Frequency, Wavelength and Period
Preliminaries

- Graph \(y = \sin x \) and \(y = \cos x \)
- Amplitude
- Transformations of graphs (stretching vertically and horizontally).

Objectives

- Given an equation, find the period (wavelength) and frequency.
- Given a graph, find the period (wavelength) and frequency.
- Graph waves of the form \(y = \pm A \sin(Bx) \) and \(y = \pm A \sin(Bx) \).
Amplitude = 5

\[y = 5 \sin x \]

\[y = \sin x \]
B changes the width of the graph

\[y = \sin(Bx) \]
$y = \sin x$
Wavelength and Period

\[y = \sin(2x) \]

![Graph of \(y = \sin(2x) \)]
y = \sin(2x)

\text{Period} = \frac{2\pi}{2} = \pi
Wavelength and Period

\[y = \sin(2x) \]

Frequency:
\[\text{Frequency} = \frac{2}{2\pi} = \frac{1}{\pi} \]
Period and Frequency

\[y = \sin 4x \]

The graph shows the function \(y = \sin 4x \) with key points marked at \(\frac{\pi}{2}, \pi, \frac{3\pi}{2}, \) and \(2\pi \).
Period and Frequency

\[y = \sin 4x \]

Period \(= \frac{2\pi}{4} = \frac{\pi}{2} \)

Frequency :

\[\text{Frequency} = \frac{4}{2\pi} = \frac{2}{\pi} \]
$y = \sin 4x$

Period $= \frac{2\pi}{4} = \frac{\pi}{2}$

Frequency $= \frac{4}{2\pi} = \frac{2}{\pi}$
General Formulas

Period = \frac{2\pi}{B}

Frequency = \frac{B}{2\pi}
$y = \sin(5x)$

Period $= \frac{2\pi}{5}$
Graphing a Wave Adjusted for Period

\[y = \sin(5x) \]

Period \(= \frac{2\pi}{5} \)

\[Q = \frac{2\pi}{20} = \frac{\pi}{10} \]
Graphing a Wave Adjusted for Period

\[y = \sin(5x) \]

Period \[= \frac{2\pi}{5} \]

\[Q = \frac{2\pi}{20} = \frac{\pi}{10} \]
Graphing a Wave Adjusted for Period

\[y = \sin(5x) \]

Period \(= \frac{2\pi}{5} \)

\[Q = \frac{2\pi}{20} = \frac{\pi}{10} \]
Graphing a Wave Adjusted for Period and Amplitude

\[y = -2 \cos 3x \]

Period \[= \frac{2\pi}{3}\]
Graphing a Wave Adjusted for Period and Amplitude

\[y = -2 \cos 3x \]

\[
\begin{align*}
\text{Period} &= \frac{2\pi}{3} \\
Q &= \frac{2\pi}{12} = \frac{\pi}{6}
\end{align*}
\]
Graphing a Wave Adjusted for Period and Amplitude

\[y = -2 \cos 3x \]

Period \[= \frac{2\pi}{3} \]

\[Q = \frac{2\pi}{12} = \frac{\pi}{6} \]
Graphing a Wave Adjusted for Period and Amplitude

\[y = -2 \cos 3x \]

Period \[= \frac{2\pi}{3} \]

\[Q = \frac{2\pi}{12} = \frac{\pi}{6} \]
Finding the Equation of a Wave from its Graph

\[y = \sin \left(\frac{1}{2} x \right) \]

Amplitude, \(A = 3 \)

Period, \(B = \frac{2\pi}{4} = \frac{\pi}{2} \)

\[\sin \left(\frac{1}{2} x \right) \]
Finding the Equation of a Wave from its Graph

\[- \sin \left(\frac{1}{2} x \right)\]

Amplitude: \(A = 3\)

Period: \(2\pi\)

\[B = \frac{4\pi}{4\pi} = \frac{1}{2}\]
Finding the Equation of a Wave from its Graph

Amplitude $= A = 3$

$-3 \sin (x)$
Finding the Equation of a Wave from its Graph

Amplitude \(= A = 3 \)

Period \(= \frac{2\pi}{B} = 4\pi \) \(\Rightarrow \) \(B = \frac{2\pi}{4\pi} = \frac{1}{2} \)
Finding the Equation of a Wave from its Graph

\[y = \cos(\pi x) \]

Amplitude \(A = 2 \)

Period \(B = \frac{\pi}{3} \)

\[B = \frac{\pi}{3} \cdot 2 \pi = \frac{2\pi}{3} \]

University of Minnesota

Frequency, Wavelength and Period
Finding the Equation of a Wave from its Graph

Amplitude $= A = 2$

Period $= \frac{2 \pi}{B}$
Finding the Equation of a Wave from its Graph

Amplitude $= A = 2$

Period $= \frac{2\pi}{B} = \frac{\pi}{3} \Rightarrow B = 2\pi \cdot \frac{3}{\pi} = 6$

University of Minnesota

Frequency, Wavelength and Period
Recap

- Period (wavelength) is the x-distance between consecutive peaks of the wave graph.

\[
\text{Period} = \frac{2\pi}{B}; \quad \text{Frequency} = \frac{B}{2\pi}
\]

- Use amplitude to mark y-axis, use period and quarter marking to mark x-axis.
© The Regents of the University of Minnesota & Mike Weimerskirch

For a license please contact http://z.umn.edu/otc