Exercise 0.1 (Spring 2010, Midterm 2).
Evaluate \(\int_C xy \, dx + x^2 \, dy \) where \(C \) is the boundary of the triangle with vertices \((0, 0), (2, 0), (1, 1)\) oriented in the counter clockwise direction.

We want to use Green's Theorem.

So we write

\[
\int_C F \cdot ds = \iint_D \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \, dA
\]

So \(F(x, y) = (xy, x^2) \) and \(\frac{\partial F_1}{\partial y} = 2x \) while \(\frac{\partial F_2}{\partial x} = y \).

Thus,

\[
\int_C xy \, dx + x^2 \, dy = \iint_D 2x - y \, dA
\]

\[
= \iint_D x \, dA + \int_0^2 \int_0^x x \, dy \, dx
\]

\[
= \frac{1}{2}
\]

Exercise 0.2.

Use a line integral to compute the area inside the ellipse \(\frac{x^2}{16} + \frac{y^2}{9} = 1 \).

Bonus: Is there another force field \(\mathbf{F} \) that makes the integration easier?

We know Area = \(\iint_D 1 \, dA \)

We want to use Green's Theorem and write \(\iint_D 1 \, dA = \iint_D F \cdot ds \), so we need to find the right \(F \) and \(\mathbf{F} \).

\(F \): We just need \(F \) to satisfy \(L = \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = 1 \).

So \(F(x, y) = (\frac{3}{2}, \frac{1}{2}) \) will do (check this on your own).

\(C \): This should be a parametrization of the ellipse.

Start w/ param. for circle: \((\cos(t), \sin(t)) \) with \(0 \leq t \leq 2\pi \).

Multiply each component to "stretch/squish" the shape.

\(C(t) = (4 \cos(t), 3 \sin(t)) \rightarrow C'(t) = (-4\sin(t), 3 \cos(t)) \)

Now we can compute

\[
\int_C F \cdot ds = \int_0^{2\pi} F(4 \cos(t), 3 \sin(t)) \cdot (-4\sin(t), 3 \cos(t)) \, dt
\]

\[
= \int_0^{2\pi} 12 \sin^2(t) + 6 \cos^2(t) \, dt
\]

\[
= 6\int_0^{2\pi} 1 \, dt = 6 \cdot 2\pi = 12\pi
\]
Exercise 0.3.
Let \(C_1 \) be the counter-clockwise circle of radius 3 centered at the origin and let \(C_2 \) be the clockwise circle with radius \(\frac{1}{2} \) centered at the point \((1,1)\). Letting \(\mathbf{F}(x,y) = (-y,0) \), compute the line integral \(\int_{C_1 + C_2} \mathbf{F} \cdot ds \).

First, we break up the line integral
\[
\int_{C_1 + C_2} \mathbf{F} \cdot ds = \int_{C_1} \mathbf{F} \cdot ds + \int_{C_2} \mathbf{F} \cdot ds = \int_{C_1} \mathbf{F} \cdot ds - \int_{C_2} \mathbf{F} \cdot ds
\]
changing to counter-clockwise orientation introduces a negative.

New notice that \(\frac{dy}{dx} = \frac{-2y}{2x} = \frac{-y}{x} = 0 \) (\(-\)) = 1

So applying Green's Theorem to the right-hand side we got
\[
\iint_{C_1} 1 \, dA - \iint_{C_2} 1 \, dA = \text{where the integration is now over the inside of } C_1 \text{ and } C_2
\]

These two integrals are simply the area inside each circle \(C_1 \) and \(C_2 \)

Using \(A = \pi r^2 \) we calculate \(\int_{C_1} \mathbf{F} \cdot ds \) as \(\int_{C_1} 1 \, dA - \int_{C_2} 1 \, dA = 4\pi - \frac{1}{4} \pi = \frac{15}{4} \pi \)

Exercise 0.4 (Spring 2007, Midterm 2).
Let \(W \) be the region in \(\mathbb{R}^3 \) inside the cylinder \(z^2 + y^2 = 1 \) and bounded by the \(yz \)-plane and the plane \(z + x = 1 \). If \(f(x,y,z) \) is any scalar function, set up an integral for \(f \) over the region \(W \) that ends with

- \(\int dx \, dz \, dy \)
- \(\int dy \, dz \, dx \)

The solution posted online has a really good explanation complete with MATHEMATICA pictures!

Bonus: If \(f(x,y,z) = 1 \) for all \(x,y,z \) what do the two integrals represent?

Bonus Bonus: Can you compute the volume of \(W \)? What's the easiest way?

Bonus Bonus Bonus: Can you set up a double integral for the volume?

- Using the shadow method from Math Insights...

 \[
 \iint_{\text{shadow}} f(x,y,z) \, dx \, dA
 \]

 This shadow is the circle \(z^2 + y^2 = 1 \) so
 \[
 \iint_{\frac{1}{4} - y^2}^{1} f(x,y,1-x) \, dx \, dy
 \]

 This time, the "shadow" or cross-section is in the \(zy \)-plane and is the triangle

- \(z = 1 - x \)

 \[
 \iint_{\text{shadow}} f(x,y,z) \, dA = \int_{0}^{1} \left(\int_{1-x}^{1} f(x,y,1-x) \, dx \right) dy
 \]

 Blue + red together is the intersection of the plane + the cylinder.