The problem is simple and reasonable.

The answer is correct.

The answer is correct.

\[\text{Solution:} \quad \begin{align*}
0 &= x^2 + 6x + 9 - 9 \\
0 &= (x + 3)^2 - 9 \\
n + 3 &= \pm 3 \\
x &= 0, -6
\end{align*} \]

How can we understand this solution?

\[\text{Solution:} \quad \begin{align*}
0 &= x^2 + 6x + 9 - 9 \\
0 &= (x + 3)^2 - 9 \\
n + 3 &= \pm 3 \\
x &= 0, -6
\end{align*} \]

There is much more that can be said and discussed, but let me move on to the next topic.

The right hand side of the absolute value \(x - 6 \) is zero when \(x = 6 \) and negative down to \(-6 \) and above.

\[\begin{align*}
x &= 6 \quad \text{and} \\
x &= 10 \quad \text{are the roots.}
\end{align*} \]

The roots are \(x = 6 \) and \(x = 10 \).

The roots are \(x = 6 \) and \(x = 10 \).

The roots are \(x = 6 \) and \(x = 10 \).

To solve this problem, \(x = 6 \) and \(x = 10 \) are the solutions to the equation.

Note that \(x = 6 \) and \(x = 10 \) are the roots of the quadratic equation.

To solve this problem, \(x = 6 \) and \(x = 10 \) are the solutions to the equation.

Note that \(x = 6 \) and \(x = 10 \) are the roots of the quadratic equation.