Due April 1, beginning of class

Instructions: Show your work. An explicit, logical, and neat presentation of each solution is required.

1. Consider the equation
\[\frac{dx}{dt} = 3x - x^3 - r. \]
The parameter \(r \) can vary over all real values. Find all the fixed points and identify the value(s) or \(r \) at which bifurcations take place. State what kind of bifurcation you find, and draw the bifurcation diagram (\(x^* \) against \(r \)).

2. For each equation below, find the values of \(r \) at which the bifurcations occur and classify each bifurcation as saddle-node, transcritical, or pitchfork. Then, sketch the bifurcation diagram of the fixed points \(x^* \) vs. \(r \).

(a) \[\frac{dx}{dt} = rx - \frac{x}{1 + x} \]
(b) \[\frac{dx}{dt} = rx - \frac{x}{1 + x^2} \]
(c) \[\frac{dx}{dt} = 5 - re^{-x^2} \]