity morphisms for the objects. Show that the functor $\lim_{t \to \infty} \operatorname{Fun}(\mathcal{C}, \operatorname{abgps}) \rightarrow \operatorname{abgps}$ is exact.
- b. Let \mathcal{D} be the category $\bullet \to \bullet \leftarrow \bullet$ with three objects, and five morphisms, with the two non-identity morphisms pointing in the opposite direction to the last example. Show (by example, or by giving a reason) that the functor $\varprojlim : \operatorname{Fun}(\mathcal{D}, \operatorname{abgps}) \to \operatorname{abgps}$ is not exact in general.

Solution. a. The constant functor \underline{R} is representable and hence projective in Fun(\mathcal{C} , abgps), by something we did in class. This means that $\operatorname{Hom}_{\operatorname{Fun}}(\underline{R},-)\simeq \varprojlim$ is exact.

b. We have seen that \underline{R} is not representable in this case, and in fact it is not projective. We could see this from our knowledge of representations of the quiver $\bullet \to \bullet \leftarrow \bullet$. A more rudimentary approach is to product a short exact sequence of functors $0 \to F_1 \to F_2 \to F_3 \to 0$ on which \varprojlim is not exact. Let F_1 be the functor described by $0 \to R \leftarrow 0$, meaning that $F_1(a) = 0$, $F_1(b) = R$ and $F_1(c) = 0$. Similarly, let F_2 be $(R \to R \leftarrow 0) \oplus (0 \to R \leftarrow R)$ and let F_3 be $\underline{R} = R \to R \leftarrow R$. All morphisms in describing these functors and the short exact sequence are either 1_R or 0. Now $\varprojlim F_3 = R$ and $\varprojlim F_2 = 0$, so $\varprojlim F_2 \to \varprojlim F_3$ is not surjective. This shows that \varprojlim is not exact.