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Abstract. We compute the 2-primary Dyer-Lashof operations in the string topol-
ogy of several families of manifolds, specifically spheres and a variety of projective
spaces. These operations, while well known in the context of iterated loop spaces,
give a collection of homotopy invariants of manifolds new to string topology. The
computations presented here begin an exploration of these invariants.

1. Introduction

In [CS01], Chas and Sullivan introduced a new collection of invariants of manifolds
under the moniker “String topology". Specifically, they geometrically constructed
a product (the loop product) on the loop homology, H∗(M) := H∗−n(LM) of the
free loop space of an n-manifold M . Using the homotopy commutativity of this
product on the chain level, they also defined a Lie bracket – the loop bracket {·, ·}
– on H∗(M). Together, these operations give the loop homology the structure of a
Gerstenhaber algebra.

Using a purely algebraic construction coming from Hochschild cohomology,
one may define a similar collection of invariants in H∗(M). Some (products and
brackets) are expected to be the same as Chas and Sullivan’s, and some have yet to
be considered in string topology (Dyer-Lashof operations). Our goal in this paper
is to compute these algebraic invariants for certain manifolds.

Let us be more specific about the origin of these algebraic invariants. In [CJ02],
Cohen and Jones realized Chas and Sullivan’s structure homotopically in the mul-
tiplicative properties of a certain ring spectrum LM−T M , via a Thom isomorphism
H∗(M)∼=H∗(LM−T M).Additionally, when M is simply connected, they identified
the latter homology as the Hochschild cohomology of the singular cochains of M:

� This material is based upon work supported by the National Science Foundation under
agreement No. DMS-0111298.

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL ----------------------------------------
File Options:
     Compatibility: PDF 1.2
     Optimize For Fast Web View: Yes
     Embed Thumbnails: Yes
     Auto-Rotate Pages: No
     Distill From Page: 1
     Distill To Page: All Pages
     Binding: Left
     Resolution: [ 600 600 ] dpi
     Paper Size: [ 595 842 ] Point

COMPRESSION ----------------------------------------
Color Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Grayscale Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Monochrome Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 600 dpi
     Downsampling For Images Above: 900 dpi
     Compression: Yes
     Compression Type: CCITT
     CCITT Group: 4
     Anti-Alias To Gray: No

     Compress Text and Line Art: Yes

FONTS ----------------------------------------
     Embed All Fonts: Yes
     Subset Embedded Fonts: No
     When Embedding Fails: Warn and Continue
Embedding:
     Always Embed: [ ]
     Never Embed: [ ]

COLOR ----------------------------------------
Color Management Policies:
     Color Conversion Strategy: Convert All Colors to sRGB
     Intent: Default
Working Spaces:
     Grayscale ICC Profile: 
     RGB ICC Profile: sRGB IEC61966-2.1
     CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
     Preserve Overprint Settings: Yes
     Preserve Under Color Removal and Black Generation: Yes
     Transfer Functions: Apply
     Preserve Halftone Information: Yes

ADVANCED ----------------------------------------
Options:
     Use Prologue.ps and Epilogue.ps: No
     Allow PostScript File To Override Job Options: Yes
     Preserve Level 2 copypage Semantics: Yes
     Save Portable Job Ticket Inside PDF File: No
     Illustrator Overprint Mode: Yes
     Convert Gradients To Smooth Shades: No
     ASCII Format: No
Document Structuring Conventions (DSC):
     Process DSC Comments: No

OTHERS ----------------------------------------
     Distiller Core Version: 5000
     Use ZIP Compression: Yes
     Deactivate Optimization: No
     Image Memory: 524288 Byte
     Anti-Alias Color Images: No
     Anti-Alias Grayscale Images: No
     Convert Images (< 257 Colors) To Indexed Color Space: Yes
     sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments false
     /DoThumbnails true
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize true
     /ParseDSCCommentsForDocInfo false
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue false
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.2
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends false
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo false
     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /sRGB
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 150
     /EndPage -1
     /AutoPositionEPSFiles false
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 600
     /AutoFilterGrayImages true
     /AlwaysEmbed [ ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 150
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 576.0 792.0 ]
     /HWResolution [ 600 600 ]
>> setpagedevice



712 C. Westerland

H∗(LM−T M) ∼= HH ∗(C∗(M), C∗(M))

In fact, this holds for certain non-simply connected cases, such as RP n, as we will
demonstrate.

Deligne conjectured that the Hochschild cochain complex of an associative alge-
bra R, CH ∗(R, R), admits the structure of an algebra over the little disks operad,
C2. This conjecture was proven by a number of authors [MS02,Tam98a,Tam98b,
Vor00,KS00]. This structure is also constructed homotopically for LM−T M in
[CJ02]. F. Cohen’s work in [CLM76] shows that the homology of a C2-algebra is
a Gerstenhaber algebra.

So, in sum, the three chain complexes,

C∗(LM), C∗(LM−T M), CH ∗(C∗(M), C∗(M)),

(which are all quasi-isomorphic, via [CJ02]) each admit certain similar algebraic
structures. The first gives rise to a Gerstenhaber algebra through explicit geometric
constructions, and the latter two are C2-algebras, the second from a homotopical
construction, and the third through an algebraic construction. One wonders whether
all three Gerstenhaber structures agree or, to be more ambitious, whether the lat-
ter two are homotopy equivalent as C2-algebras. To our knowledge, none of these
questions have been answered, though it has been shown in [Coh04] that the loop
product of [CJ02] and Hochschild product agree.

For the purposes of this paper, we will employ the C2-structure coming from
McClure and Smith’s proof [MS02] of Deligne’s conjecture. That is, our results
will be phrased as statements about HH ∗(C∗(M), C∗(M)), rather than H∗(M) or
H∗(LM−T M), quietly hoping that the three Gerstenhaber structures agree.

In [CS01] the loop product and bracket were constructed integrally – that is,
on H∗(M; Z). At a prime p, however, the homology H∗(X; Fp) of a C2-alge-
bra X is endowed with further structure: the Dyer-Lashof and Browder operations,
originally introduced in the study of iterated loop spaces. To use the notation of
[CLM76], there are unary operations Q0, Q1 and a binary operation λ1. The zeroth
Dyer-Lashof operation Q0 is just the pth power map with respect to the product.
The Browder operation λ1 is a Lie bracket constructed from a homotopy for com-
mutativity of X. If the Hochschild and homotopy theoretic actions of C2 on H∗(M)

do in fact concide, then λ1 is just the reduction mod p of the loop bracket, {·, ·}. The
first Dyer-Lashof operation Q1 is, like the Browder operation, a byproduct of ho-
motopy commutativity. The operations Q0, Q1, and λ1 on HH ∗(C∗(M), C∗(M))

are what is meant by the term “algebraic invariants” above.
The purpose of this paper is to give concrete, nontrivial examples of such struc-

ture. Specifically, we compute the 2-primary operations in HH ∗(C∗(M), C∗(M))

of four families of manifolds M: spheres and real, complex, and quaternionic pro-
jective spaces. Though the ring structure of H∗(M) has been explored for a variety
of manifolds (for instance, [CS01,CJY02,Abb03]), there has been little discussion
of the Dyer-Lashof operations. While Q0 is familiar in the guise of the pth power
map and λ1 is conjecturally the loop bracket, Q1 has not been studied in the context
of string topology. Since the quasi-isomorphism type of C∗(M) as a differential
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graded algebra is a homotopy invariant of M , so too are HH ∗(C∗(M), C∗(M))

and all invariants such as products, Qi , and λ1 derived from that DGA structure.
Without other decoration, H∗will denote homology with coefficients in the field

of two elements, F2.As we will be discussing quaternionic projective spaces, we will
reserve the notation H for the quaternions, and from now on write H∗(LM−T M) or
HH ∗(C∗(M), C∗(M)) for the loop homology of M , after [CJ02]. In the (simpler)
case of spheres, we detect a nonzero Browder operation:

Theorem 1.1. If k > 1, HH ∗(C∗(Sk), C∗(Sk)) is isomorphic as an algebra to
F2[x, v]/(x2), where the dimensions of x and v are−k and k−1, respectively. The
Dyer-Lashof structure is determined by three equations: Q1(x) = 0, Q1(v) = 0,
and λ1(x, v) = 1.

There are a number of relationships between the Browder and Dyer-Lashof
operations described in detail in [CLM76]. One curious consequence of these rela-
tionships and Theorem 1.1 is the fact that

Q1(xv) = xv

That is, these C2-algebras give examples of homology classes for which Q1 acts
as the identity. This oddity also occurs for the projective spaces:

Theorem 1.2. Let K be one of R, C, or H, and let d = dimR(K). For n odd (and
greater than 1 if K = R), there is a ring isomorphism

HH ∗(C∗(KP n), C∗(KP n)) = F2[x, v, t]/(xn+1, v2 − n+ 1

2
txn−1)

and for n even,

HH ∗(C∗(KP n), C∗(KP n)) = F2[x, u, t]/(xn+1, u2, txn, uxn)

where the dimensions of x, u, v, and t are −d , −1, d − 1, and d(n + 1) − 2
respectively. On generators, the Dyer-Lashof operations are given by

Q1(x) = 0, Q1(t) = 0, Q1(v) = 0, Q1(u) = u.

The Browder operation λ1 is given on generators by

λ1(x, v) = 1, λ1(x, u) = x, λ1(x, t) = 0, λ1(v, t) = 0, λ1(u, t) = t.

Note that the Cartan formulas for 2-primary C2-algebras

Q1(ab) = a2Q1(b)+Q1(a)b2 + aλ1(a, b)b

λ1(a, bc) = λ1(a, b)c + bλ1(a, c)

give the entire Dyer-Lashof structure of these rings from the information provided.
The statements about ring structures are not all new. Many may be obtained

either directly from or with the obvious alterations to the approach given in [CJY02].
The methods of [CJY02] do not serve to determine the Dyer-Lashof operations,
however.
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Our approach to these computations is as follows. The goal of section 2 is
a formality result; we show that HH ∗(C∗(M), C∗(M)) may be identified with
HH ∗(H ∗(M), H ∗(M)) for all the manifolds M of Theorems 1.1 and 1.2. Using
[CJ02], one thereby knows that H∗(LM−T M) ∼= HH ∗(H ∗(M), H ∗(M)) except
for M = RP n, a detail which is resolved in section 5. We then compute the ring
structure on HH ∗(H ∗(M), H ∗(M)) using the description of Hochschild cohomol-
ogy as a bimodule Ext. This is done in section 3. These computations are likely to
be well known and, in any case, are not difficult; we include them for completeness.
The similarities shared amongst the cohomology algebras for spheres and projec-
tive spaces allow us to perform these computations simultaneously. The generators
of these rings occur in Hochschild degrees 0, 1, and 2. The Hochschild cochain
complex is tractable in these degrees, so we employ it and Gerstenhaber’s ideas
[Ger63] on its homotopy commutativity to compute the Dyer-Lashof operations in
section 4.

I would like to thank Igor Kriz for encouragement and helpful discussions, and
the referee, whose recommendations greatly improved the clarity of this paper.

2. Formality considerations

We will grade (singular, simplicial) chain complexes of spaces positively and co-
chain complexes negatively. Let K be R, C, or H.

Proposition 2.1. At p = 2, Sk and KP n are formal. That is, their mod 2 singular
cochain algebras are quasi-isomorphic to their cohomology algebras.

Proof. Let C
simp
∗ (X) denote the simplicial chain complex of a simplicial set X,

and CN∗ (X) the normalized quotient complex. It is well known (e.g., [May67]) that
CN∗ (X) is quasi-isomorphic to the singular chain complex of the realization of X,

C∗(|X|). Moreover, we may endow both C
simp
∗ (X) and C∗(|X|) with a diagonal

defined using the Alexander-Whitney map:

AW(a) =
n∑

i=0

dn−ia ⊗ d ′ia

Here a ∈ C
simp
n (X) or Cn(|X|), dn−ia is its last n − i faces, and d ′ia its first i

faces.
One can see that AW carries degenerate simplices to degenerate simplices, so

AW is well-defined on CN∗ (X) and the quasi-isomorphism CN∗ (X) � C∗(|X|)
respects the coalgebra structure. Since Sk and KP n may be constructed as real-
izations M of simplicial sets, their singular cochain algebras C∗(M) are quasi-
isomorphic to C∗N(M), the normalized cochain complex.

The cohomology algebras of all of these manifolds are generated by a sin-
gle class (in dimension −k for Sk and in dimension − dimR K for KP n). Let
x be a cocycle in C∗N(M) representing that class. This gives a map of DGA’s
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i : F2[x] → C∗N(M) where F2[x] has the zero differential. From the normaliza-
tion, C

p
N(M) = 0 for p < − dim M . Therefore i descends to a map of DGA’s

i′ : F2[x]/(xn+1)→ C∗N(M)

(where n = 1 for Sk). Since H ∗(M) ∼= F2[x]/(xn+1), i′ is obviously a quasi-
isomorphism of DGA’s. �	

This proposition implies that for all of the manifolds listed,

HH ∗(C∗(M; F2), C
∗(M; F2)) ∼= HH ∗(H ∗(M; F2), H

∗(M; F2))

In [CJ02] it was shown that for compact, orientable, simply connected manifolds
M ,

H∗(LM−T M ; Z) ∼= HH ∗(C∗(M; Z), C∗(M; Z)) (*)

So for M = Sk (k > 1) or M = KP n (K = C or H), H∗(LM−T M ; F2) may be
computed as

H∗(LM−T M ; F2) ∼= HH ∗(H ∗(M; F2), H
∗(M; F2))

We would like the same result to hold for RP n (n > 1). While compact, these
manifolds are not simply connected, nor always oriented. The assumption of orien-
tability for M in (∗) is used only to ensure that Poincaré duality holds, and therefore
may be discarded by taking coefficients in F2. The connectivity assumption is more
substantial, but we will show in section 5 that nonetheless

H∗(LRP n−T RP n; F2) ∼= HH ∗(H ∗(RP n; F2), H
∗(RP n; F2))

We therefore obtain the following corollary, which is the starting point of our com-
putations.

Corollary 2.2. Let M = Sk (k > 1), RP n (n > 1), CP n, or HP n. Then

H∗(LM−T M) ∼= HH ∗(H ∗(M), H ∗(M)) ∼= HH ∗(C∗(M), C∗(M))

3. The ring structure

Let k be a commutative ring, and form the graded ring R = k[x]/(xn+1) where x

is an indeterminate of degree r 
= 0. Then the Hochschild cohomology of R is the
same as the bimodule Ext:

HH ∗(R, R) = Ext∗R⊗Rop (R, R)

R is commutative, so R = Rop. Let P(y, z) = yn + yn−1z+ · · · + zn ∈ R⊗R =
k[y, z]/(yn+1, zn+1). The following is a graded version of an exercise in Loday’s
text [Lod92] (p. 121).
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Proposition 3.1. This is a z-periodic R ⊗ R-free resolution of R:

0 ←−−−− R
ε←−−−− R ⊗ R

y−z←−−−− �rR ⊗ R
P(y,z)←−−−− · · ·

The cochains are therefore suspensions of HomR⊗R(R ⊗ R, R) = R and

(1) HH 0(R, R) = R.
(2) For i ≥ 0, HH 2i+1(R, R) = ker(n+ 1)xn ⊆ �−r(1+(n+1)i)R.
(3) For i > 0, HH 2i (R, R) = �−r(n+1)iR/((n+ 1)xn).

Now, and for the rest of this paper, fix k = F2.

Definition 3.2. Let x ∈ HH 0(R, R) correspond to x ∈ R. For n odd, write v for
the generator of HH 1(R, R) as an R-module; this corresponds to 1 ∈ �−rR. For
n even, write u as the generator of HH 1(R, R) as an R-module; this corresponds
to x ∈ ker(n+ 1)xn ⊆ �−rR. Finally, let t ∈ HH 2(R, R) be the generator as an
R-module; this corresponds to 1 ∈ �−r(n+1)R/((n+ 1)xn).

Denote by |a| the total (or topological) degree of a:

| · | = −(Hochschild degree)+ (suspension degree)+ (internal degree)

Then |x| = r , |v| = −1− r , |u| = −1, and |t | = −2− r(n+ 1)

Lemma 3.3. u2 = 0, and v2 = n+1
2 txn−1.

Lemma 3.4. Multiplication by t is an isomorphism HHi(R, R)→ HHi+2(R, R)

for i > 0.

These lemmas immediately imply the following corollary:

Corollary 3.5. If n is odd,

HH ∗(R, R) = F2[x, v, t]/(xn+1, v2 − n+ 1

2
txn−1)

and if n is even,

HH ∗(R, R) = F2[x, u, t]/(xn+1, u2, txn, uxn)

We recover the statements in Theorems 1.1 and 1.2 about ring structure for
KP n by taking r = − dimR(K) and for Sk by taking r = −k, n = 1, since these
choices define their cohomology algebras.

For the proofs of both of the lemmas, we use the description of the multiplication
in Ext as the composition product.
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Proof of Lemma 3.3. The cochain representing v2 is given by the map v ◦ v1 in the
diagram below, where vi are projective lifts of v ∈ Hom(�rR ⊗ R, R):

�rR ⊗ R
P(y,z)←−−−− �r(n+1)R ⊗ R

y−z←−−−− · · ·
v0

� v1

�

R
ε←−−−− R ⊗ R

y−z←−−−− �rR ⊗ R
P(y,z)←−−−− · · ·

v

�

R

Here, ε ◦ v0 = v.
Since v(1) = 1, v0 may be taken to be the identity. So v1 satisfies the equation

v1(1)(y − z) = P(y, z). Hence

v1(1) = yn−1 + yn−3z2 + · · · + y2zn−3 + zn−1

and so v ◦ v1(1) = n+1
2 xn−1. Therefore v2 = n+1

2 txn−1.
There is a similar diagram for computing u2; just replace v’s by u’s. Here,

however, u(1) = x, so we may take u0(1) = y. Then u1(1)(y − z) = yP (y, z).
So u1(1) is homogenous of degree n. Hence u ◦ u1(1) is of degree n + 1, and is
therefore 0. Thus u2 = 0. �	

Proof of Lemma 3.4. Let f be a generator of HHi(R, R) as an R-module. We
need to show that tf is a generator of HHi+2(R, R). Again, we lift f through the
resolution (for simplicity, we ignore suspensions):

R ⊗ R ←−−−− R ⊗ R ←−−−− R ⊗ R ←−−−− · · ·
f0

� f1

� f2

�

R ←−−−−
ε

R ⊗ R ←−−−−
y−z

R ⊗ R ←−−−−
P(y,z)

R ⊗ R ←−−−− · · ·

t

�

R

Here the domain of fj is the i + j th term of the resolution, and ε ◦ f0 = f . We
need to compute t ◦ f2.

If i is even, then f (1) = 1, and the maps in the upper resolution match up
with those in the lower resolution. Hence, we may take f2 to be the identity. So
t ◦ f2(1) = 1. Thus tf is the generator of HHi+2(R, R).

If i is odd, the maps in the upper resolution are the opposite of those in the
lower resolution. If n is odd, then f (1) = 1, so f0 may be taken to be the identity.
Hence

(y − z)f1(1) = P(y, z)
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and

P(y, z)f2(1) = (y − z)f1(1)

so we may take f2 to be the identity. As above, this implies that tf is a generator.
Similarly, one may show that if n is even (so that f (1) = x), we may take

f2(1) = y; this implies that t ◦ f2(1) = x, so tf is again a generator. �	

4. The Dyer-Lashof structure

Dyer-Lashof operations, originally defined on the homology of iterated loop spaces
by Araki-Kudo [AK56], Browder [Bro60], and Dyer-Lashof [DL62] were reformu-
lated in [CLM76] and [May70] as operations on the homology of algebras over the
little n+ 1-disk operad, Cn+1. We recall their construction. For such an algebra X,
let θ be the operad action map

θ : Cn+1(m)×�m X×m→ X

This allows Cohen, Lada, and May to define the Dyer-Lashof and Browder oper-
ations in terms of the homology of Cn+1(m). The natural inclusion Cn+1(m) →
C∞(m) is �m-equivariant, and so induces

H∗(Cn+1(m)×�m X×m)→ H∗(C∞(m)×�m X×m)

To define the operations for p = 2, we need only examine the case m = 2.
The righthand side is the homology of EZ/2×Z/2 X×2. If {xj } is a totally ordered
basis for H∗(X), define A ⊆ H∗(X) ⊗ H∗(X) as having basis {xj ⊗ xj } and
B ⊆ H∗(X)⊗H∗(X) with basis {xi ⊗ xj | i < j}. Then it is easy to see that

H∗(EZ/2×Z/2 X×2) =
( ∞⊕

i=0

ei ⊗ A

)
⊕

(e0 ⊗ B)

where ei (of dimension i) corresponds to the generator of Hi(BZ/2). Since Cn+1(2)

is the Z/2-equivariant n-skeleton of C∞(2), there are classes

n⊕

i=0

ei ⊗ A ⊆ H∗(Cn+1(2)×Z/2 X×2)

which map to the classes of the same name in H∗(EZ/2 ×Z/2 X×2) under the
inclusion above.

Definition 4.1. For a Cn+1-algebra X, x ∈ H∗(X) and 0 ≤ i ≤ n, the ith Dyer-
Lashof operation is defined as

Qi(x) := θ∗(ei ⊗ x ⊗ x)
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The top operation Qn is also denoted ξn.
To define the Browder operation, let θ̃ be the action map

θ̃ : Cn+1(2)×X×2 → X

It can be shown that Cn+1(2) � Sn, with fundamental class ι.

Definition 4.2. For x, y ∈ H∗(X), where X is a Cn+1-algebra, the Browder oper-
ation is defined as

λn(x, y) := θ̃∗(ι⊗ x ⊗ y)

The singular chain complex of Cn+1 forms an operad in the category of chain
complexes. A chain complex X which is an algebra over the chain version of Cn+1
admits Dyer-Lashof and Browder operations on its homology in the same fashion
as above.

For our applications, we employ the Hochschild cochain complex of an asso-
ciative algebra A whose nth term is

CHn(A, A) = Homk(A
⊗n, A)

In [Ger63], Gerstenhaber introduces a degree −1 binary operation on CH ∗(A, A)

which he calls ◦. To avoid confusion with composition, we will follow Chas and
Sullivan’s example in [CS01] and denote ◦ by ∗. We postpone its definition for
a moment and describe its features. The operation ∗ gives a chain homotopy for
commutativity: if f ∈ CHm(A, A) and g ∈ CHn(A, A), then

f ∗ (dg)+ d(f ∗ g)+ (df ) ∗ g = gf − fg

(we drop Gerstenhaber’s signs as we are working mod 2). Here d is the coboun-
dary operator on CH ∗(A, A). Gerstenhaber gives CH ∗(A, A) the structure of a
Lie algebra using ∗; the bracket is defined by [f, g] = f ∗ g − g ∗ f .

Explicitly, ∗ is given as follows: the value of f ∗ g on a1 ⊗ · · · ⊗ am+n−1 is

m∑

i=1

f (a1 ⊗ · · · ⊗ ai−1 ⊗ g(ai ⊗ · · · ⊗ ai+n−1)⊗ ai+n ⊗ · · · ⊗ am+n−1)

(in the case m = 0, so that f is a 0-cochain, f ∗ g = 0). This homotopy will
indicate how to compute Q1 and λ1:

Lemma 4.3. Let a, b ∈ HH ∗(A, A) be represented by a, b ∈ CH ∗(A, A).

(1) Q0(a) = a2

(2) Q1(a) is represented by a ∗ a.
(3) λ1(a, b) is represented by [ a, b] = a ∗ b − b ∗ a.
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Proof. The first statement is definitional. In their proof of Deligne’s conjecture
[MS02], McClure and Smith construct a chain operad H which is generated by an
identity, cup product, and brace operations generalizing Gerstenhaber’s ∗, subject
to certain relations. H acts naturally on CH ∗(A, A), and Deligne’s conjecture is
proven by showing that H is quasi-isomorphic to C∗(C2). The differential for H,
∂ , measures the deviation of an operation ν from being a chain operation:

∂(ν) = d ◦ ν − ν ◦ d

Gerstenhaber’s ∗ represents an element of H1(2) (the dimension 1 part of the
second term of the operad). Its property as a homotopy for commutativity implies
that (∂(∗))(f ⊗ g) = gf − fg. That is, if τ is the twist induced by the Z/2 action,
and � is the cup product,

∂(∗) = (� ◦τ)−� (†)

Thus ∗, while not itself a cycle, gives a Z/2-equivariant cycle of dimension 1. It
therefore represents e1 as defined above, and so

Q1(a) = θ∗(e1 ⊗ a ⊗ a) = a ∗ a

Notice that by (†), ∗ − (∗ ◦ τ) is in fact a cycle in H1(2); in particular it is the
fundamental cycle ι. Thus

λ1(a, b) = θ̃ (ι⊗ a ⊗ b) = a ∗ b − b ∗ a �	
Using this description, we will compute a number of Dyer-Lashof and Brow-

der operations. First, we need to find chain representatives of the generators of
HH ∗(R, R).

Lemma 4.4. Representatives for x, v, and u:

(1) x ∈ HH 0(R, R) is represented by x ∈ CH 0(R, R) = R.
(2) For n odd, v ∈ HH 1(R, R) is represented by the function v : R→ R which is

the k-linear map x2m �→ 0 and x2m+1 �→ x2m.
(3) For n even, u ∈ HH 1(R, R) is represented by the function u : R → R which

is the k-linear map x2m �→ 0 and x2m+1 �→ x2m+1.

Proof. Item 1 is obvious. We show that v is a cocycle:

(dv)(xi ⊗ xj ) = xiv(xj )+ v(xi)xj + v(xi+j )

If both i and j are even, then each term vanishes. If both are odd, then the last term
vanishes, and the first two terms are equal, so the sum vanishes. Lastly, if one (say
i) is odd, and the other even, then

(dv)(xi ⊗ xj ) = xi−1xj + v(xi+j ).

If i+j ≤ n, then the last term is xi+j−1, and the two terms cancel. If i+j > n+1,
then both terms are 0. Finally, since i+ j is odd and n is odd, the troublesome case
i + j = n+ 1 never occurs. A similar argument shows that u is a cocycle.

Since d : CH 0(R, R) → CH 1(R, R) is zero, v and u represent nonzero
elements in cohomology. We may determine what elements they do represent by
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examining their topological degree. Since v : R → R lowers degree by r and has
Hochschild degree 1, its topological degree is −1 − r . So v does in fact repre-
sent v. Similarly, u represents u – it does not lower degree, so its topological degree
is −1. �	
Lemma 4.5. The following formulas hold:

Q1(x) = 0, Q1(v) = 0, Q1(u) = u.

λ1(x, v) = 1, λ1(x, u) = x, λ1(u, t) = t.

The remaining operations may be determined using filtration arguments:

Lemma 4.6. The following formulas hold:

Q1(t) = 0, λ1(x, t) = 0, λ1(v, t) = 0.

Theorems 1.1 and 1.2 now follow from these lemmas and Corollary 3.5.

Proof of Lemma 4.5. That Q1(x), represented by x ∗ x, is 0 follows from the fact
that x is in Hochschild degree 0. To determine Q1(u) (represented by u ∗ u), note
that

u ∗ u(x2k) = u(u(x2k)) = u(0) = 0

and

u ∗ u(x2k+1) = u(u(x2k+1)) = u(x2k+1) = x2k+1

so u∗u = u. Hence Q1(u) = u. The same kind of argument shows that Q1(v) = 0.
Note, however, that xv is represented by the same element as u, so this gives a dem-
onstration of the fact that Q1(xv) = xv.

To see that λ1(x, v) = 1, note that λ1(x, v) is represented by

x ∗ v − v ∗ x = −v ∗ x = v(x) = 1

since x ∗ v = 0 and f ∗ g is just the substitution f (g) when f ∈ CH 1(A, A) and
g ∈ CH 0(A, A) ∼= A. Similarly, λ1(x, u) is represented by u ∗ x = u(x) = x.

We now show that λ1(u, t) = t . Let t ∈ CH 2(R, R) represent t . Since the
topological degree of t is−2− r(n+1) and its Hochschild degree is 2, as a graded
function R ⊗ R→ R, t lowers degree by r(n+ 1). Therefore we may write

t(xi ⊗ xj ) = ti,j x
i+j−(n+1)

for some coefficients ti,j ∈ F2. Write ui = i mod 2, so that u(xi) = uix
i . Then

λ1(u, t) is represented by u ∗ t − t ∗ u. So, confusing homology classes and their
representatives,

λ1(u, t)(xi ⊗ xj ) = u(t (xi ⊗ xj ))+ t (u(xi)⊗ xj )+ t (xi ⊗ u(xj ))

= u(ti,j x
i+j−(n+1))+ t (uix

i ⊗ xj )+ t (xi ⊗ ujx
j )

= ti,j (ui+j−(n+1) + ui + uj )x
i+j−(n+1)

Then, since n is even,

ui+j−(n+1) + ui + uj = i + j − (n+ 1)+ i + j = 1 mod 2

so λ1(u, t)(xi ⊗ xj ) = ti,j x
i+j−(n+1); hence λ1(u, t) = t . �	
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Proof of Lemma 4.6. The proofs of all of these vanishings follow the same pattern:
we examine which Hochschild degree the element in question must lie in and dem-
onstrate that nothing in that degree could have the right topological degree.

To see that Q1(t) = 0, observe that Q1(t) is represented by t ∗ t ∈ CH 3(R, R).
Hence, if nonzero, Q1(t) = xktu (if n is even) or Q1(t) = xktv (if n is odd) for
some choice of k. Assume n is even; then

|xktu| = kr − 2− r(n+ 1)− 1 = (k − n− 1)r − 3

Generally, for any class a, |Q1(a)| = 2|a| + 1, so

|Q1(t)| = 2(−2− r(n+ 1))+ 1 = (−2n− 2)r − 3

Therefore (since r 
= 0), k = −n− 1 < 0 which is false. So Q1(t) = 0. A similar
argument holds if n is odd.

λ1(x, t) lies in HH 1(R, R) (as it is represented by x ∗ t− t ∗x). So, if nonzero,
it is xku or xkv (again, depending on the parity of n), and

|xku| = kr − 1, |xkv| = kr − 1− r = (k − 1)r − 1

For any a and b, |λ1(a, b)| = |a| + |b| + 1, so

|λ1(x, t)| = r − 2− r(n+ 1)+ 1 = −nr − 1

If n is even, then we must again have k = −n < 0, and so λ1(x, t) = 0. If n is
odd, k = 1− n. If n > 1, then λ1(x, t) = 0 for the same reason. But if n = 1, the
algebra collapses (to the sphere case):

HH ∗(R, R) = F2[x, v]/(x2)

and v2 = t . Then

λ1(x, t) = λ1(x, v2) = λ1(x, v)v + vλ1(x, v) = 0

So generally λ1(x, t) = 0.
Finally, λ1(v, t) ∈ HH 2(R, R). So if nonzero, it must be xkt for some k.

|xkt | = kr − 2− r(n+ 1) = (k − n− 1)r − 2

but

|λ1(v, t)| = −1− r − 2− r(n+ 1)+ 1 = (−n− 2)r − 2

so k = −1, a contradiction. �	

5. The case of RP n

In this section, we establish the part of Corollary 2.2 which does not follow imme-
diately from Proposition 2.1. That is, for n > 1
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H∗(LRP n−T RP n

) ∼= HH ∗(H ∗(RP n), H ∗(RP n))

This is proved for the other manifolds under consideration using the Bousfield-Kan
spectral sequence for a cosimplicial space. For RP n we will use an Eilenberg-
Moore spectral sequence for a fibration; this spectral sequence will be equivalent
to the cosimplicial one.

For a space M , let PM be its free path space, ev : PM → M ×M the evalua-
tion at both endpoints (a fibration), and � : M → M ×M the diagonal. Then the
pullback of ev over � is a fibration with LM as the total space, and the projection
is evaluation at the basepoint of S1 (which we will also denote ev):

LM −−−−→ PM

ev

�
�ev

M −−−−→
�

M ×M

The fibre of these fibrations is homotopy equivalent to 
M so, if M is connected
and simply connected, there is an Eilenberg-Moore spectral sequence converging
strongly to H ∗(LM) with E2 term

E2 = TorH ∗(M×M)(H
∗(M), H ∗(PM))

Since PM is equivalent to M (and via this equivalence ev becomes �), we may
write E2 = HH∗(H ∗(M), H ∗(M)). The construction of the spectral sequence is
such that it converges to HH∗(C∗(M), C∗(M)) ∼= H ∗(LM). If M is formal, then
the spectral sequence collapses, and so

H ∗(LM) ∼= HH∗(H ∗(M), H ∗(M))

One may then follow the arguments of [CJ02] employing Poincaré duality to con-
clude that

H∗(LM−T M) ∼= HH ∗(H ∗(M), H ∗(M))

If M is not simply connected, the fibre of ev is not connected, so we cannot use
the Eilenberg-Moore spectral sequence directly. However, if π1M is abelian and x

is a given point in M , there is a continuous map

LM → π1(M, x)

given by f �→ [f ] ∈ π1(M, ev(f )) ∼= π1(M, x), where the isomorphism is
canonical. So we see that

LM =
∐

g∈π1(M, x)

LgM

where LgM ⊆ LM are the loops freely homotopic to g.
Write M̃ for the universal cover of M and M̃ ×π1M M̃ for the cover of M ×M

corresponding to the diagonal subgroup �∗(π1M) ⊆ π1M × π1M . The map ev :
PM → M × M lifts to M̃ ×π1M M̃ . Fix a point y ∈ M̃ ×π1M M̃ lying over
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(x, x) ∈ M ×M , and let ev0 be the lift of ev carrying the constant map at x to
y. Then for each g ∈ π1M let evg = g ◦ ev0, where g is thought of as a deck
transformation in the right hand side of the equation. Similarly (and homotopically
equivalent), let �0 be a lift of � carrying x to y, and �g = g ◦�0.

Now evg : PM → M̃ ×π1M M̃ is a fibration and the pullback of evg along �0
is LgM:

LgM −−−−→ PM

ev

�
�evg

M −−−−→
�0

M̃ ×π1M M̃

The fibre of these fibrations are connected (being the component of 
M contain-
ing g). Moreover, π1(M̃ ×π1M M̃) = π1M is abelian (hence nilpotent) and acts
trivially on the homology of the fibre of PM . Therefore by Shipley’s general con-
vergence results in [Shi96], the Eilenberg-Moore spectral sequence for this fibration
converges strongly to H ∗(LgM). In summary,

Theorem 5.1. If M is connected and π1M is abelian, there is a spectral sequence
converging strongly to H ∗(LM) with E2-term

E2 =
⊕

g∈π1M

Tor
H ∗(M̃×π1MM̃)

(H ∗(M), H ∗(M))

where the H ∗(M̃×π1M M̃)-module structure on the first copy of H ∗(M) is via �∗0,
and via ev∗g = �∗g on the second.

To apply this to M = RP n, we need to study the cohomology of M̃×π1M M̃ =
Sn ×Z/2 Sn. The (cohomological) Serre spectral sequence for the fibration

Sn→ Sn ×Z/2 Sn→ RP n

has as an E2 term the algebra H ∗(RP n) ⊗ H ∗(Sn) = F2[x, a]/(xn+1, a2). The
geometry of the spectral sequence implies that it collapses at E2, so it only remains
to determine a2.

Lemma 5.2. (1) If n is odd, H ∗(Sn×Z/2Sn) = F2[x, a]/(xn+1, a2), and �∗g(x) =
x, �∗g(a) = 0 for both values of g.

(2) If n is even, H ∗(Sn ×Z/2 Sn) = F2[x, a]/(xn+1, a2 − axn), and �∗g(x) = x,
�∗1(a) = 0, �∗0(a) = xn.

Proof. Sn×Z/2 Sn is the unit sphere bundle, SE, of the bundle E = Sn×Z/2 R
n+1

over RP n (where Z/2 acts diagonally on both factors by−1). Now E = T RP n⊕1.
Therefore SE is homeomorphic via the stereographic projection to the fibrewise
one-point compactification of T RP n, which we will denote T RP n. In this descrip-
tion, the two lifts �0 and �1 of the diagonal are the zero-section and∞-section of
T RP n, respectively.
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Consequently, this is a cofibration sequence

RP n �1−−−−→ Sn ×Z/2 Sn = T RP n
collapse−−−−→ RP nT RP n

We may take a to be the Thom class of T RP n, so that this sequence realizes

H ∗(Sn ×Z/2 Sn) = H ∗(RP n)⊕H ∗(RP n)a = H ∗(RP n)⊕ H̃ ∗(RP nT RP n

)

Then a2 = Sqna = wn(T RP n)a = (n+ 1)xna. This proves the claims about ring
structure.

Regarding the value of �∗g , the fact that it is a lift of the diagonal implies that
it always carries x to x. The cofibration sequence above shows that �∗1(a) = 0 for
every value of n. Since �0 is the zero-section and a is the Thom class, �∗0(a) =
wn(T RP n) = (n+ 1)xn. �	

The E2-term of the spectral sequence of Theorem 5.1, in the case M = RP n,
has two summands corresponding to the two elements of Z/2. We will write them
Tor∗0 and Tor∗1. Also, we continue to write R = H ∗(RP n) = F2[x]/(xn+1).

Corollary 5.3. (1) If n is odd, Tormg = R for all m and g.
(1) If n is even,

Torm0 =





R m = 0
�−mnR/(xn) m odd
�−mnxR m > 0, even

Torm1 =
{

�−mnR/(xn) m even
�−mnxR m odd

Proof. From Lemma 5.2, ifn is odd, a free resolution ofR overS = H ∗(Sn×Z/2S
n)

is the periodic resolution

0 ←−−−− R
ε←−−−− S

a←−−−− �−nS
a←−−−− �−2nS

a←−−−− · · ·
regardless of whether R is an S-module by way of �∗0 or �∗1. The first claim follows.

If n is even, a free S-module resolution of R with S-module structure given by
�∗0 is also periodic, but of period 2:

0 ←−−−− R
ε←−−−− S

a+xn

←−−−− �−nS
a←−−−− �−2nS

a+xn

←−−−− · · ·
So Tor∗0 is the homology of

R
0←−−−− �−nR

xn

←−−−− �−2nR
0←−−−− �−3nR

xn

←−−−− · · ·
and Tor∗1 is the homology of

R
xn

←−−−− �−nR
0←−−−− �−2nR

xn

←−−−− �−3nR
0←−−−− · · ·

�	
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We now prove the final piece of Corollary 2.2:

Lemma 5.4.

H∗(LRP n−T RP n

) ∼= HH ∗(H ∗(RP n), H ∗(RP n))

Proof. The covering map Sn ×Z/2 Sn→ RP n × RP n induces a map

p :TorC∗(RP n×RP n)(C
∗
RP n, C∗RP n)→

⊕

g∈Z/2

TorC∗(Sn×Z/2S
n)(C

∗
RP n, C∗RP n)

There are Eilenberg-Moore spectral sequences converging to both the domain and
codomain of this map. The formality result, Proposition 2.1, implies that the spec-
tral sequence for the domain collapses at E2, and that the domain is isomorphic to
HH∗(H ∗(RP n), H ∗(RP n)). This may be computed from Proposition 3.1 as the
homology of

R
0←−−−− �−1R

(n+1)xn

←−−−− �−n−1R
0←−−−− �−n−2R

(n+1)xn

←−−−− �−2n−2R · · ·
The spectral sequence for the codomain has E2-term⊕g∈Z/2Tor∗g . This spectral

sequence converges strongly to H ∗(LRP n), so the map above can be thought of as a
function between HH∗(H ∗(RP n), H ∗(RP n)) and a subquotient of ⊕g∈Z/2Tor∗g .

In fact, it is an honest isomorphism identifying Tor2k
0 with HH4k , Tor2k−1

0 with
HH4k−1, Tor2k

1 with HH4k+1, and Tor2k+1
1 with HH4k+2. This can be seen by

comparing terms from Corollary 5.3 with terms from the sequence above.
Consequently, the spectral sequence computing H ∗(LRP n) (i.e., the codomain

of p) must necessarily collapse. Therefore p is an isomorphism

p : HH∗(H ∗(RP n), H ∗(RP n)) ∼= H ∗(LRP n)

Using this fact, one may proceed as in [CJ02] to show through Poincaré duality
that

H∗(LRP n−T RP n

) ∼= HH ∗(H ∗(RP n), H ∗(RP n)) �	
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