1. (2 points) Please sketch the region of integration and change the order of integration.
\[\int_{0}^{\pi/2} \int_{0}^{\cos x} g(x, y) \, dy \, dx \]

Answer: For any \(y \in [0, 1] \), \(x \) varies from 0 to \(\arccos y \), hence
\[\int_{0}^{\pi/2} \int_{0}^{\cos x} g(x, y) \, dy \, dx = \int_{0}^{1} \int_{0}^{\arccos y} g(x, y) \, dx \, dy. \]

2. (4 points) Please use the polar coordinates to find the volume of the solid that is under the cone \(z = \sqrt{x^2 + y^2} \) and above the disk \(x^2 + y^2 \leq 9 \).

Answer: We have
\[V = \iint_{D} \sqrt{x^2 + y^2} \, dA, \]
where
\[D = \{(x, y) : x^2 + y^2 \leq 9\}. \]

In polar coordinate, we have
\[x = r \cos \theta, \quad y = r \sin \theta, \quad dA = r \, dr \, d\theta. \]

and for points in \(D \),
\[0 \leq r \leq 3, \quad 0 \leq \theta \leq 2\pi. \]

Therefore
\[V = \int_{0}^{2\pi} \int_{0}^{3} r^2 \, dr \, d\theta \]
\[= \int_{0}^{2\pi} \left[\frac{1}{3} r^3 \right]_{r=0}^{r=3} d\theta \]
\[= \int_{0}^{2\pi} 9 \, d\theta \]
\[= 18\pi. \]
3. (4 points) Please find the mass and center of mass of the lamina that occupies the region D and has the given density function ρ, where

$$D = \{(x, y) | 1 \leq x \leq 3, 1 \leq y \leq 4\}; \quad \rho(x, y) = x.$$

Answer: The mass is the integral of the density function:

$$m = \iint_D x \, dA = \int_1^4 \int_1^3 x \, dx \, dy = \int_1^4 \left[\frac{x^3}{3} \right]_{x=1}^{x=3} dy = \int_1^4 \frac{32}{3} \, dy = \frac{64}{3}.$$

We have moment about x-axis

$$M_x = \iint_D y \rho \, dA = \int_1^4 \int_1^3 xy \, dx \, dy = \int_1^4 \left[\frac{x^3 y}{2} \right]_{x=1}^{x=3} dy = \int_1^4 4y \, dy = \frac{32}{3},$$

and the moment about the y-axis

$$M_y = \iint_D x \rho \, dA = \int_1^4 \int_1^3 x^2 \, dx \, dy = \int_1^4 \left[\frac{x^3}{3} \right]_{x=1}^{x=3} dy = \int_1^4 \frac{26}{3} \, dy = 26.$$

Therefore the center of mass is

$$\left(\overline{x}, \overline{y} \right) = \left(\frac{M_y}{m}, \frac{M_x}{m} \right) = \left(\frac{26}{12}, \frac{30}{12} \right) = \left(\frac{13}{6}, \frac{5}{2} \right).$$

Remark: I did not require the computation of the center of mass, you just need to set up the correct formula. Please note it is **wrong** to write \(\left(\overline{x}, \overline{y} \right) = \left(\frac{M_x}{m}, \frac{M_y}{m} \right) \).