Math 8300

1 Let V be the 2-dimensional representation of the symmetric group S_3 over \mathbb{F}_2 where the permutations (1, 2) and (1, 2, 3) act via matrices

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}.$$

Show that V is simple.

- 2. (The modular law.) Let A be a ring and $U = V \oplus W$ an A-module which is the direct sum of A-modules V and W. Show by example that if X is any submodule of U then it need not be the case that $X = (V \cap X) \oplus (W \cap X)$. Show that if we make the assumption that $V \subseteq X$ then it is true that $X = (V \cap X) \oplus (W \cap X)$.
- 3. Let V be the 3-dimensional permutation representation of the symmetric group S_3 over \mathbb{F}_3 , where the permutations (1, 2) and (1, 2, 3) act via matrices

0	1	0		0	0	1	
1	0	0	,	1	0	0	
0	0	1		0	1	0	

Show that V has a unique subrepresentation of dimension 1, and a unique subrepresentation of dimension 2.

- 4. Let V be an A-module for some ring A and suppose that V is a sum $V = V_1 + \cdots + V_n$ of simple submodules. Assume further that the V_i are pairwise non-isomorphic. Show that the V_i are the only simple submodules of V and that $V = V_1 \oplus \cdots \oplus V_n$ is their direct sum.
- 5. Let

$$\rho_1: G \to GL(V)$$
$$\rho_2: G \to GL(V)$$

be two representations of G on the same vector space V which are injective as homomorphisms. (One says that such a representation is *faithful*.) Consider the three statements

- (a) the RG-modules given by ρ_1 and ρ_2 are isomorphic,
- (b) the subgroups $\rho_1(G)$ and $\rho_2(G)$ are conjugate in GL(V),
- (c) for some automorphism $\alpha \in \operatorname{Aut}(G)$ the representations ρ_1 and $\rho_2 \alpha$ are isomorphic.

Show that (a) \Rightarrow (b) and that (b) \Rightarrow (c).

6. One form of the Jordan-Zassenhaus theorem states that for each n, $GL(n,\mathbb{Z})$ (that is, $\operatorname{Aut}(\mathbb{Z}^n)$) has only finitely many conjugacy classes of subgroups of finite order. Assuming this, show that for each finite group G and each integer n there are only finitely many isomorphism classes of representations of G on \mathbb{Z}^n . 7. Let $\phi : U \to V$ be a homomorphism of A-modules, where A is a ring. Show that $\phi(\operatorname{soc} U) \subseteq \operatorname{soc} V$. Show that ϕ is one-to-one if and only if the restriction of ϕ to soc U is one-to-one. Show that if ϕ is an isomorphism then ϕ restricts to an isomorphism soc $U \to \operatorname{soc} V$.

Extra questions: Do not hand in.

8. Let $G = C_p = \langle x \rangle$ be cyclic of prime order p and $R = \mathbb{F}_p$ for some prime p. Consider the two representations ρ_1 and ρ_2 specified by

$$\rho_1(x) = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \rho_2(x) = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Calculate the socles of these two representations. Show that the second representation is the direct sum of two non-zero subrepresentations.

9. Let k be an infinite field of characteristic 2, and $G = \langle x, y \rangle \cong C_2 \times C_2$ be the non-cyclic group of order 4. For each $\lambda \in k$ let $\rho_{\lambda}(x), \rho_{\lambda}(y)$ be the matrices

$$\rho_{\lambda}(x) = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \quad \rho_{\lambda}(y) = \begin{bmatrix} 1 & 0 \\ \lambda & 1 \end{bmatrix}$$

regarded as linear maps $U_{\lambda} \to U_{\lambda}$ where U_{λ} is a k-vector space of dimension 2 with basis $\{e_1, e_2\}$.

- (a) Show that ρ_{λ} defines a representation of G with representation space U_{λ} .
- (b) Find a basis for $\operatorname{soc} U_{\lambda}$.
- (c) By considering the effect on $\operatorname{soc} U_{\lambda}$, show that any kG-module homomorphism $\alpha: U_{\lambda} \to U_{\mu}$ has a triangular matrix $\alpha = \begin{bmatrix} a & 0 \\ b & c \end{bmatrix}$ with respect to the given bases.
- (d) Show that if $U_{\lambda} \cong U_{\mu}$ as kG-modules then $\lambda = \mu$. Deduce that kG has infinitely many non-isomorphic 2-dimensional representations.