1 Let V be the 2-dimensional representation of the symmetric group S_{3} over \mathbb{F}_{2} where the permutations $(1,2)$ and $(1,2,3)$ act via matrices

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] .
$$

Show that V is simple.
Solution: We show that V is generated as an $\mathbb{F}_{2} S_{3}$-module by every non-zero vector it contains. There are 3 such vectors, namely the transposes of $(1,0),(0,1)$ and $(1,1)$. Applying $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ to the first two gives the other vector in the standard basis of V. Applying $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$ to the transpose of $(1,1)$ gives the transpose of $(1,0)$, which is already shown to generate V, so all three vectors generate V. Thus V is simple.
2. (The modular law.) Let A be a ring and $U=V \oplus W$ an A-module which is the direct sum of A-modules V and W. Show by example that if X is any submodule of U then it need not be the case that $X=(V \cap X) \oplus(W \cap X)$. Show that if we make the assumption that $V \subseteq X$ then it is true that $X=(V \cap X) \oplus(W \cap X)$.

Solution: Let k be a field and let $U=k^{2}, V$ the span of the transpose of $(1,0), W$ the span of the transpose of $(0,1)$, and X the span of the transpose of $(1,1)$. Then $V \cap X=W \cap X=0$, so that $X \neq(V \cap X) \oplus(W \cap X)$, but $U=V \oplus W$.
If we suppose that $V \subseteq X$, to show that $X=(V \cap X) \oplus(W \cap X)$, note first that $(V \cap X) \cap(W \cap X) \subseteq V \cap W=0$. We show that $X=(V \cap X)+(W \cap X)$. We can write any vector $u \in X$ uniquely as $u=v+w$ where $v \in V$ and $w \in W$. Because $V \subseteq X$ we see that $v \in X$, so $w=u-v \in X$ so $u \in(V \cap X)+(W \cap X)$.
3. Let V be the 3 -dimensional permutation representation of the symmetric group S_{3} over \mathbb{F}_{3}, where the permutations $(1,2)$ and $(1,2,3)$ act via matrices

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
$$

Show that V has a unique subrepresentation of dimension 1, and a unique subrepresentation of dimension 2.

Solution: We start by observing that there are invariant subspaces

$$
U=\mathbb{F}_{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \subset\left\{\left.\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \right\rvert\, a+b+c=0\right\}=W
$$

of dimensions 1 and 2, and we show that these are the only proper invariant subspaces. Writing vectors as row vectors, suppose a vector (a, b, c) spans a 1 -dimensional subspace. Applying the powers of the 3 -cycle $(1,2,3)$ there is a scalar λ so that $(b, c, a)=\lambda(a, b, c)$, and $\lambda^{3}=1$, which implies $\lambda=1$. Thus $a=b=c$ and we deduce that the only invariant 1 -dimensional subspace is U, spanned by $(1,1,1)$. Now suppose there is a 2 -dimensional invariant subspace $W_{1} \neq W$. Then $W_{1} \cap W$ has dimension 1 by the rank formula, and is invariant, so $W_{1} \cap W=U$. If W_{1} contains a vector (a, b, c) not in W, then also $(a, b, c)-c(1,1,1)=(a-c, b-c, 0)$ is not in W, as is $(a-c, b-c, 0)-(a-c)(1,-1,0)$, which is a non-zero scalar multiple of $(1,0,0)$. Thus W_{1} contains the three standard basis vectors of V, so equals V (contradicting the dimension of W_{1} being 2). This shows that U and W are the only proper invariant subspaces.
4. Let V be an A-module for some ring A and suppose that V is a sum $V=V_{1}+\cdots+V_{n}$ of simple submodules. Assume further that the V_{i} are pairwise non-isomorphic. Show that the V_{i} are the only simple submodules of V and that $V=V_{1} \oplus \cdots \oplus V_{n}$ is their direct sum. Solution. We know from class that V is a direct sum of a subset of the V_{i}. From the direct sum we can construct a composition series with this subset of the V_{i} as composition factors. Each of the V_{i} does appear in some composition series, because every submodule is part of a composition series, so each V_{i} is a composition factor. By the Jordan-Hölder theorem, all the V_{i} must appear in the direct sum, so V is the direct sum of all of them.
Let S be a simple submodule of V. Then S is also a composition factor of V and must be isomorphic to some V_{i}. We have either $V_{i} \cap S=0$ or $V_{i} \cap S=V_{i}=S$ because both V_{i} and S are simple. In the first case, the submodule of V generated by V_{i} and S is $V_{i} \oplus S$, so that V_{i} appears as a composition factor of V with multiplicity 2 , which does not happen. Thus $S=V_{i}$, and the only simple submodules of V are the V_{i}.
5. Let

$$
\begin{aligned}
& \rho_{1}: G \rightarrow G L(V) \\
& \rho_{2}: G \rightarrow G L(V)
\end{aligned}
$$

be two representations of G on the same vector space V which are injective as homomorphisms. (One says that such a representation is faithful.) Consider the three statements
(a) the $R G$-modules given by ρ_{1} and ρ_{2} are isomorphic,
(b) the subgroups $\rho_{1}(G)$ and $\rho_{2}(G)$ are conjugate in $G L(V)$,
(c) for some automorphism $\alpha \in \operatorname{Aut}(G)$ the representations ρ_{1} and $\rho_{2} \alpha$ are isomorphic. Show that $(\mathrm{a}) \Rightarrow(\mathrm{b})$ and that $(\mathrm{b}) \Rightarrow(\mathrm{c})$.

Solution: Suppose (a) holds. Then there is an invertible linear map $\theta: V \rightarrow V$ so that, for all $v \in V$ and $g \in G, \rho_{2}(g)(\theta(v))=\theta \rho_{1}(g)(v)$. Thus $\theta \rho_{1}(g) \theta^{-1}(w)=\rho_{2}(g)(w)$ for all win V and $g \in G$, which means that $\theta \rho_{1}(g) \theta^{-1}=\rho_{2}(g)$ for all $g \in G$. This implies that the subgroups $\rho_{1}(G)$ and $\rho_{2}(G)$ are conjugate.
Suppose (b) holds. Then, for some $\theta \in G L(V)$ we have $\rho_{2}(G)=\theta \rho_{1}(G) \theta^{-1}$, which we can write as $\rho_{2}(G)=c_{\theta} \rho_{1}(G)$ where $c_{\theta}: G L(V) \rightarrow G L(V)$ is the map $c_{\theta}(\beta)=\theta \beta \theta^{-1}$. Thus ρ_{2}
and $c_{\theta} \rho_{1}$ have the same image, but might not be the same map, and they are one-to-one. Now $\alpha:=\rho_{2}^{-1} c_{\theta} \rho_{1} \in \operatorname{Aut}(G)$ and $\rho_{2} \alpha=c_{\theta} \rho_{1}$, where ρ_{2}^{-1} means the inverse of ρ_{2} on its image. By the same calculations as in the first implication, this means θ is an isomorphism between ρ_{1} and $\rho_{2} \alpha$.
6. One form of the Jordan-Zassenhaus theorem states that for each $n, G L(n, \mathbb{Z})$ (that is, $\operatorname{Aut}\left(\mathbb{Z}^{n}\right)$) has only finitely many conjugacy classes of subgroups of finite order. Assuming this, show that for each finite group G and each integer n there are only finitely many isomorphism classes of representations of G on \mathbb{Z}^{n}.

Solution. We retain the notation c_{θ} from queston 5. The Jordan-Zassenhaus theorem implies that, for each finite group G, there are only finitely many equivalence classes of homomorphisms $G \rightarrow G L(n, \mathbb{Z})$ under the relation $\rho_{1} \sim \rho_{2}$ if and only if $\rho_{2}(G)=c_{\theta} \rho_{1}(G)$ for some $\theta \in G L(n, \mathbb{Z})$. Because there are only finitely many maps between two finite sets, it follows that there are only finitely many equivalence classes of homomorphisms $G \rightarrow G L(n, \mathbb{Z})$ under the relation $\rho_{1} \sim^{\prime} \rho_{2}$ if and only if $\rho_{2}=c_{\theta} \rho_{1}$ for some $\theta \in G L(n, \mathbb{Z})$. Such equivalence classes biject with isomorphism classes of representations of G on \mathbb{Z}^{n}, by the same argument as in question 5.
7. Let $\phi: U \rightarrow V$ be a homomorphism of A-modules, where A is a ring. Show that $\phi(\operatorname{Soc} U) \subseteq$ $\operatorname{Soc} V$. Show that ϕ is one-to-one if and only if the restriction of ϕ to $\operatorname{Soc} U$ is one-to-one. Show that if ϕ is an isomorphism then ϕ restricts to an isomorphism Soc $U \rightarrow \operatorname{Soc} V$.
Solution: We can write $\operatorname{Soc} U=\sum_{i} S_{i}$ where the S_{i} are simple submodules of U. Now $\phi(\operatorname{Soc} U)=\phi\left(\sum_{i} S_{i}\right)=\sum_{i} \phi\left(S_{i}\right)$ and this is a sum of simple modules because each $\phi\left(S_{i}\right)$ is either simple or zero. It follows that $\phi(\operatorname{Soc} U) \subseteq \operatorname{Soc} V$, the largest sum of simple submodules of V.
If ϕ is one-to-one then its restriction to any subset is one-to-one. Conversely, if ϕ is not one-to-one then $\operatorname{Ker} \phi$ has a simple submodule, which is contained in $\operatorname{Soc} U$, so ϕ is not one-to-one on restriction to $\operatorname{Soc} U$.
If ϕ is an isomorphism then $\phi^{-1}: \operatorname{Soc} V \rightarrow \operatorname{Soc} U$ so that ϕ and ϕ^{-1} restrict to inverse isomorphisms between the socles.

