Math 1272, Summer 2019

Worksheet 11.8

Lilly Webster

1. Let $\sum_{n=0}^{\infty} c_n x^n$ be a power series that is convergent at $x = -5$ and divergent at $x = 7$. Which of the following is a possible interval of convergence for this power series? (There may be multiple correct answers)

 $[-7, 7]$ $[-5, 6]$ $(-7, 7)$ $[-5, 7]$ $(-5, 5)$ $[-6, 6]$

2. Let $\sum_{n=0}^{\infty} c_n (x - 2)^n$ be a power series that is convergent at $x = 0$ and divergent at $x = 5$. Which of the following is a possible interval of convergence for this power series? (There may be multiple correct answers)

 $(-5, 5)$ $(-1, 5)$ $[-5, 5)$ $[0, 5)$ $[0, 4]$ $(-0.5, 4.5)$

3. Let $\sum_{n=0}^{\infty} c_n (x - 3)^n$ be a power series that is convergent at $x = 0$ and divergent at $x = 6$. Which of the following is a possible interval of convergence for this power series? (There may be multiple correct answers)

 $(0, 6)$ $[-1, 5]$ $[0, 6)$ $(0, 6]$ $(-1, 7)$ $[0, 6]$ $[0, 6)$

4. Let $\sum_{n=0}^{\infty} c_n x^n$ be a power series that is convergent at $x = 3$ and divergent at $x = -4$. For each of the following series, decide if it is convergent, divergent, or if not enough information is given.

 $\sum_{n=0}^{\infty} c_n (-2)^n$ $\sum_{n=0}^{\infty} c_n (-3)^n$

 Convergent Not enough information

 $\sum_{n=0}^{\infty} c_n$ $\sum_{n=0}^{\infty} c_n 5^n$

 Convergent Divergent

5. Find the radius of convergence and interval of convergence of the power series

 $\sum_{n=0}^{\infty} \frac{x^n}{n!}$

 $R = \infty$, $(-\infty, \infty)$

6. Find the radius of convergence and interval of convergence of the power series

 $\sum_{n=0}^{\infty} \frac{x^n}{n^n 3^n}$

 $R = 3$, $[-3, 3]$
7. Find the radius of convergence and interval of convergence of the power series

\[\sum_{n=0}^{\infty} n!(2x-1)^n \]

\[R = 0, \{\frac{1}{2}\} \]

8. Find the radius of convergence and interval of convergence of the power series

\[\sum_{n=2}^{\infty} \frac{(x-3)^n}{5^n \ln n} \]

\[R = 5, [-2, 8) \]

9. Find the radius of convergence and interval of convergence of the power series

\[\sum_{n=0}^{\infty} \frac{(x+6)^n \sqrt{n}}{8^n} \]

\[R = 8, (-14, 2) \]

10. Find the radius of convergence and interval of convergence of the power series

\[\sum_{n=0}^{\infty} \frac{(3x-2)^n}{n^3} \]

\[R = \frac{1}{3}, \left[\frac{1}{3}, 1\right]\]