Liactober 117, UG

All the exercises are obtained from Complexr Analysis, Third Edition, by Lars Ahlfors.

1. (Exercise 1, Section 4.2.3) Compute

(a) [, €27 dz;
(b) ~'|r|z|='2 21 — 2)™ dz;

(e) Szl — a|~* |dz|, where |a| # p.

Solution.

(a) Since |z| = 1 is a circle containing 0, we know that
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We have implicitly assumed that n > 0. If n <0, then the exercise is trivial for
e*>~" would be an analytic function —so the integral would evaluate to 0.

(b) We consider two separate cases. We do not treat the case when n,m = (0 for the
integrand z"(1—z)™ is analytic in the inside of |z[ = 2, so the value of the integral
is (.

i. Case n < 0,m > 0: We see that
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or, in other words,
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ii. Casen >0,m < 0: Very similar to the previous case. We have
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¢) Recall that |dz| = ip%. First notice that if @ = 0, then the given integral reduces
2 gl B

to
tpf dz  2m
cplz  pb

Now we focus on the case when a # (), Specifically, we we will consider the cases
where [a| > p, and |a| < p. After much algebra, we obtain
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Let b= £. In the former case, we have that 2/(z —a)? is analytic in ', Therefore,
2Zmp [ a+b
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The result turns out to be identical for |a| < p.

2. (Exercise 2, Section 4.2.3) Prove that a function that is analytic in the whole plane
and satisfies an inequality | f(z)| < |z|" for some n and all sufficiently large |z, reduces
to a polynomial.

Proof. We can make the following estimate of the kth derivative of [ at a point z:
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Setting k = n + 1, we have
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as |z| — oo. Since the above assertion holds for any z, we conclude that f must be a
O

polynomial.

(Exercise 3, Section 4.2.3) If f is analytic and |f(z)] < M for [z] < R, find an upper
bound for |f™(2)| in [z] £ p < K.

Solution. Instead of using r in Cauchy's estimate, which corresponds to the radius
of the circle centered at some point, we can now surround z (the point at which we
evaluate the derivative ™) by a circle of radius at most R — p. Therefore, we have
the upper bound
FO(2)] < n!M
(H—p)"

(Exercise 5, Section 4.2.3) Show that the successive derivatives of an analytic function
at a point can never satisfy |f")(z)| > nin". Formulate a sharper theorem of the same

kind.

Proof. Let C be a circle of radius r centered at z such that f is analytic inside C' (and
on ). For the nth derivative of f, we know the estimate
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where we define M to be sup | f(C)], which we know must be finite since we are taking
the supremum of f over a compact set. Now let n be max{l, M/r}, so we have
nr > M > 1, which implies that (nr)* = M = n" 2 ;'i
Substituting the above inequality into our estimate for the nth derivative of [ yields
|f™(z)| € nln®, which implies that the derivative of { never satisfies the strict in-
equality | f™(2)] = nln™.
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