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String topology prospectra and Hochschild cohomology

Kate Gruher and Craig Westerland

Abstract

We study string topology for classifying spaces of connected compact Lie groups, drawing
connections with Hochschild cohomology and equivariant homotopy theory. First, for a compact
Lie group G, we show that the string topology prospectrum LBG−TBG is equivalent to the
homotopy fixed-point prospectrum for the conjugation action of G on itself, S0 [G]hG . Dually,
we identify LBG−ad with the homotopy orbit spectrum (DG)hG , and study ring and co-ring
structures on these spectra. Finally, we show that in homology, these products may be identified
with the Gerstenhaber cup product in the Hochschild cohomology of C∗(BG) and C∗(G),
respectively. These, in turn, are isomorphic via Koszul duality.

1. Introduction

Let G be a connected compact Lie group. The free loop space

LBG := Map(S1 , BG)

of the classifying space of G is a natural object of study for topologists, representation theorists,
and mathematical physicists. Its K-theory is related to an important example of a topological
field theory, the Verlinde algebra of positive energy representations of the loop group LG [11].
In this article, we study LBG and natural field-theoretic algebraic structures which it supports
from several points of view — string topology, Hochschild cohomology, and equivariant stable
homotopy theory.

1.1. Equivalences of (pro)spectra

In string topology, one studies the free loop space LM of a closed, oriented, finite-dimensional
manifold M . Using a combination of intersection theory on M and concatenation of loops with
common basepoints, Chas and Sullivan [4] gave the shifted homology of LM the structure of a
Gerstenhaber algebra. The ring structure was reinterpreted in the language of stable homotopy
theory by Cohen and Jones in [8] in the form of a (Thom) ring spectrum LM−TM .

Although BG is not a finite-dimensional manifold, it does admit a filtration by finite-
dimensional manifolds. In [15], Salvatore and the first author defined an inverse system of
ring spectra (or pro-ring spectrum) LBG−TBG using this filtration and analogs of the string
topology techniques of [4, 8].

Consider the topological space G, equipped with the action of G by conjugation. In [22],
the second author studied a ring spectrum S0 [G]hG , the homotopy fixed-point spectrum for
this action on the suspension spectrum S0 [G]. This spectrum is best understood as a pro-ring
spectrum. We will employ the notation S0 [G]hG for the pro-ring spectrum, since we will almost
always be working with it, and not the ring spectrum. One purpose of this paper is to show
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that there is an equivalence between the geometrically constructed LBG−TBG and S0 [G]hG ,
whose description is equivariant stable homotopy-theoretic.

Theorem 1.1. The transfer map τG defines an equivalence of pro-ring spectra

LBG−TBG � S0 [G]hG .

One should compare this result to [17], where Klein shows that for a Poincaré duality group
G with classifying space M = BG a Poincaré duality space of formal dimension d, there is an
equivalence of the spectrum (not a prospectrum) of homotopy fixed points of the conjugation
action of G on S0 [G] with the string topology spectrum LM−TM.

It is worth pointing out that the spectrum S0 [G]hG is equivalent to THH•(S0 [G], S0 [G]),
the topological Hochschild cohomology of the suspension spectrum of G. This foreshadows
Theorem 1.3 below.

In [14], the first author showed that the prospectrum LBG−TBG is Spanier–Whitehead dual
(in the sense of Christensen and Isaksen [5]) to a spectrum LBG−ad . There is a coproduct on
that spectrum which, upon application of a cohomology theory, gives an (untwisted) analog
of the Freed–Hopkins–Teleman product in twisted equivariant K-theory (or fusion product in
the Verlinde algebra).

In light of this duality and Theorem 1.1, the following should be unsurprising.

Theorem 1.2. There is an equivalence of co-ring spectra LBG−ad � (DG)hG .

Here DG = F (S0 [G], S0) is the Spanier–Whitehead dual of G, equipped with a naive
G-action dual to the conjugation action on G. We describe the coproduct on the Borel
construction DGhG = EG+ ∧G DG in Section 3 below.

A remark on terminology is in order. Throughout this paper, the terms ‘ring spectrum’
and ‘pro-ring spectrum’ will be used to describe objects whose multiplication is associative up
to homotopy. For more highly structured ring spectra, we will employ the S-algebras of [9].
Additionally, the term ‘pro-ring spectrum’ (respectively, ‘pro-S-algebra’) denotes an inverse
system of ring spectra (respectively, S-algebras), rather than a monoid in the category of
prospectra.

Further, we will not consider strict co-ring spectra, and only require them to be coassociative
up to homotopy. Indeed, for most of this paper, we work in the homotopy category. However,
the prospectrum S0 [G]hG is a (strict) pro-S-algebra, so Theorem 1.1 can be thought of as a
rectification result for LBG−TBG. This answers in the affirmative Conjecture 10 of [14].

1.2. Homological computations

A natural question is how to compute the (co)homology of these (pro)spectra. Let k be a field;
all of our (co)chain and (co)homology groups will have coefficients in k.

Our approach is through Hochschild cohomology. For a differential-graded algebra A and a
dg A-module M , HH∗(A,M) and HH∗(A,M) are the Hochschild homology and cohomology
of A with coefficients in M . Recall that for any topological group K and topological space X,
there are isomorphisms

H∗(LBK) ∼= HH∗(C∗(K), C∗(K)) and H∗(LX) ∼= HH∗(C∗(X), C∗(X)),

where C∗(K) is given the structure of a dga via the Pontrjagin product, and C∗(X) via the
cup product of cochains.

In [8], Cohen–Jones modified the latter isomorphism to give an isomorphism of rings

H∗(LM−TM) ∼= HH∗(C∗(M), C∗(M))
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for finite-dimensional manifolds M . We adapt both of these computations to the context of
string topology on BG.

Theorem 1.3. If G is a connected compact Lie group, the following are mutually
isomorphic:

(1) the ring Hpro
∗ (LBG−TBG ), with the string topology product of [15];

(2) the ring H−∗(LBG−ad), with the ring structure induced by the ‘fusion’ coproduct on
LBG−ad , defined in [14];

(3) the ring HH∗(C∗(BG), C∗(BG)), with the Gerstenhaber cup product;
(4) the ring HH∗(C∗(G), C∗(G)), with the Gerstenhaber cup product.

In part (1), Hpro
∗ (LBG−TBG) denotes the inverse limit of the homologies of the terms in the

prospectrum LBG−TBG.
Here is a summary of the proof. To show the equivalence of parts (1) and (2), one uses the

Spanier–Whitehead duality result of [14]. The isomorphism of the rings in parts (1) and (3)
uses, as in [8], a cosimplicial model for LBG−TBG. Finally, the differential-graded algebras
C∗(BG) and C∗(G) are Koszul (or cobar) dual: C∗(BG) is equivalent to the cobar complex for
the differential-graded algebra C∗(G) (and vice versa). As Hochschild cohomology is insensitive
to Koszul duality [10, 16], one obtains an isomorphism of the rings in parts (3) and (4).

Write this collection of isomorphisms in the following form:

Hpro
∗ (LBG−TBG) �� ��

��

D

��

HH∗(C∗(BG), C∗(BG))
��

K

��
H−∗(LBG−ad) �� �� HH∗(C∗(G), C∗(G)).

In this diagram, the horizontal isomorphisms are ‘geometric’ in the sense that they come from
explicit models for the spectra involved. The vertical isomorphism D is induced by Spanier–
Whitehead duality, and K is induced by Koszul duality. Consequently, one may interpret this
theorem as saying that the Spanier–Whitehead duality (of [14]) between the Chas–Sullivan
and Freed–Hopkins–Teleman products is manifested in Hochschild cohomology as an aspect of
Koszul duality.

Recent work of Vaintrob [21] gives an analog of the isomorphisms between parts (1) and (4)
in the related case that Mn = BG is a closed, oriented, aspherical manifold, and G = π1(M)
is a discrete group. Namely, Vaintrob gives an isomorphism of BV algebras

HHn−∗(k[π1(M)], k[π1(M)]) ∼= Σ−nH∗(LM)

where k[π1(M)] ∼= C∗(G; k) is the group algebra on the fundamental group of M .
Similar multiplicative structures coming from Chen–Ruan cohomology and string topology

of orbifolds and stacks have been studied recently (see, for example, [3, 12]). In the final part
of this paper, we relate these constructions to the algebras described above.

2. The pro-ring spectra

Let us review the construction of these pro-ring spectra. Both will be defined using a filtration of
EG — a contractible space upon which G acts freely — by finite-dimensional free G-manifolds.
To do this, we proceed as follows. Because G is compact Lie, there exists a finite-dimensional,
faithful representation V of G.

Definition 2.1. Define EnG to be the space of linear embeddings of V into R
n .
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Since the action of G on V is faithful, when EnG is nonempty it is a free G-space, so fits
into a principal G-fibration

G −→ EnG −→ BnG,

where we define BnG := EnG/G. Furthermore, by definition, EnG and BnG are both smooth
manifolds. Finally, the filtered union of the sequence

E1G ⊆ · · · ⊆ EnG ⊆ En+1G ⊆ · · ·

is the space of linear embeddings of V into R∞ and contractible, so is therefore a model for
EG; that is,

colim EnG = EG.

Similarly, colimBnG = BG.

Example 2.2. For instance, when G = SO(k), V may be taken to be R
k , with the defining

action of SO(k) on V . Then BnG is the Grassmannian of k-planes in R
n , and EnG is the

corresponding Stiefel manifold.

2.1. The string topology of BG

Definition 2.3. Let Ad(EnG) denote the total space of the G-bundle

π : EnG ×G G −→ BnG,

where G acts on itself by conjugation.

Since BnG is a manifold, it has a tangent bundle, which one can pull back to Ad(EnG) via
π. In [15], it was shown that the Thom spectra

Ad(EnG)−TBn G := Ad(EnG)−π∗(TBn G)

are ring spectra, using a construction analogous to Cohen–Jones’ construction of string topology
operations in [8]. Specifically, one has a commutative diagram

G × G

��

G × G
=�� μ ��

��

G

��
Ad(EnG) × Ad(EnG)

��

Ad(EnG) ×Bn G Ad(EnG)Δ̃�� μ̃ ��

��

Ad(EnG)

��
BnG × BnG BnG

Δ�� = �� BnG.

Because Δ is a finite codimension, so too is Δ̃; hence both admit umkehr Pontrjagin–Thom
collapse maps. Multiplication in the spectrum Ad(EnG)−TBn G is given by the composite of the
Pontrjagin–Thom collapse for Δ̃ with μ̃.

Furthermore, the natural inclusions EnG ⊆ En+1G define (via associated Pontrjagin–Thom
maps) a tower of ring spectra

Ad(E1G)−TB1 G ←− · · · ←− Ad(EnG)−TBn G ←− Ad(En+1G)−TBn + 1 G ←− · · · .

Since there is a homotopy equivalence

LBG � Ad(EG),

this pro-ring spectrum is denoted LBG−TBG .
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2.2. The naive homotopy fixed-point prospectrum

Using the manifolds EnG, one can define another pro-ring spectrum. Consider the function
spectrum

F (EnG+ , S0 [G])G

of G-equivariant maps from EnG to the suspension spectrum of G. Here S0 [G] is regarded as
a naive G-spectrum, with conjugation action. This may be given a ring product μn using the
following diagram:

F (EnG+ , S0 [G])G ∧ F (EnG+ , S0 [G])G

μn

��

smash �� F (EnG × EnG+ , S0 [G × G])G×G

i

��
F (EnG × EnG+ , S0 [G × G])G

Δ∗

��
F (EnG+ , S0 [G])G F (EnG+ , S0 [G × G])G.μ∗

��

Here smash smashes two functions together. The spectrum

F (EnG × EnG+ , S0 [G × G])G

is the space of maps that are equivariant with respect to the diagonal G action on each factor,
so i is a forgetful map. The diagonal

Δ : EnG −→ EnG × EnG

is a G-equivariant map, so induces Δ∗. Similarly, μ∗ is induced by the multiplication μ : G ×
G → G, which is a G-equivariant map (with respect to the diagonal action by conjugation).

It was shown in [22] that μn makes F (EnG+ , S0 [G])G into an associative S-algebra (in fact,
it is the first term of an operad in the stable category).

The natural inclusions EnG ⊆ En+1G are G-equivariant, so they induce maps of S-algebras

F (EnG+ , S0 [G])G ←− F (En+1G+ , S0 [G])G ,

which assemble into the pro-S-algebra

F (E1G+ , S0 [G])G ←− · · · ←− F (EnG+ , S0 [G])G ←− F (En+1G+ , S0 [G])G ←− · · · .

For a naive G-spectrum X, the function spectrum F (EG+ ,X)G is called the homotopy fixed-
point spectrum XhG . We will therefore denote this pro-S-algebra S0 [G]hG .

2.3. An alternate homotopy fixed-point prospectrum

In equivariant stable homotopy theory there is another notion of suspension spectrum. For a
space X, one may define the spectrum S0

G [X] whose nth space is

QGΣnX = colim V ΩV ΣV +R
n

X,

and the colimit is taken over a complete G-universe of real finite-dimensional representations
V of G. Here SV = V ∪ {∞} is the one-point compactification of V ,

ΣV +R
n

X = SV ∧ Sn ∧ X

and ΩV Y = F (SV , Y ) is the function space of based continuous maps SV → Y . We make S0
G [X]

into a naive G-spectrum as follows: for f ∈ ΩV ΣV +R
n

X, g ∈ G, and ν ∈ SV = V ∪ {∞},
(g · f)(ν) = gf(ν · g−1).
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This extends over the colimit to give an action on each term of the spectrum. This, in turn,
assembles into a naive action of G on S0

G [X].
Replacing S0 [G] with S0

G [G] above (and using precisely the same arguments), we get a
pro-S-algebra

F (E1G+ , S0
G [G])G ←− · · · ←− F (EnG+ , S0

G [G])G ←− F (En+1G+ , S0
G [G])G ←− · · · .

We will denote this pro-S-algebra by S0
G [G]hG .

There is a natural map

e : S0 [X] −→ S0
G [X],

for one can regard the terms of S0 [X] as a similar colimit, only taken over the family of trivial G-
representation. This map is an equivariant map which is a nonequivariant equivalence [1, 13],
and thus gives an equivalence on homotopy fixed points. Consequently, the induced map of
prospectra

e : S0 [G]hG −→ S0
G [G]hG

is a pro-equivalence.

3. The co-ring spectra

In this section, we study the spectra LBG−ad and (DG)hG and the coproducts defined on each.

3.1. The spectrum LBG−ad

We recall the definition of LBG−ad . Let g be the Lie algebra of G, equipped with the adjoint
action of G. Then one may form a flat bundle ad over Ad(EG) = EG ×G G with total space

ad := (EG × G × g)/G.

The Thom spectrum of the virtual bundle −ad over Ad(EG) � LBG is what we shall call
LBG−ad .

3.2. Group actions on variants of DG

The group action of G on itself by conjugation induces a naive action of G on DG =
F (S0 [G], S0) by preconjugation. We explore two variants on this action that are more
geometrically defined.

The tangent bundle TG of G can be given the structure of a G-equivariant vector bundle,
lifting the conjugation action on G: for g ∈ G, define cg : G → G to be conjugation by g. For
h ∈ G and ν ∈ ThG, we define

g · (h, ν) := (cg (h), dh(cg )(ν)),

where dh(cg ) is the derivative of cg at h. This construction makes the Thom spectrum G−T G

into a naive G-spectrum.
Alternatively, consider the Lie algebra g := TeG alone. It inherits an action of G as a subspace

of TG; this is the adjoint action. This makes Sg = g ∪ {∞} into a G-space, and thus S−g a
naive G-spectrum. Smashing with the conjugation action on G gives a naive action of G on
S−g ∧ G+.

Proposition 3.1. There are equivariant equivalences

DG � G−T G � S−g ∧ G+ .
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Proof. The first equivalence is Atiyah duality. The second follows from the fact that G is
parallelizable.

Note that this gives an alternate construction of LBG−ad ; from the construction of ad, it is
apparent that

(S−g ∧ G+)hG = LBG−ad .

Then Proposition 3.1 implies part of Theorem 1.2: taking homotopy orbits we see that

(DG)hG � (S−g ∧ G+)hG = LBG−ad .

3.3. Co-ring spectra

In [14], it was shown that Ad(E)−ad is a co-ring spectrum, when p : E → M is a principal
G-bundle over a finite-dimensional manifold M . It is not hard to extend this to the infinite-
dimensional case M = BG.

Proposition 3.2. The spectrum LBG−ad = (S−g ∧ G+)hG is a homotopy coassociative
co-ring spectrum.

Proof. The multiplication map m : G × G → G is a principal G-bundle; the fiber over the
identity is {(g, g−1), g ∈ G} ∼= G. Consequently, there is a (stable) transfer map

m! : Sg ∧ G+ −→ G × G+

which is well defined up to homotopy. If we give G × G an action of G by conjugation in each
factor, it is easy to see that m is equivariant. Therefore m! is also. Smashing with S−2g and
taking homotopy orbits gives

M : (S−g ∧ G+)hG −→ ((S−g ∧ G+) ∧ (S−g ∧ G+))hG .

Here M = (idS−2 g ∧ m!)hG .
For any two naive G-spectra X and Y , there is a natural map

d : (X ∧ Y )hG −→ XhG ∧ YhG

induced by the diagonal on EG. We may define the coproduct on LBG−ad to be the composite
d ◦ M .

To see that the coproduct is coassociative, first observe that (m! ∧ id) ◦ m! = (id ∧ m!) ◦ m!
as maps

Sg ∧ Sg ∧ G+ −→ Sg ∧ G+ ∧ G+ −→ G+ ∧ G+ ∧ G+ ,

since both are equal to the transfer map for the principal G × G-bundle G × G × G → G given
by three-term multiplication. Smashing with S−3g and taking homotopy orbits shows that the
two compositions in the diagram below are equal.

((S−g ∧ G+) ∧ (S−g ∧ G+) ∧ (S−g ∧ G+))hG

(S−g ∧ G+)hG
M �� ((S−g ∧ G+) ∧ (S−g ∧ G+))hG

m !∧id

��

id∧m !

��
((S−g ∧ G+) ∧ (S−g ∧ G+) ∧ (S−g ∧ G+))hG .

Coassociativity then follows from the naturality of d and the coassociativity of the diagonal
map on EG.
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Since G is a finite complex, the Spanier–Whitehead dual DG is also equipped with a natural
co-ring spectrum structure, dual to the multiplication m in G. Since m is G-equivariant (with
respect to the diagonal conjugation action), the coproduct on DG is also equivariant. This
allows us to define a coproduct on the Borel construction (DG)hG by

(DG)hG
Dm ��(DG ∧ DG)hG

d ��(DG)hG ∧ (DG)hG .

It is evident that the Atiyah-duality equivalence (DG)hG � (S−g ∧ G+)hG = LBG−ad of
Proposition 3.1 respects these co-ring structures. This completes the proof of Theorem 1.2.

4. The proof of Theorem 1.1

We begin the proof of Theorem 1.1 with the following lemma which asserts that the terms in
each prospectrum are equivalent.

Lemma 4.1. The transfer map for the principal G-fibration

p : EnG × G −→ Ad(EnG)

gives rise to an equivalence

τn : Ad(EnG)−TBn G � F
(
EnG+ , S0

G [G]
)G

.

Proof. Write g for the Lie algebra of G and give it the adjoint G-action. Then one may
form the vector bundle

(EnG × G × g)/G

over Ad(EnG), with fiber g. We will write the Thom space of this bundle as Ad(EnG)g.
Recall from [20] that the transfer map τG is an equivalence of spectra

τG : Ad(EnG)g −→ S0
G [EnG × G]G.

Let T denote the tangent bundle of Ad(EnG), and p∗(T ) its pullback to EnG × G via p. Then
τG extends to an equivalence of Thom spectra

τn = (τG )−T : Ad(EnG)g−T −→ S0
G [(EnG × G)−p∗(T ) ]G. (∗)

There is a splitting of the tangent bundle of Ad(EnG),

T = g ⊕ π∗(TBnG).

The base BnG embeds as the unit section of the projection π, and the vertical tangent bundle
to π is g. Therefore the left-hand side of (∗) may be written as Ad(EnG)−TBn G .

Examine the right-hand side of (∗). Since p is a G-principal fibration, we know that

p∗(T ) ⊕ g = T (EnG × G),

and here g is a trivial bundle over EnG × G. Note that g is the lift of the tangent bundle of G
to EnG × G. Therefore p∗(T ) is stably equivalent to the lift of TEnG to EnG × G. Therefore
the right-hand side of (∗) may be written as

(
EnG−TEn G ∧ S0

G [G]
)G

.

Atiyah duality then tells us that, since EnG is a manifold, EnG−TEn G is the Spanier–
Whitehead dual of EnG+,

EnG−TEn G � F (S0 [EnG], S0).
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Using this along with the fact that for a finite spectrum X, there is an equivalence

F (Y,X) � F (Y, S0) ∧ X,

we see that the right-hand side of (∗) is

F
(
EnG+ , S0

G [G]
)G

.

Lemma 4.2. The maps τn are maps of ring spectra, up to homotopy.

Proof. We will show that the following diagram homotopy commutes.

Ad(En G)−T B n G ∧Ad(En G)−T B n G
τn ∧τn ��

τ G ×G
G

��

(
En G−T E n G ∧S 0

G [G ]
)G

∧(En G−T E n G ∧S 0
G [G ])G

j◦i◦smash

��
AdG (En G×En G)−(g⊕T (B n G ×B n G ) )

τ ′
n ��

τΔ ′

��

(
(En G×En G)−T (E n G ×E n G )∧S 0

G [G×G ]
)G

Δ∗

��
(Ad(En G)×B n G Ad(En G))−T B n G

τn ′′ ��

μ∗

��

(
En G−T E n G ∧S 0

G [G×G ]
)G

μ∗

��
Ad(En G)−T B n G

τn �� (En G−T E n G ∧S 0
G [G ]

)G
.

Here

AdG (EnG × EnG) = (EnG × G × EnG × G)/G,

where G acts diagonally. All of the horizontal maps are transfer maps: τ ′
n is the transfer for

the principal G-bundle

EnG × G × EnG × G −→ (EnG × G × EnG × G)/G,

Thomified with respect to the bundle −(T × T ), and τ ′′
n is the transfer for

EnG × G × G −→ (EnG × G × G)/G = Ad(EnG) ×Bn G Ad(EnG),

Thomified with respect to −(g ⊕ π∗(TBnG)).
First, consider the top square. The map τG×G

G is a transfer map similar to τG , arising from a
Pontrjagin–Thom collapse map. Here it is Thomified with respect to −(TBnG × TBnG). The
map j is induced by the natural map

S0
G [G] ∧ S0

G [G] −→ S0
G [G × G].

This top square commutes by the subgroup naturality of the transfer construction [20].
Next, consider the middle square. The map Δ∗ is the Spanier–Whitehead dual of the diagonal

Δ : EnG ↪→ EnG × EnG, hence is the Pontrjagin–Thom collapse map for the embedding Δ.
Likewise, τΔ ′ is the Pontrjagin–Thom collapse map for

Δ′ : (EnG × G × G)/G ↪→ (EnG × G × EnG × G)/G.

The transfer maps are also the collapse maps, and the two ways around this square are the
same collapse maps, up to homotopy.

In the third square, both vertical maps are induced by the group multiplication on G.
Since this multiplication is equivariant for the diagonal conjugation action, the bottom square
commutes [20].



846 KATE GRUHER AND CRAIG WESTERLAND

Note that the composition τΔ ′ ◦ τG×G
G is the Pontrjagin–Thom collapse map for the

embedding
Δ̃ : Ad(EnG) ×Bn G Ad(EnG) ↪→ Ad(EnG) × Ad(EnG).

Thus, the composition μ∗ ◦ τΔ ′ ◦ τG×G
G is the same as the ring spectrum multiplication on

Ad(EnG)−TBn G given in [15]. Furthermore, after identifying
(
EnG−TEn G ∧ S0

G [G]
)G � F

(
EnG+ , S0

G [G]
)G

,

we see that the product given by μ∗ ◦ Δ∗ ◦ j ◦ i ◦ smash is the same as that defined in
Section 2.2. Thus τn is a map of ring spectra, up to homotopy.

Lemma 4.3. The maps τn commute with the maps defining the prospectra LBG−TBG and
S0 [G]hG . That is, they define a map of prospectra.

Proof. First observe that the structure maps

F
(
EnG+ , S0

G [G]
)G ←− F

(
En+1G+ , S0

G [G]
)G

define maps
(
EnG−TEn G ∧ S0

G [G]
)G ←−

(
En+1G

−TEn + 1 G ∧ S0
G [G]

)G
,

which are induced by the Spanier–Whitehead dual of the inclusions EnG ⊆ En+1G, and hence
are the corresponding Pontrjagin–Thom collapse maps. We need to check that the diagram

Ad(EnG)−TBn G τn �� (EnG−TEn G ∧ S0
G [G]

)G

Ad(En+1G)−T Bn + 1 G
τn + 1 ��

��

(
En+1G

−TEn + 1 G ∧ S0
G [G]

)G

��
(1)

commutes. From the construction of the transfer map, we have a commutative diagram

Ad(EnG)g⊕ν τn �� (EnGν ∧ S0
G [G]

)G

Ad(En+1G)g
τn + 1 ��

��

(En+1G+ ∧ S0
G [G])G,

��

where the vertical maps are the collapse maps and ν is the pullback of the normal bundle
of BnG in Bn+1G. Thomifying the diagram above with respect to −T (Ad(En+1G)) yields
diagram (1).

Theorem 1.1 follows from these three lemmata; the maps τn assemble into an equivalence
of pro-ring spectra. It is worth pointing out that these methods extend to give an equivalence
Ad(M ×G EG)−TBG � S0 [M ]hG of pro-ring spectra for any G-monoid M .

5. Hochschild cohomology of C∗(BG)

The purpose of this section is to prove the equivalence of parts (1) and (3) in Theorem 1.3. We
begin with a cosimplicial description of the terms in the prospectrum LBG−TBG. We use this
to give an intermediate result describing the homology of these terms. This is then assembled
into the result using various limit arguments.

Because we have assumed that G is connected, BG is simply connected, and for n sufficiently
large, so too is BnG. This ensures that the spectral sequences that we employ will converge.
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5.1. A cosimplicial model for Ad(EnG)−TBn G

In this section, we construct a cosimplicial ring spectrum Ad•
n with the property that

Tot(Ad•
n ) � Ad(EnG)−TBn G .

The bulk of this section is adapted directly from [6, 8], so we will be brief except in instances
where our construction differs substantially.

One can realize the free loop space of BG as the totalization of the cosimplicial space
Map(S1

• , BG),

LBG = Map(S1 , BG) = Map(|S1
• |, BG) = Tot(Map(S1

• , BG)).

Here S1
• is the simplicial set whose geometric realization is the circle; S1

• has k + 1 k-dimensional
simplices. Hence

Map
(
S1

k , BG
)

= BG×k+1 .

The cofaces and codegeneracies are given by various diagonals and projections.

Proposition 5.1. The space Ad(EnG) is homotopy-equivalent to the totalization of the
subcosimplicial space of Map(S1

• , BG) whose kth space is

BnG × BG×k .

Proof. The subcosimplicial space described is carried via the equivalence

Tot(Map(S1
• , BG)) = LBG

homeomorphically to the subspace LnBG ⊆ LBG given by those loops whose basepoint lies in
BnG ⊆ BG.

Recall that Ad(EnG) = EnG ×G G; as such Ad(EnG) is the fiber product

Ad(EnG)
⊆ ��

��

Ad(EG)

��
BnG

⊆ �� BG.

Similarly, LnBG is the fiber product

LnBG
⊆ ��

��

LBG

��
BnG

⊆ �� BG.

Since the fibrations LBG → BG and Ad(EG) → BG are equivalent, these fiber squares imply
that LnBG and Ad(EnG) are equivalent.

We now desuspend this construction by the tangent bundle of BnG. For this we need the
following construction. Consider the composite map

BnG
Δ �� BnG × BnG

1×i �� BnG × BG.

This is the 0th coface of the cosimplicial space which totalizes to LnBG. The pullback of
TBnG × 0 to BnG via this map is once again TBnG. Thus, we have an induced map

μR : BnG−TBn G −→ BnG−TBn G ∧ BG+ .
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Making the same construction with 1 × i replaced by i × 1 defines a similar map

μL : BnG−TBn G −→ BG+ ∧ BnG−TBn G .

We describe these maps by the element-theoretic formulae

μL (u) = (yL , νL ), μR (u) = (νR , yR ).

Though this does not quite make sense as spectra do not have elements, we hope the meaning
is clear.

Definition 5.2. For a group G and an integer n > 0, define a cosimplicial spectrum Ad•
n

whose kth term is

Adk
n := BnG−TBn G ∧ BG×k

+ ,

with coface and codegeneracy maps defined by the element-theoretic formulae

δ0(u;x1 , . . . , xk−1) = (νR ; yR , x1 , . . . , xk−1),
δi(u;x1 , . . . , xk−1) = (u;x1 , . . . , xi−1 , xi , xi, xi+1 , . . . , xk−1),

1 � i � k − 1
δk (u;x1 , . . . , xk−1) = (νL ;x1 , . . . , xk−1 , yL ),
σi(u;x1 , . . . , xk+1) = (u;x1 , . . . , xi , xi+2 , . . . , xk+1)

0 � i � k.

Define a map

mk,l : Adk
n ∧ Adl

n −→ Adn

by the composite
(
BnG−TBn G ∧ BG×k

+
)
∧

(
BnG−TBn G ∧ BG×l

+
) T ��

mk , l ���������������������������
BnG−TBn G ∧ BnG−TBn G ∧ BG×k+ l

+

m∧1
��

BnG−TBn G ∧ BG×k+ l
+ ,

where T switches factors, and m is multiplication in the ring spectrum BnG−TBn G .
After totalization, the maps mk,l define a multiplication

Tot(Ad•
n ) ∧ Tot(Ad•

n ) −→ Tot(Ad•
n )

which makes Tot(Ad•
n ) into a ring spectrum.

Theorem 5.3. There is an equivalence of ring spectra

Ad(EnG)−TBn G 	 �� Tot(Ad•
n ).

Proof. The equivalence of these spectra follows from Proposition 5.1. The proof that the
equivalence preserves ring multiplication is identical to the proof in [8] that LM−TM and
Tot(L•

M ) are equivalent ring spectra.

5.2. The homology of Ad(EnG)−TBn G

Recall that for any space X, the singular cochain complex, C∗(X), is a differential-graded
algebra via the cup product of cochains. Using left and right multiplication, C∗(X) becomes
a C∗(X)-differential-graded bimodule. Maps of spaces induce maps of differential-graded
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algebras, so the maps

BnG
in �� Bn+1G

i �� BG

make C∗(BnG), C∗(Bn+1G) and C∗(BG) into C∗(BG)-bimodule algebras. Further, the maps
i∗n and i∗ are maps of bimodule algebras. One may therefore form the Hochschild cohomology

HH∗(C∗(BG), C∗(BnG))

which becomes a ring under the cup product of Hochschild cochains. This allows us to describe
the homology of individual terms of the prospectrum LBG−TBG.

Theorem 5.4. There is a ring isomorphism

HH∗(C∗(BG), C∗(BnG)) ∼= H∗(Ad(EnG)−TBn G ).

Proof. Theorem 5.3 gives the following equivalence of chain complexes:

C∗(Ad(EnG)−TBn G ) � Tot
(
C∗

(
BG×•

+ ∧ BnG−TBn G
))

.

Using the Eilenberg–Zilber theorem and the Atiyah duality, the right-hand side is equivalent
to the totalization of the cosimplicial chain complex

k �→ C∗(BG)⊗k ⊗ C∗(BnG).

Define a chain map gk : C∗(BG)⊗k ⊗ C∗(BnG) → Hom(C∗(BG)⊗k , C∗(BnG)) by adjunc-
tion and evaluation,

e1 ⊗ · · · ⊗ ek ⊗ f �−→ ((f1 ⊗ · · · ⊗ fk ) �→ f1(e1) · · · fk (ek ) · f).

It is easy to verify that the collection {gk , k � 0} defines a cosimplicial map

g : C∗(BG)⊗• ⊗ C∗(BnG) −→ CH•(C∗(BG), C∗(BnG)).

The theorem follows if we show that g induces a homology isomorphism upon totalization.
To see this, we notice that there are spectral sequences that compute the homology of the

two terms in question,

E1 := H∗(BG)⊗• ⊗ H∗(BnG) =⇒ H∗(Tot(C∗(BG)⊗• ⊗ C∗(BnG)))
and

E′
1 := CH∗(H∗(BG),H∗(BnG)) =⇒ HH∗(C∗(BG), C∗(BnG)).

The cosimplicial chain map g induces a map g∗ between the spectral sequences; we claim that
g∗ : E1 → E′

1 is an isomorphism. In each cosimplicial degree k, the map

g∗ : H∗(BG)⊗k ⊗ H∗(BnG) −→ Hom(H∗(BG)⊗k ,H∗(BnG))

is a graded isomorphism because H∗(BnG) is finite-dimensional, and H∗(BG)⊗k is finite-
dimensional in each degree. Consequently, g∗ is an isomorphism of spectral sequences; hence g
induces an isomorphism in homology after totalization.

The cosimplicial product structure on Ad•
n is seen immediately to coincide with the cup

product of Hochschild cochains. Consequently, this is an isomorphism of rings.

5.3. Limit arguments

Examine the direct system

B1G −→ · · · −→ BnG −→ Bn+1G −→ · · · −→ BG.

Applying the (integral) singular chain and cochain complex functors produces direct and inverse
systems of chain (respectively, cochain) complexes. Since BG is given the weak (or limit)
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topology of the system, this allows us to identify the singular chain complex of BG,

C∗(BG) = lim−→C∗(BnG).

Standard properties of limits and colimits then imply that

C∗(BG) = lim←−C∗(BnG).

Proposition 5.5. There is an isomorphism of cochain complexes

CH∗(C∗(BG), C∗(BG)) ∼= lim←−CH∗(C∗(BG), C∗(BnG)).

Proof. For a given differential-graded algebra A, the Hochschild cochain functor CH∗(A, ·)
is covariant in the module variable for chain maps of differential-graded modules over A.

Recall that

i∗n : C∗(Bn+1G) −→ C∗(BnG)

is a chain map and a map of C∗(BG)-modules. Consequently, the map induced by i∗n

CH∗(C∗(BG), C∗(Bn+1G)) −→ CH∗(C∗(BG), C∗(BnG))

is a chain map. Therefore lim←−CH∗(C∗(BG), C∗(BnG)) is also a chain complex.
We also know that

i∗ : C∗(BG) −→ C∗(BnG)

is a chain map and a map of C∗(BG)-modules. So the maps

CH∗(C∗(BG), C∗(BG)) −→ CH∗(C∗(BG), C∗(BnG))

are chain maps. Since they are coherent across the inverse system, they assemble into a chain
map

CH∗(C∗(BG), C∗(BG)) −→ lim←−CH∗(C∗(BG), C∗(BnG)).

Generally, if Z is an Abelian group and

X0 ←− X1 ←− · · ·

an inverse system of Abelian groups, there is a canonical isomorphism (of groups)

Hom(Z, lim←−Xi) ∼= lim←−Hom(Z,Xi).

Consequently, the map induced by i∗ is an isomorphism

CHk (C∗(BG), C∗(BG)) ∼= CHk (C∗(BG), lim←−C∗(BnG))
∼= lim←−CHk (C∗(BG), C∗(BnG))

for each k. The previous comments imply that this isomorphism is one of the chain complexes.

Using a lim←−
1 argument and some topology, we may conclude the following homological analog.

Corollary 5.6. There is an isomorphism of rings

HH∗(C∗(BG), C∗(BG)) ∼= lim←−HH∗(C∗(BG), C∗(BnG)).

Proof. The tower

· · · ←− C∗(BnG) ←− C∗(Bn+1G) ←− · · ·
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satisfies the Mittag–Leffler condition; consequently, so does the tower

· · · ←− CH∗(C∗(BG), C∗(BnG)) ←− CH∗(C∗(BG), C∗(Bn+1G)) ←− · · · .

Using this fact and the previous proposition, we see that there is a short exact sequence

0 −→ lim←−
1HH∗(C∗(BG), C∗(BnG)) −→ HH∗(C∗(BG), C∗(BG))

−→ lim←−HH∗(C∗(BG), C∗(BnG)) −→ 0.

Recall that we have shown that

HH∗(C∗(BG), C∗(BnG)) ∼= H∗(Ad(EnG)−TBn G ).

So the lim←−
1 term vanishes if we can show that maps

Ad(EnG)−TBn G ←− Ad(En+1G)−T Bn + 1 G

satisfy the Mittag–Leffler condition in homology. Since the Spanier–Whitehead dual of
Ad(EnG)−TBn G is Ad(EnG)−ad , this is equivalent to showing that the inclusions

Ad(EnG) −→ Ad(En+1G) (∗)
satisfy the Mittag–Leffler condition in cohomology. By construction, the connectivity of the
inclusions BnG ↪→ BG increases with n; hence the same is true for the inclusions Ad(EnG) ↪→
Ad(EG). This implies that (∗) does, in fact, satisfy the Mittag–Leffler condition in cohomology.

Since each map in the tower of coefficients is a ring homomorphism (in fact, a C∗(BG)-
bimodule algebra map), the resulting isomorphism is one of rings.

5.4. A proof of (1) ⇔ (3) in Theorem 1.3

Recall that we define

Hpro
∗ (LBG−TBG) := lim←−H∗(Ad(EnG)−TBn G ).

Using Theorem 5.4 and Corollary 5.6, we therefore have

Hpro
∗ (LBG−TBG) ∼= lim←−HH∗(C∗(BG), C∗(BnG)) ∼= HH∗(C∗(BG), C∗(BG)).

The ring structure on the left-hand side is defined to be the inverse limit of the ring structures
on H∗(Ad(EnG)−TBn G ). We have just shown the same to be true for the right-hand side; hence
this isomorphism is one of rings.

6. Spanier–Whitehead duality

In this section, we show the isomorphism between the rings in parts (1) and (2) of Theorem
1.3.

Since LBG � Ad(EG) = lim−→ Ad(EnG), there is an exact sequence

0 −→ lim←−
1H∗(Ad(EnG)−ad) −→ H∗(LBG−ad) −→ lim←− H∗(Ad(EnG)−ad) −→ 0.

Using the same arguments as in Section 5.3, we see that the lim←−
1 term vanishes.

In [14], the first author has shown that the spectra Ad(EnG)−TBn G and Ad(EnG)−ad are
Spanier–Whitehead dual. Since these are finite spectra, we may conclude that

H∗(Ad(EnG)−TBn G ) ∼= H−∗(Ad(EnG)−ad).

Moreover, since Spanier–Whitehead duality carries the product on Ad(EnG)−TBn G to the
coproduct on Ad(EnG)−ad , this isomorphism is one of rings. Therefore there is a ring
isomorphism

Hpro
∗ (LBG−TBG) := lim←− H∗(Ad(EnG)−TBn G ) ∼= lim←− H−∗(Ad(EnG)−ad) ∼= H−∗(LBG−ad).
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7. Hochschild cohomology of C∗(G) and Koszul duality

7.1. The bar and cobar constructions

We recall the bar and cobar constructions for differential-graded (co)algebras. To begin with,
let R be a connected, augmented, associative dga over a field k. Recall that for a right R-module
M , and a left R-module N , the two-sided bar construction B(M,R,N) is the realization of
the simplicial chain complex B•(M,R,N), given by

Bn (M,R,N) = M ⊗ R⊗n ⊗ N, n ∈ N

whose faces are given by multiplication in R and the module structure on M and N (and
degeneracies are given by insertion of a unit). Recall, further, that B(R) := B(k,R, k), the
classic bar construction on R, is a differential-graded coalgebra, and B(M,R, k) and B(k,R,N)
are, respectively, the right and the left comodules for B(R).

Dually, for a supplemented, coassociative coalgebra S and the right and left comodules P
and Q for S, the two-sided cobar construction Ω(P, S,Q) is the totalization of the cosimplicial
chain complex

Ωn (P, S,Q) = P ⊗ S⊗n ⊗ Q, n ∈ N

whose cofaces are given by comultiplication in S and the comodule structure on P and Q, and
whose codegeneracies come from the counit in S. Write Ω(S) := Ω(k, S, k); this is a differential-
graded algebra.

A relationship between these two constructions is as follows. Let S be a differential-graded
coalgebra over a field k which is finite-dimensional in each degree. Then the dual S∨ =
Hom(S, k) is a differential-graded algebra, and there is an isomorphism of differential-graded
coalgebras

B(S∨) ∼= (Ω(S))∨. (∗)

7.2. Koszul duality

To our knowledge, there are at least two approaches to proving that Hochschild cohomology is
insensitive to Koszul duality, using [10] and [16]. We recall these results.

A supplemented coalgebra S = S ⊕ k is said to be conilpotent if, for every x ∈ S, there is an
n so that the nth iterated reduced comultiplication vanishes on x. In [10], Felix, Menichi, and
Thomas proved that if S is locally conilpotent, non-negatively graded, and finitely generated
in each degree, then there is an isomorphism of Gerstenhaber algebras

HH∗(ΩS,ΩS) ∼= HH∗(S∨, S∨).

This was realized via a chain map

CH∗(ΩS,ΩS) −→ CH∗(S∨, S∨).

Here ΩS is the reduced cobar construction, which is equivalent to ΩS.
Dually, let R be a differential-graded algebra, and write R! for the Koszul dual dga of R.

That is, R! is the linear dual of B(R),

R! = (B(R))∨ = Hom(B(R), k).

In [16], Hu gave a proof that there is an equivalence of chain complexes

CH∗(R,R) � CH∗(R!, R!),

assuming that H∗(R!) is a finite-dimensional k-vector space. Though not explicitly stated, it is
does follow from the proof given there that this induces a ring isomorphism in Hochschild
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cohomology (we include a sketch below). These two results are clearly related via the
isomorphism (∗).

Proposition 7.1. The equivalence CH∗(R,R) � CH∗(R!, R!) of [16] induces a ring
isomorphism

HH∗(R,R) ∼= HH∗(R!, R!).

Proof. We summarize the essential points of the proof given in [16] in order to show that
this isomorphism is one of rings. Hu considers the bicosimplicial object

X•,• := HomR⊗Ro p (B•(R,R,R),Ω•(B(R,R, k), B(k,R, k), B(k,R,R))).

Recall that if R is connected, there is an equivalence R → Ω(B(R)) of differential-graded
algebras. Further, there are R-module equivalences B(R,R, k) → k ← B(k,R,R), so we have
an equivalence of R ⊗ Rop-modules

R −→ Ω(B(R)) ←− Ω•(B(R,R, k), B(k,R, k), B(k,R,R))).

Furthermore, B•(R,R,R) → R is a free R ⊗ Rop-resolution (over B•(k,R, k)). Therefore X•,•

computes the Hochschild cohomology of R,

HH∗(R,R) = RHomR⊗Ro p (R,R) = H∗(X•,•).

Moreover, by R ⊗ Rop-freeness, there is an isomorphism

X•,• = Homk (B•(k,R, k),Ω•(B(R,R, k), B(k,R, k), B(k,R,R)))
= Homk (B•(R),Ω•(B(R,R, k), B(R), B(k,R,R))).

Using the equivalences B(R,R, k) � k � B(k,R,R), we see that this complex is equivalent to

Homk (B•(R),Ω•(k,B(R), k)),

which is, in turn, isomorphic to

HomB (R)⊗B (R)o p −comod(B•(R),Ω•(B(R), B(R), B(R))), (∗∗)
since Ω•(B(R), B(R), B(R))) is a cofree B(R) ⊗ B(R)op-comodule on Ω•(k,B(R), k). Using
the homological finiteness of R! , we notice that (∗∗) computes

HH∗(R!, R!) = RHomR !⊗R ! o p (R!, R!) = RHomB (R)⊗B (R)o p −comod(B(R), B(R))

because Ω•(B(R), B(R), B(R)) is a cofree resolution of B(R) in the category of B(R) ⊗ B(R)op-
comodules.

Now, the Gerstenhaber cup product in HH∗(A,A) can be identified with the Yoneda
(composition) product in RHomA⊗A o p (A,A). The isomorphism

HH∗(R,R) = H∗(X•,•) ∼= HH∗(R!, R!)

given above comes from the quasi-isomorphism

X•,• � HomB (R)⊗B (R)o p −comod(B•(R),Ω•(B(R), B(R), B(R)))

which preserves the composition in each of these Hom-complexes.

7.3. Application to C∗(BG)

We will apply these results on the case at hand, using the coalgebra S = C∗(BG) or dually
R = S∨ = C∗(BG).

It is well known (using the Eilenberg–Moore spectral sequence, for instance) that there is a
homotopy equivalence of the dga

C∗(G) � C∗(ΩBG) � Ω(C∗(BG)) � (C∗(BG))!,
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and our assumption that G is compact Lie ensures that the homology of the Koszul dual is
finite. Using Hu’s theorem, we conclude that there is a ring isomorphism

HH∗(C∗(BG), C∗(BG)) ∼= HH∗(C∗(G), C∗(G)).

It is unclear whether we may use [10] to give an alternate proof and strengthen this
isomorphism to one of the Gerstenhaber algebras. For if we use the singular cochain complex,
S = C∗(BG) is far from finite-dimensional in each degree. It may be possible to construct a
quasi-isomorphic coalgebra S′ � S which satisfies the assumptions of Felix–Menichi–Thomas’
theorem (another of their results implies that the Gerstenhaber structure of Hochschild
cohomology is preserved by quasi-isomorphism of the dga). The simple connectivity of BG and
local finiteness of H∗(BG) suggest that one may be able to find a locally finite simplicial set Y•
whose geometric realization is homotopy-equivalent to BG. Then S′ could be taken to be the
simplicial chain complex of Y•. But we do not know a construction of such a simplicial set Y•.

8. Relationship to string topology constructions

We have already seen that several of our results have interpretations in terms of string topology:
in Theorem 1.1, LBG−TBG arises from the string topology of BG, and the results of Section 5
are analogs of the Cohen–Jones string topology theorem that for a simply connected manifold
M , H∗(LM) ∼= H∗(C∗(M), C∗(M)) as graded algebras [8]. In this section, we will give an
interpretation of the co-ring spectrum LBG−ad in terms of string topology, using string
topology constructions for stacks.

In [7], Cohen and Godin defined a non-counital Frobenius algebra structure on h∗(LM), with
multiplication given by the Chas–Sullivan product. In [18], Lupercio, Uribe and Xicoténcatl
extended the Chas–Sullivan construction to loop orbifolds. Using this, a localization principle
allowed them in [19] to define an associative multiplication on H∗(Λ[Xn/Σn ]), the homology
of the inertia orbifold of a symmetric product. They then showed that this multiplication
is Poincaré dual to a virtual intersection product on H∗(Λ[Xn/Σn ]), which, with coauthors
González and Segovia in [12], was identified with H∗

C R (T ∗[Xn/Σn ]), the Chen–Ruan cohomol-
ogy of the cotangent bundle of [Xn/Σn ]. This product is part of a Frobenius algebra structure
in the Chen–Ruan cohomology.

Behrend, Ginot, Noohi, and Xu (BGNX) gave similar constructions in [2, 3], where they
define a Frobenius algebra structure on H∗(ΛX), the homology of the inertia stack of an
oriented differentiable stack X. Unlike the Frobenius algebra in the Chen–Ruan cohomology,
this structure is not necessarily unital nor counital. In this structure, the multiplication is
given by a stacky version of the Chas–Sullivan product, and the coproduct is given by a stacky
version of the Cohen–Godin coproduct.

In the case that X = [∗/G], the classifying stack of a compact Lie group G, the inertia stack
ΛX is the quotient stack [G/G] where G acts on itself by conjugation. Then

H∗(ΛX) = H∗([G/G]) = H∗(Ad(EG)) ∼= H∗(LBG),

so it is natural to ask whether the ‘inertia Frobenius algebra’ studied in [2, 12] is related
to the co-ring spectrum LBG−ad . The relationship is clearest when we consider instead the
Frobenius algebra structure on H∗(Λ[∗/G]), induced via the universal coefficient theorem
as in [2]. The following theorem says that the product (defined by BGNX) on H∗([G/G]),
and hence the coproduct on H∗([G/G]), are induced by the coproduct on the LBG−ad from
Proposition 3.2.

Proposition 8.1. The product on the inertia Frobenius algebra H∗([G/G]) is equal to
the product on H∗(LBG) induced from the co-ring spectrum structure on LBG−ad .
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Proof. From Lemma 5.1 of [2], the product is given by

Hi+j ([G × G/G × G]) Δ∗
−→ Hi+j ([G × G/G]) m !−→ Hi+j−d([G/G]),

where d is the dimension of G. Translating this product to homotopy orbit spaces gives

Hi+j (GhG × GhG ) Δ∗
−→ Hi+j ((G × G)hG ) m !−→ Hi+j−d(GhG ),

which is clearly the product given by applying H∗ and Thom isomorphisms to the coproduct
on LBG−ad .

Proposition 8.2. There is a nonunital ring spectrum structure on LBG+ad which realizes
the coproduct on H∗([G/G]) defined in [2].

Remark 8.3. However, BGNX have shown that this coproduct is trivial on H∗([G/G]; R).
It is likely to be nontrivial in any cohomology theory which detects the G-transfer map
S0 [BGad ] → S0 (such as the orthogonal K-theory when G = S1).

Proof. The diagonal embedding G ↪→ G × G induces a relative transfer map

τG×G
G : (Sg×g ∧ (G × G)+)hG×G −→ (Sg ∧ (G × G)+)hG .

The left-hand side is equivalent to (Sg ∧ G+)hG ∧ (Sg ∧ G+)hG . Group multiplication in G
induces

m : (Sg ∧ (G × G)+)hG −→ (Sg ∧ G+)hG ,

since it is G-equivariant. Hence we can define the multiplication on

LBGad = (Sg ∧ G+)hG

to be

m ◦ τG×G
G : LBGad ∧ LBGad −→ LBGad .

This product is the same as the ring structure on LBGad described in [22] coming from the
first term of the transfer operad GbG . It is associative but not unital. Applying cohomology
and Thom isomorphisms yields

Hi([G/G]) m∗
−→ Hi([G × G/G]) τ ∗

−→ Hi−d([G × G/G × G]) ∼=
⊕

r+s=i−d

Hr ([G/G]) ⊗ Hs([G/G]),

which is the same as the description of the coproduct in Lemma 5.1 of [2].
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