Limits

- \(\lim_{x \to a} f(x) = L \) if \(\forall \varepsilon > 0 \exists \delta > 0 \) such that \(0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon \)

A function is continuous at \(x = a \) if \(\lim_{x \to a} f(x) = f(a) \).

Existence of \(\lim_{x \to a} f(x) \) if and only if \(\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) \).

For a function \(f(x) \) to be continuous at \(x = a \), the following conditions must be satisfied:
1. \(f(a) \) is defined.
2. \(\lim_{x \to a} f(x) \) exists.
3. \(\lim_{x \to a} f(x) = f(a) \).

For any \(x \to a \), \(f(x) \to L \) if and only if \(\lim_{x \to a} f(x) = L \).

For any \(x \to a \), \(f(x) \to L \) if and only if \(\lim_{x \to a} f(x) = L \).