October 11 ..., 2013

All the exercises are obtained from Complex Analysis, Third Edition, by Lars Ahlfors.

1. (Exercise 1, Section 4.2.3) Compute

(a)
$$\int_{|z|=1} e^z z^{-n} dz$$
;

(b)
$$\int_{|z|=2} z^n (1-z)^m dz$$
;

(c)
$$\int_{|z|=\rho} |z-a|^{-4} |dz|$$
, where $|a| \neq \rho$.

Solution.

(a) Since |z| = 1 is a circle containing 0, we know that

$$\begin{split} \int_{|z|=1} \frac{e^z}{z^n} \, dz &= \frac{2\pi i}{(n-1)!} \left(\frac{(n-1)!}{2\pi i} \int_{|z|=1} \frac{e^z}{(z-0)^n} \, dz \right) \\ &= \frac{2\pi i}{(n-1)!} \left. \frac{d^{n-1}}{dz^{n-1}} (e^z) \right|_{z=0} \\ &= \frac{2\pi i}{(n-1)!} \, . \end{split}$$

We have implicitly assumed that n > 0. If $n \le 0$, then the exercise is trivial for $e^z z^{-n}$ would be an analytic function—so the integral would evaluate to 0.

(b) We consider two separate cases. We do not treat the case when $n, m \ge 0$ for the integrand $z^n(1-z)^m$ is analytic in the inside of |z|=2, so the value of the integral is 0.

i. Case $n < 0, m \ge 0$: We see that

$$\int_{|z|=2} \frac{(1-z)^m}{z^n} dz = \frac{(n-1)!}{2\pi i} \left(\frac{2\pi i}{(n-1)!} \int_{|z|=1} \frac{(1-z)^m}{(z-0)^n} dz \right)$$

$$= \frac{2\pi i}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} (1-z)^m \Big|_{z=0}$$

$$= \frac{2\pi i}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} \sum_{r=0}^m {m \choose r} (-1)^r z^r \Big|_{z=0}$$
if $m > n-1$,
$$= \begin{cases} 0, & \text{if } m > n-1, \\ (-1)^{n-1} \frac{2\pi i}{(n-1)!} {m \choose n-1} (n-1)(n-2) \cdots 2 \cdot 1, & \text{if } m \leq n-1, \end{cases}$$

or, in other words,

$$\int_{|z|=2} \frac{(1-z)^m}{z^n} dz = \begin{cases} 0, & \text{if } m > n-1, \\ (-1)^{n-1} 2\pi i \binom{m}{n-1}, & \text{if } m \leq n-1, \end{cases}$$

ii. Case $n \ge 0, m < 0$: Very similar to the previous case. We have

$$\begin{split} \int_{|z|=2} \frac{z^n}{(1-z)^m} \, dz &= \frac{2\pi i}{(-1)^m (m-1)!} \left(\frac{(m-1)!}{2\pi i} \int_{|z|=2} \frac{z^n}{(z-1)^m} \, dz \right) \\ &= \left. (-1)^m \frac{2\pi i}{(m-1)!} \left. \frac{d^{m-1}}{dz^{m-1}} z^n \right|_{z=1} \\ &= \begin{cases} 0, & \text{if } m-1 > n; \\ (-1)^m \frac{2\pi i}{(m-1)!} n(n-1) \cdots (n-m+1), & \text{if } m-1 \leq n. \end{cases} \end{split}$$

(c) Recall that $|dz| = i\rho \frac{dz}{z}$. First notice that if a = 0, then the given integral reduces to

$$-i\rho\int_C \frac{dz}{\rho^4z} = \frac{2\pi}{\rho^3}.$$

Now we focus on the case when $a \neq 0$. Specifically, we we will consider the cases where $|a| > \rho$, and $|a| < \rho$. After much algebra, we obtain

$$\int_C \frac{|dz|}{|z-a|^4} = -\frac{i\rho}{\overline{a}^2} \int_C \frac{z \ dz}{(z-\frac{\varrho}{\overline{a}})^2 (z-a)^2}.$$

Let $b = \frac{\rho}{a}$. In the former case, we have that $z/(z-a)^2$ is analytic in C. Therefore,

$$\frac{2\pi\rho}{\overline{a}^2}\left(\frac{a+b}{(a-b)^3}\right).$$

The result turns out to be identical for $|a| < \rho$.

2. (Exercise 2, Section 4.2.3) Prove that a function that is analytic in the whole plane and satisfies an inequality $|f(z)| < |z|^n$ for some n and all sufficiently large |z|, reduces to a polynomial.

Proof. We can make the following estimate of the kth derivative of f at a point z:

$$\begin{split} |f^{(k)}(z)| & \leq & \frac{n!}{2\pi} \int_C \frac{|f(\zeta)|}{|\zeta - z|^{k+1}} \; |d\zeta| \\ & = & n! \frac{|z|^n}{|z|^k} \\ & = & n! |z|^{n-k}. \end{split}$$

Setting k = n + 1, we have

$$|f^{(n+1)}(z)| \leq \frac{(n+1)!}{|z|} \longrightarrow 0$$

as $|z| \to \infty$. Since the above assertion holds for any z, we conclude that f must be a polynomial.

 (Exercise 3, Section 4.2.3) If f is analytic and |f(z)| ≤ M for |z| ≤ R, find an upper bound for |f⁽ⁿ⁾(z)| in |z| ≤ ρ < R.

Solution. Instead of using r in Cauchy's estimate, which corresponds to the radius of the circle centered at some point, we can now surround z (the point at which we evaluate the derivative $f^{(n)}$) by a circle of radius at most $R - \rho$. Therefore, we have the upper bound

 $|f^{(n)}(z)| \le \frac{n!M}{(R-\rho)^n}$

4. (Exercise 5, Section 4.2.3) Show that the successive derivatives of an analytic function at a point can never satisfy $|f^{(n)}(z)| > n!n^n$. Formulate a sharper theorem of the same kind.

Proof. Let C be a circle of radius r centered at z such that f is analytic inside C (and on C). For the nth derivative of f, we know the estimate

$$\begin{split} |f^{(n)}(z)| & \leq & \frac{n!}{2\pi} \int_{C} \frac{|f(\zeta)|}{|\zeta - z|^{n+1}} \; dz \\ & \leq & \frac{n! M (2\pi r)}{(2\pi) r^{n+1}} \\ & \leq & \frac{n! M}{r^{n}}, \end{split}$$

where we define M to be $\sup |f(\zeta)|$, which we know must be finite since we are taking the supremum of f over a compact set. Now let n be $\max\{1, M/r\}$, so we have $nr \geq M > 1$, which implies that $(nr)^n \geq M \Longrightarrow n^n \geq \frac{M}{r^n}$.

Substituting the above inequality into our estimate for the nth derivative of f yields $|f^{(n)}(z)| \leq n!n^n$, which implies that the derivative of f never satisfies the strict inequality $|f^{(n)}(z)| > n!n^n$.