MATH 4567, FALL 2023 HOMEWORK PROBLEMS No.2 Due on October 25

Problem 1. Let $S_n(x)$ denote the *n*-th partial sum of the Fourier series

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right)$$

in the interval $-\pi \leq x \leq \pi$ for the function

$$f(x) = \begin{cases} 2x - 3, & \text{for } x < 0, \\ x + 1, & \text{for } x > 0. \end{cases}$$

- a) Evaluate for each $x \in [-\pi, \pi]$ the limit $S(x) = \lim_{n \to \infty} S_n(x)$.
- b) Sketch the graph of S on the whole real line.
- c) Find the values S(10), S(20).

Hint: The function S is 2π -periodic, so it is enough to know its values on $[-\pi, \pi)$.

Problem 2. a) In the interval $-\pi \leq x \leq \pi$ find the Fourier series for the function

$$f(x) = |\sin(x)|.$$

b) Is it true that the *n*-th partial sums $S_n(x)$ of that Fourier series are convergent to f(x) at all points $x \in \mathbf{R}$? Explain.

c) If so, is it true that the convergence is uniform, that is,

$$\sup_{x \in \mathbf{R}} |S_n(x) - f(x)| \to 0 \quad \text{as } n \to \infty ?$$

Hint: Check whether or not the function f is (2π) -periodic and has a piecewise continuous derivative in $[-\pi, \pi]$.

Problem 3. Check that the function $f(x) = -\log x$ belongs to $L^2[0, 1]$ and find its L^2 -norm. Then consider its cosine Fourier series in the interval $0 \le x \le 1$, that is,

$$-\log x = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(\pi n x).$$

Evaluate the sum $\sum_{n=1}^{\infty} a_n^2$ without computing the coefficients a_n .

Hint: Apply Parseval's equality for the cosine Fourier series in [0, c]. You will also need to compute a_0 .

Problem 4. Using elementary arguments, solve the boundary value problem

$$\begin{split} u_{xx} &= -y^2 \cos x, & u = u(x,y), \ 0 \leq x \leq \pi, \\ u(0,y) &= y^2, \\ u(\pi,y) &= \pi \sin y - y^2. \end{split}$$