1. A surface is given by

\[y = x^2 + 4z^2. \]

Please sketch the surface. What is this surface?

Answer: It is an elliptic paraboloid. See Section 12.6 for detail. Below is the surface sketched by Mathematica.

![Figure 1](image.png)

Figure 1. The surface of \(y = x^2 + 4z^2 \). The vertical axis is \(z \), the axis surrounded by the surface is \(y \), the other is \(x \).

2. Please find parametric equations for the tangent line to the curve with the equation at the specified point.

\[\mathbf{r}(t) = \langle t^3 - t, 1 + 2\sqrt{t}, t^3 + t \rangle; \quad (0, 3, 2) \]

Answer: We first find the parameter \(t \) that corresponds the point \((0, 3, 2)\). Set

\[t^3 - 1 = 0, \quad 1 + 2\sqrt{t} = 3, \quad t^3 + t = 2. \]

From above we have \(t = 1 \). Thus we evaluate

\[\mathbf{r}'(t) = \langle 3t^2 - 1, \frac{1}{\sqrt{t}}, 3t^2 + 1 \rangle \]

at \(t = 1 \), and obtain a direction vector \(\mathbf{v} \) for the tangent line:

\[\mathbf{v} = \mathbf{r}'(1) = \langle 2, 1, 4 \rangle. \]

Hence we have the following parametric equations for the line:

\[x = 2s, \quad y = 3 + s, \quad z = 2 + 4s. \]
3. Please find the domain of \(f(x, y) = \ln \left[\sqrt[3]{16 - x^2 - y^2} \right] \). Then sketch the domain.

Answer: The argument of a square root function must be nonnegative, and the argument of a logarithmic function must be (strictly) positive. Thus we have

\[
y \geq 0, \quad e^\sqrt[3]{16 - x^2 - y^2} > 0,
\]

from which we derive

\[
y \geq 0, \quad x^2 + y^2 < 16.
\]

Therefore, the domain is

\[D = \{(x, y) \in \mathbb{R}^2 : y \geq 0, x^2 + y^2 < 16\} .\]

The graph of the domain is the upper half of the disc centered at the origin with radius 4, in which the curved part of boundary is excluded.