Math 8300 Solutions 1 Thursday 9/30/2021

Let V' be the 2-dimensional representation of the symmetric group Ss over Fy where the
permutations (1,2) and (1,2, 3) act via matrices
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Solution: We show that V is generated as an FyS3-module by every non-zero vector it
contains. There are 3 such vectors, namely the transposes of (1,0),(0,1) and (1,1). Ap-

Show that V' is simple.

plying [(1) (1)} to the first two gives the other vector in the standard basis of V. Applying

[(1) ﬂ to the transpose of (1,1) gives the transpose of (1,0), which is already shown to

generate V', so all three vectors generate V. Thus V is simple.

. (The modular law.) Let A be a ring and U = V& W an A-module which is the direct sum
of A-modules V and W. Show by example that if X is any submodule of U then it need
not be the case that X = (VN X) @ (W N X). Show that if we make the assumption that
V C X then it is true that X = (VN X)® (W N X).

Solution: Let k be a field and let U = k2, V the span of the transpose of (1,0), W
the span of the transpose of (0,1), and X the span of the transpose of (1,1). Then
VNX=WnX=0,sothat X #(VNnX)®e(WnX),btU=VeaW.

If we suppose that V' C X, to show that X = (VN X)® (W N X), note first that
(VNnX)Nn(WnX)CVnNW =0. We show that X = (VNX)+ (WnNX). We can write
any vector v € X uniquely as u = v +w where v € V and w € W. Because V C X we see
thatve X, sow=u—-veXsoue(VNX)+(WnX).

. Let V be the 3-dimensional permutation representation of the symmetric group S3 over
F3, where the permutations (1,2) and (1,2, 3) act via matrices

01 0 0 0 1
1 0 0f, 1 00
0 0 1 0 1 0

Show that V' has a unique subrepresentation of dimension 1, and a unique subrepresenta-
tion of dimension 2.

Solution: We start by observing that there are invariant subspaces
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of dimensions 1 and 2, and we show that these are the only proper invariant subspaces.
Writing vectors as row vectors, suppose a vector (a, b, c) spans a 1-dimensional subspace.
Applying the powers of the 3-cycle (1,2,3) there is a scalar A so that (b,c,a) = A(a, b, c),
and A3 = 1, which implies A = 1. Thus a = b = ¢ and we deduce that the only invariant
1-dimensional subspace is U, spanned by (1,1,1). Now suppose there is a 2-dimensional
invariant subspace W7 # W. Then W7 N W has dimension 1 by the rank formula, and
is invariant, so W7y N W = U. If W; contains a vector (a,b,c¢) not in W, then also
(a,b,¢) —c(1,1,1) = (a — ¢,b — ¢,0) is not in W, as is (a — ¢,b — ¢,0) — (a — ¢)(1,—1,0),
which is a non-zero scalar multiple of (1,0,0). Thus W7 contains the three standard basis
vectors of V', so equals V' (contradicting the dimension of W7 being 2). This shows that U
and W are the only proper invariant subspaces.

4. Let V be an A-module for some ring A and suppose that V isasum V =V; 4+---4+V,, of
simple submodules. Assume further that the V; are pairwise non-isomorphic. Show that
the V; are the only simple submodules of V' and that V =V, ®---®V,, is their direct sum.

Solution. We know from class that V is a direct sum of a subset of the V;. From the
direct sum we can construct a composition series with this subset of the V; as composition
factors. Each of the V; does appear in some composition series, because every submodule
is part of a composition series, so each V; is a composition factor. By the Jordan-Holder
theorem, all the V; must appear in the direct sum, so V' is the direct sum of all of them.
Let S be a simple submodule of V. Then S is also a composition factor of V' and must be
isomorphic to some V;. We have either V; NS =0 or V; NS = V; = S because both V; and
S are simple. In the first case, the submodule of V' generated by V; and S is V; & S, so
that V; appears as a composition factor of V' with multiplicity 2, which does not happen.
Thus S = V;, and the only simple submodules of V' are the V;.

5. Let
p1:G— GL(V)

p2: G — GL(V)

be two representations of G on the same vector space V' which are injective as homomor-
phisms. (One says that such a representation is faithful.) Consider the three statements

(a) the RG-modules given by p; and py are isomorphic,

(b) the subgroups p1(G) and p2(G) are conjugate in GL(V),

(c) for some automorphism a € Aut(G) the representations p; and pa«a are isomorphic.
Show that (a) = (b) and that (b) = (c).

Solution: Suppose (a) holds. Then there is an invertible linear map 6 : V' — V so that,
for all v € V and g € G, p2(9)(0(v)) = 0p1(g9)(v). Thus 0p1(9)0~ (w) = p2(g)(w) for all
winV and g € G, which means that 0p;(g)0~! = pa2(g) for all g € G. This implies that
the subgroups p1(G) and p2(G) are conjugate.

Suppose (b) holds. Then, for some 6§ € GL(V) we have p2(G) = 0p1(G)0~1, which we can
write as po(G) = cop1(G) where ¢y : GL(V) — GL(V) is the map cg(B) = 080~1. Thus py
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and cgp; have the same image, but might not be the same map, and they are one-to-one.
Now « := pytcgpr € Aut(G) and paar = cgpy, where p; ' means the inverse of py on its
image. By the same calculations as in the first implication, this means € is an isomorphism
between p; and psar.

. One form of the Jordan-Zassenhaus theorem states that for each n, GL(n,Z) (that is,
Aut(Z™)) has only finitely many conjugacy classes of subgroups of finite order. Assuming
this, show that for each finite group G and each integer n there are only finitely many
isomorphism classes of representations of G on Z".

Solution. We retain the notation ¢y from queston 5. The Jordan-Zassenhaus theorem
implies that, for each finite group G, there are only finitely many equivalence classes of
homomorphisms G — GL(n,Z) under the relation p; ~ ps if and only if p2(G) = cop1(G)
for some 0 € GL(n,Z). Because there are only finitely many maps between two finite
sets, it follows that there are only finitely many equivalence classes of homomorphisms
G — GL(n,Z) under the relation p; ~' ps if and only if ps = ¢yp; for some 0 € GL(n,Z).
Such equivalence classes biject with isomorphism classes of representations of G on Z", by
the same argument as in question 5.

. Let ¢ : U — V be a homomorphism of A-modules, where A is a ring. Show that ¢(SocU) C
Soc V. Show that ¢ is one-to-one if and only if the restriction of ¢ to SocU is one-to-one.
Show that if ¢ is an isomorphism then ¢ restricts to an isomorphism Soc U — Soc V.

Solution: We can write SocU = ), S; where the S; are simple submodules of U. Now
¢(SocU) = ¢(>, 8:) = >, #(S;) and this is a sum of simple modules because each ¢(5;)
is either simple or zero. It follows that ¢(SocU) C SocV, the largest sum of simple
submodules of V.

If ¢ is one-to-one then its restriction to any subset is one-to-one. Conversely, if ¢ is not
one-to-one then Ker ¢ has a simple submodule, which is contained in SocU, so ¢ is not
one-to-one on restriction to SocU.

If ¢ is an isomorphism then ¢! : SocV — SocU so that ¢ and ¢! restrict to inverse
isomorphisms between the socles.



