Problem 1. Let $S_{n}(x)$ denote the n-th partial sum of the Fourier series

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
$$

in the interval $-\pi \leq x \leq \pi$ for the function

$$
f(x)=\left\{\begin{array}{lll}
2 x-3, & \text { for } & x<0 \\
x+1, & \text { for } & x>0
\end{array}\right.
$$

a) Evaluate for each $x \in[-\pi, \pi]$ the limit $S(x)=\lim _{n \rightarrow \infty} S_{n}(x)$.
b) Sketch the graph of S on the whole real line.
c) Find the values $S(10), S(20)$.

Hint: The function S is 2π-periodic, so it is enough to know its values on $[-\pi, \pi)$.
Problem 2. a) In the interval $-\pi \leq x \leq \pi$ find the Fourier series for the function

$$
f(x)=|\sin (x)| .
$$

b) Is it true that the n-th partial sums $S_{n}(x)$ of that Fourier series are convergent to $f(x)$ at all points $x \in \mathbf{R}$? Explain.
c) If so, is it true that the convergence is uniform, that is,

$$
\sup _{x \in \mathbf{R}}\left|S_{n}(x)-f(x)\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty ?
$$

Hint: Check whether or not the function f is (2π)-periodic and has a piecewise continuous derivative in $[-\pi, \pi]$.
Problem 3. Check that the function $f(x)=-\log x$ belongs to $L^{2}[0,1]$ and find its L^{2}-norm. Then consider its cosine Fourier series in the interval $0 \leq x \leq 1$, that is,

$$
-\log x=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (\pi n x)
$$

Evaluate the sum $\sum_{n=1}^{\infty} a_{n}^{2}$ without computing the coefficients a_{n}.
Hint: Apply Parseval's equality for the cosine Fourier series in $[0, c]$. You will also need to compute a_{0}.

Problem 4. Using elementary arguments, solve the boundary value problem

$$
\begin{aligned}
& u_{x x}=-y^{2} \cos x, \quad u=u(x, y), \quad 0 \leq x \leq \pi, \\
& u(0, y)=y^{2}, \\
& u(\pi, y)=\pi \sin y-y^{2} .
\end{aligned}
$$

