1. Problems from textbook:
 (a) Section 1.4: 2, 3, 4.
 (b) Section 1.5: 5, 6, 11.

2. For a $m \times n$ matrix A denote by $\sigma_1(A) \geq \sigma_2(A) \geq \cdots \sigma_r(A) > 0$ the singular values of A.

 (a) Let T_p be the set of all $m \times n$ matrices of rank p. Show that
 $$\min_{B \in T_p} \sigma_1(A - B) \geq \sigma_{p+1}(A)$$
 if $p + 1 \leq r$. (Hint: We did this proof in class, so you can just write that down here.)

 (b) Show that
 $$\min_{B \in T_p} \sigma_k(A - B) \geq \sigma_{p+k}(A)$$
 if $p + k \leq r$. (Hint: Mimic the argument of previous problem.)

 (c) Given a singular value decomposition $A = U \Sigma V^*$ where $V = (v_1, \cdots, v_r)$, $U = (u_1, \cdots, u_r)$. Let
 $$A_p = \sum_{k=1}^{p} \sigma_k(A) u_k v_k^*, \quad p \leq r - 1.$$
 Show that, for $p \leq r - 1$,
 $$\min_{B \in T_p} \|A - B\|_F \geq \|A - A_p\|_F = \sqrt{\sum_{k=p+1}^{r} (\sigma_k(A))^2},$$
 where $\|\cdot\|_F$ is the Frobenius norm. This shows that A_p is the best p-rank approximation of A in the Frobenius norm.