MATH 4567, FALL 2023

Problem 1. Given a continuous function $f(x)$ on $[0, \pi]$, solve the temperature problem:

$$
\begin{aligned}
& u_{t}=k u_{x x}, \\
& u_{x}(0, t)=u(0, t), \\
& u_{x}(\pi, t)=u(\pi, t), \\
& u(x, 0)=f(x) .
\end{aligned}
$$

Write your answer in the form of an infinite functional series

$$
u(x, t)=\sum_{n=0}^{\infty} c_{n} y_{n}(x) T_{n}(t) .
$$

Describe the functions $y_{n}(x)$ and $T_{n}(t)$ that are involved and indicate how to compute the coefficients c_{n} in terms of f.

Note. You will need to consider an associated Sturm-Liouville problem which is exactly the same as the one in Problem 4 from HW3 with parameters $\beta=1$ and $c=\pi$.

Problem 2. Given parameters A, B, C (real), consider the temperature problem with nonhomogeneous boundary conditions:

$$
\begin{aligned}
& u_{t}=k u_{x x}, \quad u=u(x, t), 0 \leq x \leq \pi, t>0 \quad(k>0) \\
& u_{x}(0, t)=u(0, t)+A, \\
& u_{x}(\pi, t)=u(\pi, t)+B, \\
& u(x, 0)=C x
\end{aligned}
$$

Reduce it to Problem 1 by virtue of a suitable substitution $u(x, t)=U(x, t)+\Phi(x)$. Indicate new initial temperatures $F(x)$ in the homogeneous problem about $U(x, t)$.

Problem 3. Use the Fourier transform to solve the temperature problem in the upper half-plane

$$
\begin{aligned}
& u_{t}=k u_{x x}, \\
& u(x, 0)=e^{-2 x^{2}} .
\end{aligned} \quad u=u(x, t),-\infty<x<\infty, t \geq 0, \quad u \text { is bounded, }
$$

Hint. First formulate a general theorem about the boundary value problems

$$
\begin{aligned}
& u_{t}=k u_{x x}, \\
& u(x, 0)=f(x) .
\end{aligned} \quad u=u(x, t),-\infty<x<\infty, t \geq 0, \quad u \text { is bounded, }
$$

Problem 4. Use the Fourier transform to solve the boundary value problem, involving the Laplace equation:

$$
\begin{aligned}
& \Delta u=0, \quad u=u(x, y), x, y \geq 0, \quad u \text { is bounded, } \\
& u_{x}(0, y)=0, \\
& u(x, 0)=\frac{1}{1+x^{2}} .
\end{aligned}
$$

Hint. First formulate a general theorem about boundary value problems of the form

$$
\begin{aligned}
& \Delta u=0, \quad u=u(x, y), x, y \geq 0, \quad u \text { is bounded, } \\
& u_{x}(0, y)=0, \\
& u(x, 0)=f(x) .
\end{aligned}
$$

Note that the Fourier transforms for the functions

$$
f(x)=e^{-x^{2} /\left(2 \sigma^{2}\right)} \quad \text { and } \quad f(x)=\frac{1}{1+x^{2}}
$$

(needed in Problems 3 and 4) are known and have been evaluated in class.

