1. Problems from Handout:
 (a) Problem from Section 1.2: 3, 9, 10.
 (b) Problem from Section 1.3: 4.

2. In this problem, we consider a matrix A such that $AA^* = A^*A$, where A^* is the adjoint matrix (conjugate transpose). Such a matrix is called a normal matrix.
 (a) Suppose there are two square matrices A and B that commute: $AB = BA$. Then, show that there is at least one eigenvector that is common to the two matrices. (*Hint: Show any eigenspace of A is invariant under B.)
 (b) Let A be square matrix acting on a vector space V and suppose $W \subset V$ is a subspace of V. Suppose W is invariant under A. Show that W^\perp is also invariant under A^*.
 (c) Show that normal matrices can be diagonalized using a unitary matrix.
 (d) Show that any normal matrix A can be written as $A = SU = US$ where U is unitary and S is self-adjoint.

3. Let A be an $n \times n$ real symmetric matrix. Let H be an $n - j$ dimensional subspace of \mathbb{R}^n, where $n - j \geq 1$. Let q_1, \cdots, q_{n-j} be a set of orthonormal vectors spanning the subspace H. Form the $n \times (n-j)$ matrix with columns q_1, \cdots, q_{n-j} and call this matrix Q. Define:
 $$A_H = Q^T A Q.$$
 Let the eigenvalues of A be $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ and let the eigenvalues of A_H be $\tilde{\lambda}_1 \geq \tilde{\lambda}_2 \geq \cdots \geq \tilde{\lambda}_{n-j}$.
 (a) Show that the eigenvalues of A_H do not depend on the choice of orthonormal basis on H.
 (b) Let S_{k-1} be the set of all $n - k + 1$ dimensional subspaces of \mathbb{R}^n, and \tilde{S}_{k-1} be the set of all $(n - j) - (k - 1)$ dimensional subspaces.
of H (assuming $(n-j)-(k-1) \geq 1$). Show that:

$$\min_{P \in \mathcal{S}_{k-1}} \max_{\|\mathbf{x}\|=1, \mathbf{x} \in P} \langle A\mathbf{x}, \mathbf{x} \rangle \geq \min_{P \in \mathcal{S}_{k-1}} \max_{\|\mathbf{x}\|=1, \mathbf{x} \in P \cap H} \langle A\mathbf{x}, \mathbf{x} \rangle \geq \min_{P \in \mathcal{S}_{k-1}} \max_{\|\mathbf{x}\|=1, \mathbf{x} \in P \cap H} \langle A\mathbf{x}, \mathbf{x} \rangle.$$

(c) Use the above to show that:

$$\lambda_k \geq \hat{\lambda}_k \geq \lambda_{k+j}, \quad 1 \leq k \leq n-j.$$

This is the content of Theorem 1.8 in handout, with essentially the same proof.

4. Consider the mass-spring problem considered in p. 22-24 of the handout.

(a) Suppose the n-th mass is pegged so that $u_n = 0$. Now, we have a $n-1$ mass system rather than an n-mass system. What can you say about the frequencies of the new system compared to the original system in which the n-th mass was not pegged?

(b) Suppose the spring connecting the j-th and $j+1$-th mass is replaced by a massless rigid rod of the same length as the rest of the spring. This means that $u_j = u_{j+1}$. What can you say about the frequencies of the new system compared to the original system?

(c) Suppose you increase the spring constant connecting the j-th and $j+1$-th mass to infinity. What do you think (without proof) will happen to the frequencies?