\[3.1_9\]

Monday, September 23, 2019
3:50 PM

3.1_9

Practice 3D Mathematical Extensions

Suppose we have a quadrilateral \(P_1 P_2 P_3 P_4 \).

Step 1: \(P_1 P_2 P_3 P_4 \) is a quadrilateral.

Step 2: \(P_1 P_2 P_3 P_4 \) is a quadrilateral.

Step 3: \(P_1 P_2 P_3 P_4 \) is a quadrilateral.

Step 4: \(P_1 P_2 P_3 P_4 \) is a quadrilateral.

Problem Show: \(2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 1 \rightarrow 2 \) (V1).

Problem: Show that \(S^1 - \{ \} \) is disjoint from \(V(1) \).

Proof:

Base Case: For \(n = 1 \), \(S^1 - \{ \} \) is disjoint from \(V(1) \).

Inductive Step: Assume \(S^1 - \{ \} \) is disjoint from \(V(k) \) for all \(k \leq n \) and \(n \geq 1 \).

Conclusion: \(S^1 - \{ \} \) is disjoint from \(V(k+1) \).

Hence, \(S^1 - \{ \} \) is disjoint from \(V(1) \).

Remark: We can thus \(V(2) \) for all \(n > m \) by relying only on \(\alpha \) as the base case.

Problem: For which \(n \) is \(S^1 - \{ \} \) disjoint from \(V(n) \)?

Practice 3D Mathematical Extensions

Suppose we have a quadrilateral \(P_1 P_2 P_3 P_4 \).

Step 1: \(P_1 P_2 P_3 P_4 \) is a quadrilateral.

Step 2: \(P_1 P_2 P_3 P_4 \) is a quadrilateral.

Step 3: \(P_1 P_2 P_3 P_4 \) is a quadrilateral.

Step 4: \(P_1 P_2 P_3 P_4 \) is a quadrilateral.

Problem Show: \(2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 1 \rightarrow 2 \) (V1).

Problem: Show that \(H \) is the interior of the solid angle at \(P_0 \) in the diagram made up of two \(S^1 \) disks.

Proof: Show that the area of the interior of the solid angle at \(P_0 \) is the area of the \(S^1 \) disks.