
Math 8300 – Quantum Groups – Problem Set 2

Due: Friday, February 21

1. A Hopf algebra H is a bialgebra with additional structure. That is, it has an
antipode map S : H −→ H such that

m(S ⊗ id) ◦∆ = m(id⊗ S) ◦∆ = η ◦ ε,

where m and ∆ are multiplication and comultiplication, η and ε are unit and counit
in H.

a) Draw commutative diagrams representing the above displayed axioms.

b) Explain, using diagrams, why every finite dimensional Hopf algebra H has a dual
Hopf algebra structure on the underlying dual vector space.

c) Show that S is an antialgebra map. That is, S(m(a, b)) = m(S(b), S(a)) and
S(1) = 1. Again, m is multiplication here. (Note: We do not assume that S as a
linear map has an inverse.)

2. Show that the tensor algebra T (V ) =
∞⊕
i=0

V ⊗i can be given a Hopf algebra

structure. (Lectures 8 and 9 included definitions of the necessary comultiplication,
counit, and antipode maps.)

3. Show that the Hopf algebra structure on kG, the group algebra of a finite group
G, has dual Hopf algebra k(G), the algebra of functions on G valued in k, with
multiplication defined pointwise: (f · g)(x) := f(x)g(x). That is, write down the
five pairing axioms from Lecture 10, p. 3, and show that they are satisfied for an
appropriate choice of non-degenerate bilinear pairing.

4. In lecture 12, we weakened cocommutativity in a bialgebra, asking for a family of
isomorphisms cA,B : A⊗B −→ B ⊗A for all modules A,B (as opposed to requiring
it to be the simple “flip” map τ : a ⊗ b 7→ b ⊗ a). These must be compatible with
associativity (whose diagrams are a pair of a commutative hexagons - see p. 2A in
the lecture 12 notes). The existence of the map cA,B is equivalent to the existence of
an element R in H ⊗H with certain properties. Show that the compatibility of cA,B

with associativity is equivalent to the element R satisfying the pair of properties:

(∆⊗ id)R = R13R23, (id⊗∆)R = R13R12

5. Let E,F,K,K−1 denote the generators of Uq(sl2) with relations as given in Lecture
16. Show the following relations for any integer m > 0:

[E,Fm] = [m]qF
m−1 q

−(m−1)K − q(m−1)K−1

q − q−1
,



[Em, F ] = [m]qE
m−1 q

(m−1)K − q−(m−1)K−1

q − q−1

where

[m]q :=
qm − q−m

q − q−1


