1 Let V be the 2-dimensional representation of the symmetric group S_{3} over \mathbb{F}_{2} where the permutations $(1,2)$ and $(1,2,3)$ act via matrices

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] .
$$

Show that V is simple.
2. (The modular law.) Let A be a ring and $U=V \oplus W$ an A-module which is the direct sum of A-modules V and W. Show by example that if X is any submodule of U then it need not be the case that $X=(V \cap X) \oplus(W \cap X)$. Show that if we make the assumption that $V \subseteq X$ then it is true that $X=(V \cap X) \oplus(W \cap X)$.
3. Let V be the 3-dimensional permutation representation of the symmetric group S_{3} over \mathbb{F}_{3}, where the permutations $(1,2)$ and $(1,2,3)$ act via matrices

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
$$

Show that V has a unique subrepresentation of dimension 1, and a unique subrepresentation of dimension 2 .
4. Let V be an A-module for some ring A and suppose that V is a sum $V=V_{1}+\cdots+V_{n}$ of simple submodules. Assume further that the V_{i} are pairwise non-isomorphic. Show that the V_{i} are the only simple submodules of V and that $V=V_{1} \oplus \cdots \oplus V_{n}$ is their direct sum.
5. Let

$$
\begin{aligned}
& \rho_{1}: G \rightarrow G L(V) \\
& \rho_{2}: G \rightarrow G L(V)
\end{aligned}
$$

be two representations of G on the same vector space V which are injective as homomorphisms. (One says that such a representation is faithful.) Consider the three statements
(a) the $R G$-modules given by ρ_{1} and ρ_{2} are isomorphic,
(b) the subgroups $\rho_{1}(G)$ and $\rho_{2}(G)$ are conjugate in $G L(V)$,
(c) for some automorphism $\alpha \in \operatorname{Aut}(G)$ the representations ρ_{1} and $\rho_{2} \alpha$ are isomorphic.
Show that $(\mathrm{a}) \Rightarrow(\mathrm{b})$ and that $(\mathrm{b}) \Rightarrow(\mathrm{c})$.
6. One form of the Jordan-Zassenhaus theorem states that for each $n, G L(n, \mathbb{Z})$ (that is, $\operatorname{Aut}\left(\mathbb{Z}^{n}\right)$) has only finitely many conjugacy classes of subgroups of finite order. Assuming this, show that for each finite group G and each integer n there are only finitely many isomorphism classes of representations of G on \mathbb{Z}^{n}.
7. Let $\phi: U \rightarrow V$ be a homomorphism of A-modules, where A is a ring. Show that $\phi(\operatorname{soc} U) \subseteq \operatorname{soc} V$. Show that ϕ is one-to-one if and only if the restriction of ϕ to $\operatorname{soc} U$ is one-to-one. Show that if ϕ is an isomorphism then ϕ restricts to an isomorphism $\operatorname{soc} U \rightarrow \operatorname{soc} V$.

Extra questions: Do not hand in.
8. Let $G=C_{p}=\langle x\rangle$ be cyclic of prime order p and $R=\mathbb{F}_{p}$ for some prime p. Consider the two representations ρ_{1} and ρ_{2} specified by

$$
\rho_{1}(x)=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \quad \text { and } \quad \rho_{2}(x)=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Calculate the socles of these two representations. Show that the second representation is the direct sum of two non-zero subrepresentations.
9. Let k be an infinite field of characteristic 2 , and $G=\langle x, y\rangle \cong C_{2} \times C_{2}$ be the non-cyclic group of order 4. For each $\lambda \in k$ let $\rho_{\lambda}(x), \rho_{\lambda}(y)$ be the matrices

$$
\rho_{\lambda}(x)=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right], \quad \rho_{\lambda}(y)=\left[\begin{array}{ll}
1 & 0 \\
\lambda & 1
\end{array}\right]
$$

regarded as linear maps $U_{\lambda} \rightarrow U_{\lambda}$ where U_{λ} is a k-vector space of dimension 2 with basis $\left\{e_{1}, e_{2}\right\}$.
(a) Show that ρ_{λ} defines a representation of G with representation space U_{λ}.
(b) Find a basis for $\operatorname{soc} U_{\lambda}$.
(c) By considering the effect on $\operatorname{soc} U_{\lambda}$, show that any $k G$-module homomorphism $\alpha: U_{\lambda} \rightarrow U_{\mu}$ has a triangular matrix $\alpha=\left[\begin{array}{cc}a & 0 \\ b & c\end{array}\right]$ with respect to the given bases.
(d) Show that if $U_{\lambda} \cong U_{\mu}$ as $k G$-modules then $\lambda=\mu$. Deduce that $k G$ has infinitely many non-isomorphic 2-dimensional representations.

