1. The following problem is mostly a review of what we did in class. Consider
\[y'' + \epsilon f(y, y') + y = 0, \quad t > 0 \tag{1} \]
where \(\epsilon \) is small and \(f \) is some smooth function.

(a) Use the multiple time scale expansion:
\[y = y_0(t_1, t_2) + \epsilon y_1(t_1, t_2) + \cdots, \quad t_1 = t, \ t_2 = \epsilon t \tag{2} \]
and show that \(y_0 \) can be written as:
\[y_0 = A(t_2) \cos(\tau), \quad \tau = t_1 + \phi(t_2) \tag{3} \]
where \(\phi(t_2) \) is some function of \(t_2 \).

(b) Show that the \(O(\epsilon) \) equation is:
\[\frac{\partial^2 y_1}{\partial t_1^2} + y_1 = 2 \left(\frac{\partial A}{\partial t_2} \sin(\tau) + A \frac{\partial \phi}{\partial t_2} \cos(\tau) \right) - f \left(y_0, \frac{\partial y_0}{\partial \tau} \right) \tag{4} \]

(c) In order to avoid secular terms, show that the conditions to be satisfied are:
\[\frac{\partial A}{\partial t_2} = \frac{1}{2\pi} \int_{0}^{2\pi} f \left(y_0, \frac{\partial y_0}{\partial \tau} \right) \sin(\tau) d\tau \tag{5} \]
\[A \frac{\partial \phi}{\partial t_2} = \frac{1}{2\pi} \int_{0}^{2\pi} f \left(y_0, \frac{\partial y_0}{\partial \tau} \right) \cos(\tau) d\tau \tag{6} \]

(d) Use the above result to discuss the steady state and limit cycle when \(f = (y^4 - 1)y' \).

2. Problem 3.15 from Holmes.

3. Problem 3.35 from Holmes.