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Abstract

We study the homotopy type of mapping spaces from Riemann surfaces to spheres. Our main result is a stable splitting of these
spaces into a bouquet of new finite spectra. From this and classical results, one may deduce splittings of the configuration spaces
of surfaces.
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1. Introduction

Mapping spaces with Riemann surfaces as domains have been an object of much recent interest. In physics, such
spaces describe the worldsheets of a string evolving through time. In algebraic and symplectic geometry, one puts
algebraic or analytic restrictions on the types of maps allowed, and studies the resulting moduli space; this is Gromov–
Witten theory. When we put no requirements on these functions other than continuity, remarkable results in stable
homotopy theory have been obtained.

Strikingly, in homotopy theory as in the other theories, much less is known for Riemann surfaces with genus greater
than 0 than in the case of the Riemann sphere. Much of what we do know is comprised of several works. In [3],
Bödigheimer, F. Cohen, and Taylor compute the ranks of the cohomology groups of these mapping spaces when the
target is a sphere (as well as a host of other mapping spaces with different domains). F. Cohen, R. Cohen, Mann and
Milgram prove a periodicity of their stable homotopy type as the dimension of the target sphere varies in [8]. Finally,
in [2], Bödigheimer, F. Cohen and Milgram construct some stable and unstable splittings of these spaces, particularly
at primes greater than 3. Missing from these calculations is a full understanding of the cohomology operations on
these spaces, an essential part of the homotopy theory of these function spaces. On the other hand, this information
was known for genus 0 as early as 1976 in F. Cohen’s work in [9].

This is the main subject of the present paper: We study the stable homotopy type of the function spaces
Map∗(Xg,S

n) of continuous based maps from a compact, orientable surface Xg of genus g without boundary to
a sphere of dimension n. That type determines all generalized cohomology information about the space, such as
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K-theory, cobordism groups, and cohomology operations. In many cases we will split these function spaces into
recognizable finite complexes; in the remaining cases we will state some conjectures on extending these results.

The genus 0 case (the spaces Ω2Sn) has been studied by many authors, including [1,6,9,10,13,16], evidencing the
great interest of homotopy theorists in the theory of loop spaces. There have been some spectacular results, including
Mahowald’s construction of an infinite family of elements in the stable homotopy groups of spheres detected at
filtration 2 in the Adams spectral sequence (thus disproving the so-called Doomsday Conjecture in stable homotopy
theory) in [16], and the realization in [16,12] of the Eilenberg–MacLane spectra HZ, and HZ/2 as Thom spectra,
amongst others. Thus, we will focus on the genus > 0 case.

We will restrict our focus to 2-primary information regarding the stable homotopy types of the spaces
Map∗(Xg,S

n), i.e., unless we indicate otherwise, coefficients for all homology and cohomology theories are taken
to be the field F2 of two elements. We focus on the prime 2 because rationally and for odd primes, odd dimensional
spheres are H -spaces; thus a collapse like Proposition 1.1 below occurs. Even-dimensional spheres are more difficult;
away from 2, an important spectral sequence fails to collapse (see [2, Theorems 10.2 and 11.4]).

Let us now be more specific. A∗ will denote the Steenrod algebra of cohomology operations for H ∗(·;F2). In [4],
Brown and Gitler introduced the cyclic module

M(k) := A∗/A∗{χ(
Sqi

) | i > k
}

(here χ(Sqi) denotes the conjugate of Sqi in A∗), and a 2-local spectrum B(k) whose mod 2 cohomology is M(k).
Snaith’s stable splitting [21] of ΩkΣkX was utilized by Mahowald to construct his family ηi ∈ πS

2i . For n > 2,

the stable wedge summands of Ω2Sn are equivalent to Thom spaces of certain vector bundles over the configuration
spaces of R2. Mahowald identified the cohomology of these summands as that of suspensions of Brown–Gitler spectra
(for n odd). He conjectured that at the prime 2, they were in fact Brown–Gitler spectra, and in [6], Brown and Peterson
proved this to be true. They also extend the results to the configuration spaces themselves, as well as the case of n

even.
To extend these results to a stable splitting of Map∗(Xg,S

n) for g > 0, a good place to begin is with n = 3. The
following was noted in [2] and, employing the group structure in S3, is not difficult to show:

Proposition 1.1. The function space of maps from Xg to S3, Map∗(Xg,S
3) is homotopy equivalent to Ω2S3 ×

(ΩS3)×2g .

Since ΩS3 is stably equivalent to a wedge of spheres, it follows that Map∗(Xg,S
3) stably decomposes into a

wedge of suspensions of Brown–Gitler spectra. A result of [8] implies that (for n � 2) the stable homotopy types
of the Snaith summands of Map∗(Xg,S

n) are 4-periodic in n, up to suspension. Thus the stable homotopy type of
Map∗(Xg,S

n) is understood for n = 3 mod 4 and all g.
We focus, then, on n �= 3 mod 4. In these cases, new spectra are needed. They are certain elaborations of the

Brown–Gitler spectra in the presence of the mod 2 Moore spectrum MZ/2 and the cofiber Cη of the Hopf fibration
η :S1 → S0. Let X∧n denote the n-fold smash power of X.

Theorem 1.2. For each g, k � 0, there exist spectra Ng(k), Pg(k), and Lg(k).

(1) H ∗(Ng(k)) is the quotient of ΣkM� k
2�⊗H ∗(MZ/2∧g) by the A∗-submodule generated by the set {χ(Sqt )⊗ x |

dimx = n, t > � k−n
2 �} (ignoring the suspension coordinate). Moreover, this quotient is realized by a map

Ng(k) → ΣkB

⌊
k

2

⌋
∧ (MZ/2)∧g.

(2) H ∗(Pg(k)) is the quotient of Σ3kM� k
2� ⊗ H ∗(Cη∧g) by the A∗-submodule generated by the set {χ(Sqt ) ⊗ x |

dimx = n, t > � k−n
2 �} (ignoring the suspension coordinate). Moreover, this quotient is realized by a map

Pg(k) → Σ3kB

⌊
k

2

⌋
∧ (Cη)∧g.
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(3) H ∗(Lg(k)) is a quotient of

Σ4k

(
k⊕

i=0

H ∗(Ng(i)
)) ⊗ H ∗(Cη∧g

)
. (∗)

Write H ∗(MZ/2∧g) and H ∗(Cη∧g) as exterior algebras on g generators x1, . . . , xg of dimension 1, and
y1, . . . , yg of dimension 2 respectively. So if we write H ∗(Ng(i)) as a quotient of M� i

2� ⊗ Λ[x1, . . . , xg] · ei

(where ei is a generator of dimension i), H ∗(Lg(k)) is the quotient of (∗) by the A∗-submodule generated by

yj1 · · ·yjnei−n − xj1 · · ·xjnei .

So, for instance, the cohomology of Pg(k) is the same as the cohomology of the 3k suspension of
g∨

j=0

Σ2jB

⌊
k − 2j

2

⌋
but with cohomology operations perturbed by the presence of the cohomology of the Cη’s. Similarly, the description
of H ∗(Lg(k)) implies that it is isomorphic to Σ4k

⊕k
i=0 H ∗(Ng(i)) as vector spaces, as all of the new elements (mul-

tiples of yi ) are identified with elements of Σ4k
⊕k

i=0 H ∗(Ng(i)). However, the Steenrod operations on H ∗(Lg(k))

are different; as constructed, there are operations which connect the ith copy of H ∗(Ng(i)) with the (i + 1)st.
The construction of these spectra employs the stable decomposition of Ω2Sn and its structure as a ring spectrum.

More specifically, they are cofibers of maps defined between the stable summands of Ω2Sn using the loop multipli-
cation on that space. Specific details of their construction occur in Section 6.

One can easily see from its construction that N1(2k) splits into a wedge of Σ2kB(k) and Σ2k+1B(k − 1), and that
N1(2k + 1) = Σ2k+1B(k) ∧ MZ/2. We are lead to conjecture similar splittings of Ng(k) for all g, but as yet do not
have a proof.

Consider Map∗(Xg,S
2). This space decomposes as a union of (homotopy equivalent) components, given by the

degree of the map. Take Map∗(Xg,S
2)n to be the component of maps of degree n. Let X+ denote the addition of a

disjoint basepoint to a space X, and let X∨n denote the n-fold wedge of X.

Theorem 1.3. Map∗(Xg,S
2)0+ is stably equivalent to(

g∨
i=0

(
Σi

∞∨
k=0

Ng−i (k)

)∨2i (g
i )

)
∧

( ∞∨
j=0

S2j

)∧2g

. (∗∗)

One can use Theorem 1.3 to give a complete description of the stable homotopy type of the configuration spaces
of punctured surfaces. We give this splitting explicitly in Section 7.2.

Let us describe how the theorem is proved. The 1-skeleton of Xg is a wedge of 2g circles, (S1)∨2g . Restriction of
maps from Xg to (S1)∨2g gives a fibration

Map∗
(
Xg,S

n
) → (

ΩSn
)×2g

with fibre Ω2Sn. In [2] Bödigheimer et al. define Yg,n to be the pullback of this fibration over the map(
Sn−1)×2g E×2g−→ (

ΩSn
)×2g

where E :Sn−1 → ΩSn is the suspension map (in the case n = 2, we define Yg,2 to be the restriction of this pullback to
Map∗(Xg,S

2)0). A result of [2] is that Map∗(Xg,S
2)0 � Yg,2 × (ΩS3)×2g . It is well known that ΩS3+ � ∨

j�0 S2j ,
so to prove Theorem 1.3, we must split Yg,2+ into the first term of (∗∗); this is done in Section 6.

The equivalence Map∗(Xg,S
2)0 � Yg,2 × (ΩS3)×2g is proven using the Hopf–James fibration ΩS2n → ΩS4n−1

(with fiber S2n−1, given by E) and the action of S3 on S2. Consequently, the same methods do not apply in an attempt
to do the same for Map∗(Xg,S

n) with n > 2 (unless, as in [2], one inverts 6 to give S4n−1 an action on S2n. As we are
concerned solely with 2-primary information in this paper, this avenue is inappropriate here). However, we do have
the following result.
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Proposition 1.4. As a module over A∗,

H ∗(Map∗
(
Xg,S

n
)) ∼= H ∗(Yg,n) ⊗ H ∗(ΩS2n−1)⊗2g

.

Recall that the Steenrod operations on H ∗(ΩSm) are trivial for any m, since ΩSm is stably equivalent to∨
k�1 Sk(m−1). On the basis of this cohomological evidence, we make the following conjecture:

Conjecture 1.5. Map∗(Xg,S
n) is stably equivalent to Yg,n × (ΩS2n−1)×2g .

Currently we do not have a proof of this conjecture. We can, however, stably split Yg,n+ in a fashion similar to the
splitting of Map∗(Xg,S

2)0:

Definition 1.6. Let Mg,2(2k) = Ng(k) and Mg,2(2k + 1) be contractible. Let Mg,4(2k) = Lg(k) and Mg,4(2k +
1) = Σ2Mg,4(2k). Set Mg,5(k) = Pg(k). Define Mg,6(k) = Σ4k

∨k
i=0 Mg,2(i), and for n > 2 and n �= 3 mod 4, set

Mg,n+4(k) = Σ4kMg,n(k).

Theorem 1.7. For n � 2 and n �= 3 mod 4, Yg,n+ is stably equivalent to

g∨
i=0

(
Σ(n−1)i

∞∨
k=0

Mg−i,n(k)

)∨2i (g
i )

.

We ask the reader’s patience with a splitting in which some of the summands (in the case n = 2 mod 4)
are contractible. Defining Mg,2(k) as we have allows the coordination of the index k with a certain filtration on
Map∗(Xg,S

2)0 defined in [18]. We refer the reader to Proposition 6.2 for more details.
The spectra Mg,n(k) are easy enough to construct; to show that they form the stable summands of the mapping

space is more difficult. To do this, we need a computation of the Steenrod operations on the mapping spaces. Sta-
bly, these spaces are (wedges of) Thom spaces of bundles over certain configuration spaces. Thus to understand the
Steenrod operations we need to know the cohomology operations on the base, the Stiefel–Whitney classes of the
bundles, and how they interact—the ring structure of the cohomology of the configuration spaces. This information is
computed in Section 4 and assembled into a splitting in Section 6, using some preliminary work in Section 5.

In Section 2 we summarize some necessary background, and in Section 3 introduce a multiplicative structure
which is used countless times in the proofs. Section 7 consists largely of the construction of a certain filtration on
the homology of Map∗(Xg,S

2)0. It is used in 7.3 to give a proof of Proposition 1.4. Finally, in Section 8, we make
some remarks towards extending these results to spaces of unbased maps. Cohomology groups are computed, and the
natural splitting one is led to conjecture is shown to be naive.

2. Background

2.1. Configuration models of mapping spaces

A theory of approximations for mapping spaces has been developed in numerous papers, including [17–19,21];
a good cumulative reference is [5]. There are, for sufficiently nice spaces X and Y , combinatorially defined models
for the mapping space Map(X,Y ). These models are defined quite similarly to the models for ΩnΣnY constructed
using the little n-cubes operad in [17]. Snaith, in [21], takes advantage of an evident filtration on these models to
provide stable splittings of these mapping spaces into wedges of filtration quotients of their models. In this section we
give the briefest of introductions to this theory.

Recall that for a space X, the kth ordered configuration space of X is the space of k distinct labelled points in X,
defined as C̃k(X) = Xk \Δ, where Δ = {(x1, . . . , xk), ∃i �= j, xi = xj } is the “fat diagonal”. There is an action of the
kth symmetric group, Σk , on this space by permutation of coordinates. Notice that by removing Δ, we have removed
the fixed points of this action. The quotient Ck(X) = C̃k(X)/Σk is called the kth (unordered) configuration space of
X and the map C̃k(X) → Ck(X) is a covering map. We will use the notation x1 + · · · + xk for the equivalence class
of (x1, . . . , xk) in Ck(X). Also, let γk = C̃k(X) ×Σk

Rk be the “permutation bundle” on Ck(X), where the action of
Σk on Rk is by permutation of coordinates.
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Let X and Y be spaces, and suppose Y has a basepoint ∗. Define the space C(X;Y) to be the quotient of∐
k�0 C̃(X, k) ×Σk

Y k via the identifications:

(x1, . . . , xk;y1, . . . , yk−1,∗) ∼ (x1, . . . , xk−1;y1, . . . , yk−1).

The following theorem may be stated in more generality, but for our purposes this will suffice, since we are only
concerned with models for based mapping spaces. Its proof may be found in [5], and is an elaboration of ideas in [18]
and [17].

Theorem 2.1. Let X be a compact n-manifold such that the punctured space X \ {∗} is parallelizable, and let Y be a
path-connected space. Then there is a map r :C(X \ {∗};Y) → Map∗(X,ΣnY ) which is a weak equivalence.

The equivalence r should be thought of as sending a labelled configuration (x1, . . . , xk;y1, . . . , yk) to the map from
X to ΣnY which wraps a small n-disc in X centered at xi around the n-sphere Σn(∗∐

yi) in ΣnY and collapses the
complement of these discs to the basepoint ∗.

We notice that this theorem agrees with the approximation theorem in [17] by taking X = Sn; the resulting con-
figuration model employs the (ordered) configuration spaces of Rn = Sn \ {∗}, which are Σk-equivariantly homotopy
equivalent to the spaces of the little n-cubes operad.

There is a natural filtration on C(X;Y) by the length of the configuration: let Fn be the image of
∐n

k=0 C̃(X, k)×Σk

Y k in C(X;Y). The following theorem was proved originally in [21] for the case of the little n-cubes operad and
X = Sn. The generalization to arbitrary manifolds X is straightforward, and may be found in [5].

Theorem 2.2 (The Snaith Splitting). For any manifold X and CW-complex Y , there is a stable equivalence

C(X;Y) →
∨
k�0

Fk/Fk−1.

For our purposes, we will always take X to be a closed orientable surface and Y = Sn, n > 0 (the case n = 0
is discussed below). Since all punctured orientable surfaces are parallelizable, and Y is path-connected, the models
described above do work. One can see (noted, for instance, in [7]) that for such Y , the filtration quotient Fk/Fk−1 is
the Thom space of the n-fold sum of the permutation bundle over Ck(X \ {∗}). Consequently, for a closed, orientable
surface X and n > 0, the space Map∗(X,Sn+2) stably splits as a wedge of Thom spaces

Map∗
(
X,Sn+2) �

∨
k�0

Ck
(
X \ {∗})nγk .

Notice that for a compact, orientable surface of genus g, Xg , the map r :C(Xg \ {∗};Sn) → Map∗(Xg,S
n+2) is

only an equivalence if n > 2. When the dimension n of the target sphere is the same as the dimension of the domain,
X, C(X \ {∗};S0) decomposes into a union of configuration spaces. And though r fails to be an equivalence, we still
have maps

rk :Ck
(
X \ {∗}) → Map∗

(
X,Sn

)
.

In fact rk carries Ck(X \ {∗}) into the component Map∗(X,Sn)k of Map∗(X,Sn) consisting of maps of degree k.
We may retract X \ {∗} away from its puncture via a retraction isotopic to the identity. Subsequently adding a point

to a configuration in Ck(X \ {∗}) near the puncture defines a map ik :Ck(X \ {∗}) → Ck+1(X \ {∗}). The maps rk tend
to a homology isomorphism as k tends to infinity over the maps ik :

Theorem 2.3. [18] Let X be a closed n-manifold with X \ {∗} parallelizable. The maps Ck(X \ {∗}) → Map∗(X,Sn)k
induce an isomorphism

lim
k→∞H∗

(
Ck

(
X \ {∗});Z

) ∼= lim
k→∞H∗

(
Map∗

(
X,Sn

)
k
;Z

) ∼= H∗
(
Map∗

(
X,Sn

)
0;Z

)
.

If we let C∞(X \ {∗}) be the homotopy limit of the maps Ck(X \ {∗}) → Ck+1(X \ {∗}), then McDuff’s theorem
can be interpreted as saying that the induced map C∞(X \ {∗}) → Map∗(X,Sn)0 is a homology isomorphism and
hence a stable equivalence.
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These models admit a stable splitting as well; if we define

Dk
(
X \ {∗}) := cofiber

(
Ck−1(X \ {∗}) → Ck

(
X \ {∗})).

Then it follows from work of Cohen et al. [11] that there is a stable splitting

Map∗
(
X,Sn

)
0 � C∞(

X \ {∗}) �
∨
k>0

Dk
(
X \ {∗}).

This restricts to splittings of the finite configuration spaces.
Results of F. Cohen, Mahowald, and Milgram in [10] and F. Cohen, R. Cohen, Mann, and Milgram in [8] give the

order of the permutation bundles over the configuration spaces of surfaces, thus giving a periodicity theorem for the
homotopy type of the Snaith summands of Map∗(Xg,S

n):

Theorem 2.4. [10,8] 2γk is a trivial bundle over Ck(R2) [10], and 4γk is a trivial bundle over Ck(Xg \ {∗}) [8].

2.2. Cohomology of mapping spaces

The cohomology of Map∗(Xg,S
n) (and a wealth of other mapping spaces whose codomain is a sphere) has been

determined in [3] en route to determining the homology of configuration spaces. The restriction of maps from Xg to
Sn to the 1-skeleton of Xg , a wedge of 2g circles S1 ∨· · ·∨S1, induces a fibration rn(g) : Map∗(Xg,S

n) → (ΩSn)×2g

with fibre Ω2Sn. In [3] it is shown using the configuration model of this mapping space that this fibration gives

Proposition 2.5. [3] For n > 2, as a vector space over F2,

H ∗(Map∗
(
Xg,S

n
)) ∼= H ∗(Ω2Sn

) ⊗ H ∗(ΩSn
)⊗2g

.

Proposition 2.6. For a group G, Map∗(Xg,G) is homotopy equivalent to Ω2G × (ΩG)×2g .

Proof. G admits a classifying space BG, and G � ΩBG. So Map∗(Xg,G) � Map∗(ΣXg,BG). But ΣXg � S3 ∨
(S2)∨2g , so

Map∗(Xg,G) � Ω3BG × (
Ω2BG

)×2g � Ω2G × (ΩG)×2g. �
Notice that we obtain Proposition 1.1 as a corollary to this result.

2.3. Homology of Ω2S3 and Brown–Gitler spectra

In this section we collect known facts about H∗(Ω2S3) as a Hopf algebra and comodule over the dual of the
Steenrod algebra.

The Brown–Gitler spectra B(n) are defined in [4]. H ∗(B(n)) is the module M(n) := A∗/A∗{χ(Sqk), k > n}.
Here χ(Sqk) denotes the conjugate of Sqk in A∗.

It is well known from [9] that, if we write a1 for the image of the fundamental class [S1] in H1(Ω
2S3) under the

map S1 → Ω2Σ2S1, then

H∗
(
Ω2S3) = F2[an, n � 1]

where an = Q1(an−1) and Q1 is the first (and in this case, only) Kudo–Araki–Dyer–Lashof operation. Note that |an| =
2n − 1. Also note that we may write an = Qn−1

1 (a1) = Q2n−1 · · ·Q4Q2a1. A computation with the diagonal Cartan
formula for Dyer–Lashof operations shows that an is primitive. We summarize some known facts about H ∗(Ω2S3):

Theorem 2.7.

(1) H∗(Ω2S3) = F2[an,n � 1] is a connected, primitively generated, commutative, cocommutative Hopf algebra of
finite type [9].
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(2) The Snaith splitting is a stable equivalence Ω2S3 � ∨
k�0 Fk/Fk−1; here Fk/Fk−1 is 2-equivalent to ΣkB� k

2�.
Alternatively (as per the comments after Theorem 2.2), one may describe Fk/Fk−1 as the Thom space of the
permutation bundle γk on Ck(R2) [16,1].

(3) The space of primitives in H∗(Ω2S3) is the span of {a2k

n ; n � 1, k � 0}. Since H∗(Ω2S3) is primitively generated,

one can conclude that its dual is an exterior algebra on generators bn,k of dimension 2k(2n − 1) dual to a2k

n in
the monomial basis of H ∗(Ω2S3).

(4) In [9] or [3] a weight filtration is put on the H∗(Ω2S3) assigning w(an) = 2n−1, and extending via w(xy) =
w(x) + w(y). The subspace of filtration k is the homology of the stable summand Fk/Fk−1. Write k = 2k1 +
· · · + 2kn as the binary expansion. If we define a weight filtration on H ∗(Ω2S3) by duality, then we see that
�wk := b1,k1 · · ·b1,kn (dual to ak

1 ) is the unique class of filtration k and dimension k. It is therefore the Thom class
of γk .

The reason for the notation �wk will be explained in Section 4.3.

3. Multiplicative properties

For any space Y , the nth loop space, ΩnY , is the prototypical example of an H -space via the loop product.
To be more picturesque, the collapse of the equator of Sn gives a map Sn → Sn ∨ Sn which induces the product
ΩnY × ΩnY → ΩnY .

One can do similarly for maps from closed orientable surfaces if one is willing to consider all surfaces simultane-
ously. Consider maps (for each g,h � 0)

k :Xg+h → Xg ∨ Xh

which collapse a circle in Xg+h which separates the surface into Xg \ disk and Xh \ disk. This induces a map

k∗ : Map∗(Xg,Y ) × Map∗(Xh,Y ) → Map∗(Xg+h,Y ).

Taken together over all choices of g and h, this defines an H -space structure on the union∐
g�0

Map∗(Xg,Y ).

One may choose the maps k appropriately to ensure that this is a homotopy associative product. It is natural at this
point to ask what sort of algebraic structure (e.g., operad) governs this product. Such a gadget should at least encode
the way that separating circles lie inside Xg+h. Though we will make a few remarks, it is beyond the scope of this
article to explore this question in detail; for the splittings we will need only the product, not the finer structure.

We note that
∐

Map∗(Xg,Y ) contains Ω2Y as a sub-H -space. One might therefore expect some sort of action of
the little disks operad on these spaces. However, we will show in Corollary 4.3 that in homology the product is not
generally commutative (in particular when Y = Sn). Hence the little disks action must not extend. It is clear, however,
that the construction makes

∐
Map∗(Xg,Y ) a module over Ω2Y ; in fact, it is a module over Ω2Y (in the operadic

sense) as an algebra over the two-dimensional little disks operad.
It is easy to show that the product on

∐
Map∗(Xg,S

n) restricts to a product on
∐

Yg,n. We can also see this product
geometrically in the configuration models; define a map

κ :Ci(Xg \ disk) × Cj (Xh \ disk) → Ci+j (Xg+h \ disk)

as follows: think of Xg+h \ disk as Xg \ disk and Xh \ disk glued along two boundaries of a pair of pants. Then
configurations of i points in Xg \ disk and j points in Xh \ disk give the desired configuration in Xg+h \ disk. Since
Ck(Xg \ {∗}) � Ck(Xg \ disk) this gives rise to an H -space structure on∐

g,k�0

Ck
(
Xg \ {∗})

which in turn induces one on the configuration models for
∐

Map∗(Xg,Σ
2Y). In summary:
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Proposition 3.1. The spaces
∐

Map∗(Xg,Y ),
∐

Yg,n, and
∐

C(Xg \ {∗};Y) are all H -spaces, and the inclusion
Yg,n → Map∗(Xg,S

n) and approximation map C(Xg \ {∗};Y) → Map∗(Xg,Σ
2Y) preserve the product up to ho-

motopy. The product on the configuration model preserves the filtration coming from the number of points in the
configuration.

Notice that restricting the permutation bundle on Ci+j (Xg+h \ disk) to Ci(Xg \ disk) × Cj (Xh \ disk) via κ is
precisely the product of permutation bundles:

κ∗(γi+j ) = γi × γj .

This is immediate when one thinks of the total space of the permutation bundle over Ck(X) as k points in X labelled
by real numbers. Thus κ∗(γi+j ) is pairs of i-tuples of labelled points in Xg \ disk and j -tuples of labelled points in
Xh \ disk.

Note that X0 \ disk = disk. Picking an arbitrary point x0 ∈ C1(X0 \ disk) = disk and restricting κ to x0 × Cj (Xh \
disk) gives an alternate construction of the map

ij :Cj(Xh \ disk) → Cj+1(Xh \ disk)

from Section 2.1. Consequently, i∗j (γj+1) = 1 ⊕ γj . We conclude by noting that the choice of x0 does not matter up

to homotopy, as C1(X0 \ disk) is contractible.

4. General computations

This section comprises some preliminary (largely cohomological) computations necessary for the proofs of
the main theorems in the next sections. Using the Hopf fibration, we compute the F2-vector space structure of
H ∗(Map∗(Xg,S

2)) in Section 4.1. This has been computed using different methods in [15, Theorem 4.13]. In Sec-
tion 4.3 we introduce and compute certain characteristic classes which will allow us in Section 4.4 (along with some
facts about the second braid group of the punctured torus) to determine the ring-structure of H ∗(Map∗(X1, S

2)).
Knowledge of the case g = 1 allows us to finish the computation for g > 1 in Section 4.5 using the multiplicative
structure described in Section 3.

Throughout this section, we use the isomorphism between H ∗(C∞(Xg \ {∗})) and H ∗(Map∗(Xg,S
2)0) (Theo-

rem 2.3). Thus the computations in Section 4.4 and Section 4.5 give the ring structure of the cohomology of the
configuration spaces of Xg \ {∗}.

4.1. Cohomology of Map∗(Xg,S
2)0 as a vector space

The Hopf fibration η :S3 → S2 gives fibrations η̄ from mapping spaces induced by postcomposition. Using the
fibration rn(g) : Map∗(Xg,S

n) → (ΩSn)×2g given by restriction, we get the following commutative diagram of fibra-
tions:

ΩS1 � ∗ Ω2S3 �
η̄

(Ω2S2)0

Map∗(Xg,S
1)

�

Map∗(Xg,S
3)

η̄

r3(g)

Map∗(Xg,S
2)0

r2(g)

(ΩS1)×2g (ΩS3)×2g
η̄

(ΩS2)×2g

Looking at the right column, we see that η̄ defines a map of fibrations from r3(g) to r2(g). For the moment, we restrict
ourselves to the case g = 1. Write

H ∗((ΩS2)×2) = Λ[x2i , y2j ], i, j � 0

and

H ∗((ΩS3)×2) = Λ[x2i , y2j ], i, j � 1
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where |x2i | = 2i = |y2i |. The notation is justified, since η̄∗ :H ∗(ΩS2) → H ∗(ΩS3) is an isomorphism in even degrees
(and 0 in odd degrees). Therefore (η̄ × η̄)∗ :H ∗((ΩS2)×2) → H ∗((ΩS3)×2) carries x1 and y1 to 0, while carrying
all other generators x2i , y2j to classes of the same name in H ∗((ΩS3)×2). For simplicity, if k = 2i1 + · · · + 2im is the
binary expression for k, write xk = x2i1 · · ·x2im . Do similarly for yk .

Proposition 4.1. The cohomology Serre spectral sequence for r2(1) collapses at the E2 term. On the E2 terms, the
map η̄ : Map∗(X1, S

3) → Map∗(X1, S
2) induces the homomorphism

H ∗((Ω2S2)
0

) ⊗ Λ[x2i , y2j ] → H ∗(Ω2S3) ⊗ Λ[x2i , y2j ]
given by the identity on the fibre, and (η̄ × η̄)∗ (described above) on the base.

Proof. The restriction of η̄ to the fibre Ω2S3 of r2 is an equivalence. It is clear from the discussion above that the map
on the E2 term is as described. Since the spectral sequence for r3 collapses at the E2 term, and η∗ is onto, the subspace
H ∗((Ω2S2)0)⊗〈x2ky2l〉 must persist in the spectral sequence for r2. The remaining classes are of the form z⊗(xmyn),
where z ∈ H ∗((Ω2S2)0) and at least one of m and n is odd. We now show that such elements must also persist.

Consider the spaces F1 = X1/S
1 × ∗ and F2 = X1/∗ × S1 defined as the quotients of X1 by collapsing sin-

gle circles c1 and c2 respectively in the 1-skeleton. The quotient map X1 → Fi define maps fi : Map∗(Fi, S
2)0 →

Map∗(X1, S
2)0. Note that Fi is homotopy equivalent to S2 ∨ S1, so Map∗(F i, S2)0 � (Ω2S2)0 ×ΩS2. Restriction of

maps to the one circle left in the 1-skeleton of Fi again provides a fibration Map∗(Fi, S
2)0 → ΩS2, but the previous

remark shows that it is trivial.
It is obvious that in the map of E2 terms given by f1, the restriction to the fibre is the identity, and that on the

cohomology of the base Λ[xsi , y2j ] → Λ[y2j ], xsj �→ 0 and y2j �→ y2j . Since the spectral sequence for F1 collapses
at the E2 term, and the map f ∗

1 is an surjection, all of the elements z ⊗ yn persist. Examining F2 shows that z ⊗ xm

also persist. Since this is a spectral sequence of algebras, all elements must therefore persist. So the spectral sequence
for r2(1) collapses at E2. �

We next show that the Serre spectral sequence for r2(g) collapses for all higher genus using the product described
in Proposition 3.1. Iterated multiplication gives an inclusion

k∗ : Map∗
(
X1, S

2)×g

0 ↪→ Map∗
(
Xg,S

2)
0.

Note that the two fibrations r2(g) and the g-fold product r2(1)×g have the same base, (ΩS2)×2g . Since k collapses
curves not in the 1-skeleton of Xg , k∗ is a map of fibrations from r2(1)×g to r2(g).

Corollary 4.2. The cohomology Serre spectral sequence for r2(g) collapses at the E2 term; there is an isomorphism
of F2-vector spaces

H ∗(Map∗
(
Xg,S

2)
0

) ∼= H ∗(Ω2S3) ⊗ H ∗((ΩS2)×2g)
.

Proof. We show that the map that k∗ induces on the respective E2 terms is an injection. Since the spectral se-
quence for r2(1)×g collapses at the E2 term, so too must the sequence for r2(g). Since k∗ is a map of fibrations over
(ΩS2)×2g , we need only show that k∗ induces in injection on the cohomology of the fibres. Restricting to the fibre of
r2(1)×g , (Ω2S3)×g , k∗ is precisely the g-fold loop product on Ω2S3. Therefore k∗ is simply g-fold comultiplication
in H ∗(Ω2S3), which is injective. �

These arguments give a computation of the multiplicative structure in homology:

Corollary 4.3. For each n, the homology of∐
g�0

Map∗
(
Xg,S

n
)

is isomorphic as a ring to

H∗
(
Ω2Sn

) ⊗ T
(
H∗

(
ΩSn × ΩSn

))
where T(V ) is the free unital associative (tensor) algebra on V .
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Proof. First, notice that, for any space Y , the space

FY =
∐
g�0

Y×g

is the free associative monoid on Y with unit, and that its homology is the free associative algebra on H ∗(Y ).
As above, the multiplication

μ = k∗ : Map∗
(
Xg,S

n
) × Map∗

(
Xh,S

n
) → Map∗

(
Xg+h, S

n
)

is a map of fibrations over (ΩSn)×2(g+h). Consequently the map∐
g�0

rn(g) :
∐
g�0

Map∗
(
Xg,S

n
) →

∐
g�0

(
ΩSn × ΩSn

)×g = F
(
ΩSn × ΩSn

)
is a map of H -spaces. As in the proof of Corollary 4.2, on the fibre μ is loop multiplication in Ω2Sn. Since the Serre
spectral sequence for rn(g) collapses, the corollary follows. �

This sort of result of course holds for any target space Y for which the Serre spectral sequence for Map∗(Xg,Y )

collapses.

Convention 4.4. Notation for the homology and cohomology of Map∗(Xg,S
n).

As we will be using these vector spaces throughout, we standardize notation here. We have identified the homology
and cohomology of Ω2S3 in Theorem 2.7. H∗(ΩSn) is a polynomial algebra on a single generator in dimension n−1,
so in the case n = 2, we may write (as a vector space)

H∗
(
Map∗

(
Xg,S

2)
0

) ∼= F2[an, n � 1] ⊗ F2[z1, z2, . . . , z2g−1, z2g]
where |zi | = 1, and z2i and z2i−1 come from the ith handle of Xg . For cohomology, H ∗(ΩSn) is a divided power
algebra on a generator in dimension n − 1, thus isomorphic to the exterior algebra Λ[x2i , i � 0], where the dimension
of x2i is 2i (n − 1). The Steenrod structure is trivial: Sq(x) = x, for all x. So we write

H ∗(Map∗
(
Xg,S

2)
0

) ∼= Λ[bn,k ] ⊗ Λ
[
x

(j)

2i , y
(j)

2i

]
where, in the latter term, the superscript (j) identifies the handle from which the term comes.

In the cases n > 2, we will only need notation for the homology of Map∗(Xg,S
n); using Proposition 2.5 we will

write

H∗
(
Map∗

(
Xg,S

n
)) = H∗

(
Ω2Sn

) ⊗ F2[l1, l2, . . . , l2g−1, l2g]
where li are of dimension n − 1. We will also use this notation in the case n = 2 if we are making statements about
all n simultaneously.

4.2. Homology of Yg,n

Recall that Yg,n is the total space of a fibration over (Sn−1)×2g with fiber Ω2Sn (Ω2S3 in the case n = 2), defined
as the following pullback:

Yg,n Map∗(Xg,S
n)

rn(g)

(Sn−1)×2g

E×2g (ΩSn)×2g

We may identify H∗((Sn−1)×2g) ⊆ H∗(ΩSn)×2g) as the subspace

Λg := 〈
l
i1
1 · · · li2g

2g | in = 0,1
〉 ⊆ F2[l1, . . . , l2g]

(as a vector space, Λg � Λ[l1, . . . lg]).
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Proposition 4.5. H∗(Yg,n) ∼= H∗(Ω2Sn) ⊗ Λg .

Proof. The commutative diagram above shows that Yg,n → Map∗(Xg,S
n) is a map of fibrations, so induces a map

on the E2 terms of the respective (homology) Serre spectral sequences. The E2 term for Yg,n is H ∗(Ω2Sn)⊗Λg , and
the map is the obvious inclusion. Since the spectral sequence for Map∗(Xg,S

n) collapses at the E2-term, so too does
the spectral sequence for Yg,n. �
4.3. Characteristic classes for permutation bundles

We now define “conjugate Stiefel–Whitney classes” for bundles, and compute them for the permutation bundles γj .
Recall that the Stiefel–Whitney classes of a bundle ξ on a space Y with Thom class u are defined by

wi(ξ)u = Sqi(u).

Definition 4.6. Define the conjugate Stiefel–Whitney classes �wi(ξ) ∈ Hi(Y ) by the formula

�wi(ξ)u = χ
(
Sqi

)
(u).

For instance, since 1̄ = 1, χ(Sq1) = Sq1, and χ(Sq2) = Sq2, �w0 = 1, �w1 = w1, and �w2 = w2. Let �w = 1 + �w1 +
�w1 + · · · denote the “total conjugate Stiefel–Whitney class”.

Since conjugation is an anti-automorphism of A∗, in principle, {�wi} carries as much information as {wi}. Moreover,
they are uniquely suited for bundles whose Thom space is a Brown–Gitler spectrum. The �wi enjoy most of the
properties of the wi ; they are natural and satisfy the same Cartan formula for products. In terms of the axiomatic
description of Stiefel–Whitney classes given in Chapter 4 of [20], the conjugate Stiefel–Whitney classes satisfy all of
the axioms but the requirement that �wn(ξ) = 0 for n > dim(ξ). For instance, if γ is the tautological line bundle RP ∞,
�w3(γ ) = Sq2Sq1u �= 0, where u ∈ H 1((RP ∞)γ ) is the Thom class.

Recall that the Snaith splitting of Ω2S2
0 � Ω2S3 gives

H ∗(C∞(
R2)) =

⊕
k�0

ΣkM

⌊
k

2

⌋
=

⊕
k�0

M

⌊
k

2

⌋
· �wk

where we suggestively write �wk for the k-dimensional cyclic generator of ΣkM� k
2�. H ∗(Cj (R2)) is the (split) sub-

module of terms with k � j/2. See Theorem 2.7 for an equivalent definition of �wk .

Lemma 4.7. The kth conjugate Stiefel–Whitney class of γj over Cj (R2) is �wk for k � j/2, and 0 otherwise.

Proof. Let uk be the Thom class of γk . Normalize Thom spaces so that their Thom classes are in dimension 0. We
include ik :Ck(R2) ↪→ Ck+1(R2) via the maps ik defined in Sections 2.1 or 3. Consider the diagram induced by
i2k−1 ◦ i2k−2:

γ2k−2 ⊕ 2 γ2k

C2k−2(R2) C2k(R2)

Upon passage to Thom spaces, this map is C2k−2(R2)γ2k−2 → C2k(R2)γ2k . In cohomology this induces the surjec-
tion in the short exact sequence of A∗-modules

0 → M

⌊
k

2

⌋
· χ(

Sqk
) → M(k) → M(k − 1) → 0

(see [16] for details). Consequently, χ(Sqk)(u2k−2) = 0, but χ(Sqk)(u2k) �= 0. Equivalently, �wk(γ2k−2) = 0 and
�wk(γ2k) �= 0. Therefore

�wk(γ2k) ∈ H ∗(C2k
(
R2))/H ∗(C2k−2(R2)) = ΣkM

⌊
k
⌋
.

2
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There is only one class of dimension k, the generator of ΣkM� k
2�, which is precisely the class that �wk ∈

H ∗(C∞(R2)) restricts to. So �wk is the kth conjugate Stiefel–Whitney class of γ2k , and therefore for γj for any
j � 2k by naturality. �

For configurations in positive genus, the approximation rj :Cj (Xg \ {∗}) → Map∗(Xg,S
2) realizes H ∗(Cj (Xg \

{∗})) as a quotient of

H ∗(Map∗
(
Xg,S

2)
0

) = H ∗(Ω2S3) ⊗ H ∗(ΩS2)⊗2g
.

See Section 7.1 for an explicit description the kernel of the map.

Corollary 4.8. The kth conjugate Stiefel–Whitney class of γj over Cj (Xg \{∗}) is �wk ⊗1 for k � j/2, and 0 otherwise.

Proof. Proposition 1.1 implies that as a module over the Steenrod algebra,

H ∗(Map∗
(
Xg,S

3)) ∼= H ∗(Ω2S3) ⊗ H ∗(ΩS3)⊗2g
.

The Thom class of γj over Cj (Xg \{∗}) lies in this cohomology, since the spectra Cj (Xg \{∗})γj are stable summands
of the mapping space. Moreover, it restricts to the Thom class of γj over Cj (R2). Since the conjugate Steenrod oper-
ations on the Thom classes are the same for genus 0 and g, the conjugate Stiefel–Whitney classes are the same. �
4.4. Cohomology of Map∗(X1, S

2)0 as a ring

We compute the ring structure of H ∗(Map∗(X1, S
2)0) using the computations in the previous section, a fact about

the braid group of the punctured torus, and an action of Map∗(X1, S
3) on Map∗(X1, S

2)) via the Hopf fibration.

Theorem 4.9. There is a ring isomorphism

H ∗(Map∗
(
X1, S

2)
0

) ∼= Λ
[
bn,k; (n, k) �= (1,0)

] ⊗ Λ[x2i , y2j ] ⊗ F2[b1,0]/
(
b2

1,0 = x1y1
)
.

In other words, the cohomology of Map∗(X1, S
2)0 is that of Ω2S3 × ΩS2 × ΩS2 except that b2

1,0 = �w2
1 = x1y1.

Proof. We have shown that the spectral sequence for the fibration r2(1) computing H ∗(Map∗(X1, S
2)0) collapses

at the term E2 = H ∗(Ω2S3) ⊗ H ∗(ΩS2 × ΩS2). This a spectral sequence of algebras, so the ring structure on the
graded algebra associated to H ∗(Map∗(X1, S

2)0) is that of E2. E2 is an exterior algebra, so to determine the actual
ring structure of H ∗(Map∗(X1, S

2)0) we simply need to determine the squares of all of the ring generators of E2.
The fibration r2(1) makes H ∗(ΩS2 × ΩS2) a subalgebra of H ∗(Map∗(X1, S

2)0), so the squares of all elements
coming from H ∗(ΩS2 × ΩS2) are 0. So we need to only determine the squares of the elements bn,k ⊗ 1. In the next
lemma, we will show that (�w1 ⊗ 1)2 = 1 ⊗ x1y1. We show in Lemma 4.13 that this is the only nonzero square of
a generator. Therefore the construction of the isomorphism is immediate. �

The following computation is crucial to everything that follows.

Lemma 4.10. The element �w1 ⊗ 1 ∈ H 1(Map∗(X1, S
2)0) has Sq1(�w1 ⊗ 1) = (�w1 ⊗ 1)2 = 1 ⊗ x1y1.

Proof. Let x ∈ R2 ⊆ X1 \ {∗} ⊆ X1. Consider the commutative diagram:

R2 \ {x} j

i

C̃2(R2)
p1

i

R2

i

X1 \ {x}
j

C̃2(X1) p1
X1
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Here pi is the fibration given by projection onto the first factor, and the vertical maps are induced by inclusions
i : R2 ⊆ X1. Applying π1 gives a commutative diagram of exact sequences:

0 Z
j∗
∼=

i∗

π1(C̃
2(R2))

p1∗

i∗

0

0 Z ∗ Z
j∗ π1(C̃

2(X1)) p1∗ Z ⊕ Z 0

Let d be the generator of π1(R
2 \ {x}). Then i∗(d) is homotopic to the attaching map for the 2-cell in X1, so if

π1(X1 \ {x}) = Z ∗ Z is generated by a and b, then

i∗(d) = aba−1b−1.

Thinking of these elements as lying in the appropriate pure braid groups via j∗, we have the same equality in
π1(C̃

2(X1)).
Descending to the unlabelled configuration spaces, we have a commutative diagram of extensions:

0 π1(C̃
2(R2))

i∗

π1(C
2(R2))

i∗

Z/2

i∗

0

0 π1(C̃
2(X1)) π1(C

2(X1)) Z/2 0

If c is the generator of π1(C
2(R2)) ∼= Z, then c2 = d . Let e = i∗(c), so that in π1(C

2(X1)) the following equation
holds:

e2 = aba−1b−1.

For an alternative approach to this sort of result, see Theorem 1.4 in [15].
After abelianization, this implies that in H1(C

2(X1);Z), there is a class h(e) coming from H1(C
2(R2);Z)

with 2h(e) = 0 (here h is the Hurewicz map). Since c is the generator of π1(C
2(R2)) ∼= Z, h(e) is the image in

H1(C
2(X1);Z) of the generator of H1(C

2(R2);Z). So the reduction mod 2 of h(e) is the class a1 ⊗ 1, where, follow-
ing [3], we can write

H∗
(
C2(X1)

) ⊆ H∗
(
Map

(
X1, S

2)
0

) = H∗
(
Ω2S3) ⊗ H∗

(
ΩS2)⊗2 ⊗ H∗

(
S2).

Since 2h(e) = 0, we conclude that the dual to a1 ⊗ 1, �w1 ⊗ 1, admits a nontrivial Sq1.
Moreover, the same statement holds in H ∗(C2(X1 \ {∗})). This follows from a 2-local stable equivalence

f :C2(X1 \ {∗}) ∨ S2 → C2(X1).

The first component of f is induced by the inclusion X1 \ {∗} ⊆ X1, and the second component is the composite

S2 k−→ Map
(
X1, S

2)
0

π−→ C2(X1)

where k carries a point in S2 to the constant map at that point, and π is projection onto a stable summand. That f is a
2-local homology isomorphism follows from the computations in [3] of the homology of configuration spaces.

Note that Sq1(�w1 ⊗ 1) = (�w1 ⊗ 1)2 is a square. Examine the cohomologies of the subspaces Ω2S3 and
Map∗(Fi, S

2)0. Since these are F2 exterior algebras (see the proof of Proposition 4.1), and every square in such
an algebra vanishes, we must have that Sq1(�w1 ⊗ 1) vanishes upon pullback to these cohomologies. The class is of
dimension 2, so it must lie in the span of

{�w2 ⊗ 1, �w1 ⊗ x1, �w1 ⊗ y1, 1 ⊗ x1y1, 1 ⊗ x2, 1 ⊗ y2}.
The only element in this span which will vanish in H ∗(Ω2S3) and H ∗(Map∗(Fi, S

2)0) is 1 ⊗ x1y1. �
To show that (bn,k ⊗ 1)2 = 0 for (n, k) �= (1 > 0) we will need the following construction: S3 acts on S2 since

S2 = S3/S1 is a homogeneous space of S3 via the Hopf fibration. This defines an action

λ : Map∗
(
Xg,S

3) × Map∗
(
Xg,S

2)
0 → Map∗

(
Xg,S

2)
0

by pointwise action: λ(f,g)(x) = f (x) · g(x). We therefore get a module structure in homology:
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Proposition 4.11. Let a ⊗ b ∈ H∗(Map∗(X1, S
3)) = H∗(Ω2S3) ⊗ H∗((ΩS3)×2) and c ⊗ d ∈ H∗(Map∗(X1, S

2)0)

using the form E2 = H∗(Ω2S3) ⊗ H∗((ΩS2)×2),

λ∗
(
(a ⊗ b) ⊗ (c ⊗ d)

) = ac ⊗ η̄∗(b)d

where multiplication in the left term is via the loop product μ2 on Ω2S3, and on the right by the pairwise loop product
μ1 on ΩS2 × ΩS2.

Proof. The following diagram commutes

Ω2S3 × (Ω2S2)0
λ2

(Ω2S2)0

Map∗(Xg,S
3) × Map∗(Xg,S

2)0
λ

r3(1)×r2(1)

Map∗(Xg,S
2)0

r2(1)

(ΩS3)×2 × (ΩS2)×2 λ1
(ΩS2)×2

where λi are defined as λ is defined with differing domains to the mapping spaces. Therefore computation of the
formula above reduces to the computation of λi∗. For the fibre, we have the commutative diagram

Ω2S3 × Ω2S3

1×η̄ �
Ω2S3

η̄ �

Ω2S3 × (Ω2S2)0 λ2
(Ω2S2)0

where the top line is induced by multiplication in S3. Since any two H -space products are homotopic, we may as well
take it to be the loop product μ2. So λ∗ behaves as expected on the fibre. The same sort of argument computes the
module structure on the base of the fibration. �

From this proposition and Proposition 4.1, we obtain the following corollary.

Corollary 4.12. H∗(Map∗(X1, S
2)0) is a free module over H∗(Map∗(X1, S

3)) on generators {1, z1, z2, z1z2}.

We can use this module structure to get at the product in cohomology. Let ψ :H∗Y → H∗Y ⊗ H∗Y be the comul-
tiplication map. Since λ∗ is induced by maps of spaces it is natural with respect to ψ .

Lemma 4.13. For (n, k) �= (1,0), b2
n,k = 0.

Proof. This is equivalent to saying that for (n, k) �= (1,0), a2k

n ⊗ a2k

n does not appear in ψ(x) for any element x ∈
H∗(Map∗(X1, S

2)0). Lemma 4.10 implies that

ψ(z1z2) = 1 ⊗ z1z2 + z1z2 ⊗ 1 + z1 ⊗ z2 + z2 ⊗ z1 + a1 ⊗ a1.

Also, by dimensional considerations, ψ(zi) = zi ⊗ 1 + 1 ⊗ zi .
Since Map∗(X1, S

3) � Ω2S3 ×(ΩS3)×2, its cohomology is an exterior algebra. So for any α ∈ H∗(Map∗(X1, S
3)),

ψ(α) does not include any terms of the form β ⊗ β .
We have shown that any x ∈ H ∗(Map∗(X1, S

2)0) may be written as x = λ∗(α ⊗ γ ) for some γ ∈ 〈1, z1, z2, z1z2〉,
so by naturality

ψ(x) = λ∗
(
ψ(α) ⊗ ψ(γ )

)
.

The only element of the form β ⊗ β which can appear in ψ(x) is therefore a1 ⊗ a1 (coming from γ = z1z2). �
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4.5. Cohomology of Map∗(Xg,S
2)0 as a ring

We will compute the ring structure on H ∗(Map∗(Xg,S
2)0) using the computations made in the previous sections

and the multiplication defined in Proposition 3.1. For notational clarity, we will denote the nth permutation bundle in
genus g by γn(g) since we will be discussing several genera simultaneously. Also, let �wj(g) denote the j th conjugate
Stiefel–Whitney class of γn(g) for n > 2j (that this is well defined follows from Corollary 4.8).

Iterated multiplication (Section 3) provides a map

k∗ : Map∗
(
X1, S

2)×g

0 → Map∗
(
Xg,S

2)
0

which is approximated by configuration models

κ :Cj1
(
X1 \ {∗}) × · · · × Cjg

(
X1 \ {∗}) → Cj1+···+jg

(
Xg \ {∗}).

Recall that the permutation bundle pulls back under κ to products of permutation bundles:

κ∗(γj1+···+jg (g)
) = γj1(1) × · · · × γjg (1).

Thinking of Xg+1 as the connected sum Xg #X1 in g + 1 different ways provides g + 1 different collapse maps
Xg+1 → Xg and hence g + 1 distinct inclusions

ij : Map∗
(
Xg,S

2)
0 → Map∗

(
Xg+1, S

2)
0.

We have configuration models for ij as well; consider the g + 1 maps

ıj :Ck(Xg \ disc) → Ck(Xg+1 \ disc)

given by the g + 1 inclusions Xg \ disc → Xg+1 \ disc. Notice that ı∗j γk(g + 1) = γk(g). The maps extend to k = ∞,
and we get the homotopy commutative diagram

Map∗(Xg,S
2)0

ij
Map∗(Xg+1, S

2)0

C∞(Xg \ disc) ıj
C∞(Xg+1 \ disc)

Write H ∗((ΩSn)×2g) = Λ[x(1)

2i , y
(1)

2i , . . . , x
(g)

2i , y
(g)

2i ; i � 0] where |x(j)
n | = n. The following lemma is immediate

from the above discussion.

Lemma 4.14. i∗j :H ∗(Map∗(Xg+1, S
2)0) → H ∗(Map∗(Xg,S

2)0) is the identity on H ∗(Ω2S3), and carries

H ∗(ΩS2)⊗2g+2 onto H ∗(ΩS2)⊗2g by mapping x
(j)
m and y

(j)
m to 0. ı∗j consequently does identically.

Definition 4.15. Define σj ∈ Λ[x(1)
1 , y

(1)
1 , . . . , x

(g)

1 , y
(g)

1 ] ⊆ H ∗(ΩS2)⊗2g for 0 � j � g as

σj =
∑
I

x
(i1)
1 y

(i1)
1 · · ·x(ij )

1 y
(ij )

1

where the sum is over sequences I = (i1, . . . , ij ) where each in is a different element of {1,2, . . . , g}. σj is the j th

elementary symmetric exterior polynomial in the variables (x
(i)
1 y

(i)
1 ).

Lemma 4.16. In H ∗(Map∗(Xg,S
2)0), �wj(g)2 = 0 for j > g, and �wj(g)2 = σj for 0 � j � g.

Proof. Using the Cartan formula, we see that

κ∗(�wj(g)
) =

∑
j +···+j =j

�wj1(1) × · · · × �wjg (1).
1 g
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We know the ring structure on H ∗(Map∗(X1, S
2)0): �w1(1)2 = x

(1)
1 y

(1)
1 , and the squares of all higher conjugate Stiefel–

Whitney classes are 0. Therefore κ∗(�wj(g)2) �= 0 if and only if j � g. κ∗ is an injection (see the proof of Corol-
lary 4.2), so �wj(g)2 �= 0 if and only if j � g.

We will show that �wj(g)2 = σj by inducting on g; we have shown this in the case g = 1. Assume it for g. Since
ı∗j γk(g + 1) = γk(g),

ı∗j
(�wn(g + 1)2) = �wn(g)2

which, for n � g, is the nth elementary symmetric exterior polynomial in the g variables (x
(i)
1 y

(i)
1 ), i �= j . Thus

�wn(g + 1)2 =
∑
j

σn

((
x

(i)
1 y

(i)
1

)
), . . . ,

( ̂
x

(j)

1 y
(j)

1

)
, . . . ,

(
x

(g+1)

1 y
(g+1)

1

)) + E

where E ∈ ∩ker ıj . By examining Fi (see the proof of Proposition 4.1), E must be divisible by x
(j)

1 y
(j)

1 for each j .
But then |E| � 2g + 2, so E = 0 if n � g. So �wn(g + 1)2 is as described. For n = g + 1, the same argument implies
that �wg+1(g + 1)2 = σg+1. �
Theorem 4.17. Let d = �log2(g)�. H ∗(Map∗(Xg,S

2)0) is isomorphic to the following ring:

Λ
[
bn,k; (n, k) /∈ (1,0), . . . , (1, d)

] ⊗ Λ
[
x

(j)

2i , y
(j)

2i

] ⊗ F2[b1,0, . . . , b1,d ]/(b2
1,i = σ2i

)
.

In other words, the cohomology of Map∗(Xg,S
2)0 is that of Ω2S3 × (ΩS2)×2g except that �w2

j = σj for 0 � j � g.

Proof. The only elements whose squares are in question are bn,k . We have shown that �wj(g)2 = σj for 0 � j � g,
and since �wj = b1,j1 · · ·b1,jr (where 2j1 + · · · + 2jr is the binary expansion of j ), we get, for 0 � i � d ,

b2
1,i = σ2i .

We must now show that the remaining b2
n,k = 0. As in the proof of Lemma 4.13, the result will follow if we show

that there is no element x whose coproduct expansion ψ(x) contains a2k

n ⊗ a2k

n for the remaining n and k. As for
genus 1, H∗(Map∗(Xg,S

2)0) is a free module over H∗(Map∗(Xg,S
3)) with generators

Λg = 〈
z
i1
1 · · · zi2g

2g | in = 0,1
〉
.

Since

z
i1
1 · · · zi2g

2g = κ∗
(
z
i1
1 z

i2
2 ⊗ · · · ⊗ z

i2g−1
2g−1z

i2g

2g

)
,

the coproduct

ψ
(
z
i1
1 · · · zi2g

2g

) = κ∗
(
ψ

(
z
i1
1 z

i2
2

) ⊗ · · · ⊗ ψ
(
z
i2g−1
2g−1z

i2g

2g

))
,

cannot contain any terms of the form β ⊗ β except for β = an
1 , and in that case, n � g. This result is extended to all

of H∗(Map∗(Xg,S
2)0) using the Hopf fibration as in Lemma 4.13. �

5. The second configuration space of the torus

In this section we study the stable homotopy types of the spaces C2(X1 \{∗})nγ2 for n = 0,2,3. These computations
are fundamental to the proofs of the splittings in the next section. The main results are Lemmas 5.1 and 5.5.

First examine H∗(C2(X1 \ {∗})). As a subspace of H∗(Map∗(X1, S
2)0),

H∗
(
C2(X1 \ {∗})) = 〈

1, a1, z1, z2, z
2
1, z1z2, z

2
2

〉
(by 〈S〉, we mean the F2 subspace generated by a set S). This follows from Proposition 7.3 or direct calculation. Here
the first term has dimension 0, the next three dimension 1, and the last three dimension 2. Dually, we can write

H ∗(C2(X1 \ {∗})) = 〈1, �w1, x1, y1, x2, x1y1, y2〉
(recall that �w1 = b1,0).
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Lemma 5.1. 2-locally, C2(X1 \ {∗})+ splits stably as

C2(X1 \ {∗})+ � S0 ∨ S1 ∨ S1 ∨ S2 ∨ ΣMZ/2.

Proof. We begin with the inclusion C1(X1 \{∗})+ → C2(X1 \{∗})+. The domain is simply X1 \{∗}+ � S0 ∨S1 ∨S1.
In homology, the image of this map is clearly 〈1, z1, z2〉.

The stable map

ΩS3 × ΩS3 → ΩS3 × ΩS3 × Yg,2 � Map∗
(
X1, S

2)
0 � C∞(

X1 \ {∗})
may be restricted to S2 ∨ S2 (a stable summand of ΩS3 × ΩS3) and followed with a projection onto the summand
C2(X1 \ {∗}), giving a map S2 ∨ S2 → C2(X1 \ {∗}) whose image in homology is 〈z2

1, z
2
2〉.

Finally, we need to account for the ΣMZ/2. The inclusion

j :S1 = C2(R2) → C2(X1 \ {∗})
carries the fundamental class [S1] to the class a1, which pairs against a cohomology class �w1 which supports a
nonzero Sq1, according to Lemma 4.10. Therefore, there is a copy of the cohomology of ΣMZ/2 in the cohomology
of C2(X1 \ {∗}). Collecting these facts together, we have shown that as a module over A∗,

H ∗(C2(X1 \ {∗})+
) � H ∗(S0 ∨ S1 ∨ S1 ∨ S2 ∨ S2 ∨ ΣMZ/2

)
. (∗)

We will show using the Adams spectral sequence that j extends to a map ΣMZ/2 → C2(X1 \ {∗})+.
To do this, we must show that the composite

S1 2−→ S1 j−→ C2(X1 \ {∗})
is 0. Since the element h0 ∈ Ext1,1

A∗(H
∗(S1),H ∗(S1)) (representing the map 2 :S1 → S1) becomes 0 in

Ext1,1
A∗

(
H ∗(ΣMZ/2),H ∗(S1)),

it is carried to 0 in Ext1,1
A∗(H

∗(C2(X1 \ {∗})), H ∗(S1)) under j . We claim that the image of h0 is not detected in a
higher filtration of the spectral sequence. Therefore the composite j ◦ 2 is zero, and so j extends to a map ΣMZ/2 →
C2(X1 \{∗}). Moreover, it is clear from Lemma 4.10 that the image of H∗(ΣMZ/2) in H∗(C2(X1 \{∗})) is 〈a1, z1z2〉.
Wedging these maps together gives an isomorphism in homology, and thus an equivalence.

Let us examine the possible classes that could detect j ◦ 2 in the spectral sequence; these lie in

Extn,n
A∗

(
H ∗(C2(X1 \ {∗})+

)
,H ∗(S1))

for n > 1. This is identifiable from the cohomological splitting (∗): the only nonzero classes come from the H ∗(S1 ∨
S1) component:

Extn,n
A∗

(
H ∗(S1 ∨ S1),H ∗(S1)) = 〈

hn
0

〉 ⊕ 〈
hn

0

〉
.

But we know that S1 ∨ S1 splits off C2(X1 \ {∗}), so these cannot be targets. �
Now consider the Thom spaces of multiples of the permutation bundle, C2(X1 \ {∗})nγ2 . We do not study the case

n = 1, given that we know that Map∗(X1, S
3) � Ω2S3 × ΩS3 × ΩS3, so we already have a perfectly good splitting

of the Thom spaces of the configuration bundles in this case.
H̃∗(C2(X1 \ {∗})nγ2) is F2-isomorphic to the 2n-fold suspension of H∗(C2(X1 \ {∗})), described above. We would

like to split C2(X1 \{∗})nγ2 in the same fashion as above, using the Steenrod operations on the cohomology to indicate
the pieces it splits into. We will content ourselves with the following partial results. Let C(η + 2) be the cofiber of the
map η + 2 :S1 → S0 ∨ S1.

Lemma 5.2. H ∗(C2(X1 \ {∗})2γ2) is isomorphic as a module over A∗ to the cohomology of the spectrum

Σ4C(η + 2) ∨ S5 ∨ S5 ∨ S6 ∨ S6.
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Proof. Let u2 be the Thom class of 2γ2. The conjugate Stiefel–Whitney classes of γk were determined in Section 4.3.
The computation in Theorem 4.9 of the ring structure of H ∗(Map∗(X1, S

2)0) (and hence H ∗(C2(X1 \ {∗}))) allows
us to determine the conjugate Stiefel–Whitney classes of 2γ2. Specifically, �w(γ2) = 1 + �w1, so

�w(2γ2) = (1 + �w1)
2 = 1 + x1y1.

We can compute conjugate Steenrod operations in H ∗(C2(X1 \ {∗})2γ2) from this information:

χ(Sq)(xu2) = χ(Sq)(x)�w(2γ2)u2.

So specifically,

χ
(
Sqn

)
(xu2) = (

χ
(
Sqn

)
(x) + χ

(
Sqn−2)(x)x1y1

)
u2.

The only element of H ∗(C2(X1 \ {∗})) with any nontrivial Steenrod operations is �w1, with χ(Sq1)�w1 = x1y1.
Moreover, the only element whose product with x1y1 is nonzero is 1. Consequently 〈x1u2〉, 〈y1u2〉, 〈x2u2〉, 〈y2u2〉,
are all split (trivial) A∗-submodules in dimensions 5 and 6, and 〈1u2, �w1u2, x1y1u2〉 has the cohomology of
Σ4C(η + 2). �

There is a map ı :S0 → MZ/2 which is the inclusion of the bottom cell. Consider the composite η1 given by

S1 η−→ S0 ı−→ MZ/2

and let Cη1 be its cofiber. The referee has pointed out that Cη1 is the 2-dual of C(η + 2).

Lemma 5.3. H ∗(C2(X1 \ {∗})3γ2) is isomorphic as a module over A∗ to the cohomology of the spectrum

Σ6Cη1 ∨ S7 ∨ S7 ∨ S8 ∨ S8.

The proof is identical to the previous, with the modification that

�w(3γ2) = (1 + �w1)
3 = 1 + �w1 + x1y1.

Definition 5.4. Define g2 :S1 → C2(R2) = S1 to be multiplication by 2. For n > 2 and n �= 3 mod 4, define
gn :S2n−3 → C2(R2)(n−2)γ2 as follows: First, set g4 :S5 → S4 ∨ S5 be Σ4(η + 2) and set g5 :S7 → Σ6B(1) =
Σ6MZ/2 to be Σ6η1. Let g6 :S9 → S8 ∨ S9

S9 2−→ S9 → S8 ∨ S9.

Then, for n > 6, since C2(R2)(n+2)γ2 � Σ8C2(R2)(n−2)γ2 , set gn+4 = Σ8gn.

Lemma 5.5. There are maps

Cg2 → D2(X1 \ {∗})
and for n > 2 and n �= 3 mod 4

Cgn → C2(X1 \ {∗})(n−2)γ2

which for n > 2 induce an isomorphism of the homology of the domain with the subspace H∗(C2(R2))(n−2)γ2 +〈l1l2〉.
For n = 2 the map is an isomorphism onto H∗(D2(R2)) + 〈l1l2〉. Moreover, after composing these maps with the
stable inclusions into Map∗(X1, S

n), we may factor them through Y1,n.

Proof. The case n = 2 is handled by Lemma 5.1. C2(R2)+ � S0 ∨ S1 so C2(R2)2γ2 � S4 ∨ S5. So the map
C2(R2)2γ2 → C2(X1 \ {∗})2γ2 extends to Σ4C(η + 2) for the same reason that S1 → C2(X1 \ {∗}) extended to
ΣMZ/2 in Lemma 5.1. That is, the element of Ext1,1

A∗(H ∗(S4 ∨ S5),H ∗(S5)) defining η + 2 is carried to 0 in

Ext1,1
A∗(H ∗(C2(X1 \ {∗})2γ2),H ∗(S5)) for cohomological reasons. A sparsity argument similar to that of Lemma 5.1

shows that η+2 is not detected by an element in a higher filtration of the spectral sequence. Consequently the inclusion
C2(R2)2γ2 → C2(X1 \ {∗})2γ2 extends to Cg4 = Σ4C(η + 2).
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Similarly, C2(R2)3γ2 � Σ6MZ/2 and so C2(R2)3γ2 → C2(X1 \{∗})3γ2 extends to Σ6Cη1 in the same fashion. We
get the map Cg6 → C2(X1 \ {∗})4γ2 from Cg2 → D2(X1 \ {∗}) → C2(X1 \ {∗}) and the fact that C2(X1 \ {∗})4γ2 �
Σ8C2(X1 \ {∗})+. We extend for n > 6, again using the fact that 4γk is trivial for surfaces.

That the image in homology is as described is clear for n = 2 from the proof of Lemma 5.1. For n > 2, that the
map is an injection follows from Lemmas 5.2 and 5.3. The argument to show the image is as described is similar to
the proof of Lemma 4.10—the class does not come from H∗(C2(R2)(n−2)γ2) and must be symmetric in l1 and l2.

Finally, these maps exist because copies of the cohomologies of Cgn exist in the cohomology of the configuration
models. Examining what survives in

H ∗(Map∗
(
X1, S

n
)) → H ∗(Y1,n)

we see that the same modules also exist in H ∗(Y1,n), so the maps must factor. �
6. Construction of new spectra and proofs of the main theorems

In this section we construct certain spectra Mg,n(k) described in the introduction and demonstrate that they form
stable summands of Yg,n+ for n �= 3 mod 4. Both the construction of these spectra and the proofs of the splittings are
inductive in g: we need the splitting of Yg,n+ in order to construct the spectra for genus g + 1. We wonder if there
might be a more formal construction of these spectra which exists without recourse to the geometry of the spaces
being split.

The proofs of the splittings of Theorems 1.3 and 1.7 are in two steps. First, we split Yg,n+ into a finite wedge of
suspensions of spectra we call Mh,n (for h � g). We then split Mh,n into a wedge

∨
k�0 Mh,n(k).

6.1. Splitting Yg,n+

The construction of the spectra Mg,n is not dissimilar from the construction of the Smith–Toda complexes when
possible. Let us outline the general philosophy. Let R be a (homotopy) commutative, (homotopy) associative ring
spectrum with multiplication μ, and let f :Sn → R be an element of πnR. One may try to construct various R-module
spectra Rg for g � 0 from this data. Let R0 = R. Define R1 as the cofiber of the map

R ∧ Sn 1∧f−→ R ∧ R
μ−→ R

Since R is associative, the multiplication μ :R ∧ R → R extends to a map θ1 :R ∧ R1 → R1 via the diagram

R ∧ R ∧ Sn 1∧1∧f

μ∧1

R ∧ R ∧ R
1∧μ

μ∧1

R ∧ R

μ

R ∧ R1

θ1

R ∧ Sn
1∧f

R ∧ R μ R R1

It is not obvious that amongst the possible choices of θ1 that we can find one that makes R1 into an associative left
R-module. If so, we can construct a spectrum R2 as the cofiber of

R1 ∧ Sn 1∧f−→ R1 ∧ R
T−→ R ∧ R1

θ1−→ R1

The commutativity of R and the associativity of θ1 induce a map θ2 :R ∧ R2 → R2. Again, there may or may not be
a choice of such maps which gives an associative module structure on R2. One may clearly iterate this process at this
point—to construct such Rg for all g requires the verification of associativity at each level.

The ring spectra R that we will employ in constructing certain module spectra Mg,n are the suspension spectra
of Ω2Sn+ with the loop product (clearly associative and commutative). However, we make this important (but mild)
exception: whenever the space Ω2Sn is used in a statement, for n = 2, we mean to take the connected component
(Ω2S2)0 � Ω2S3 instead. In general,

Ω2S2n+1+ �
∞∨

Σ(2n−1)kB

⌊
k

2

⌋

k=0
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and if n > 1

Ω2S2n+ �
∞∨

k=0

Σ(2n−2)kCk
(
R2)

+

where Ck(R2)+ � ∨�k/2�
i=0 B� i

2�.
Define f2 :S1 → Ω2S3 as the composite

S1 g2−→ D2(R2) → Ω2S3+
and for n > 2 and n �= 3 mod 4, define fn :S2n−3 → Ω2Sn as

S2n−3 gn−→ C2(R2)(n−2)γ2 → Ω2Sn

Lemma 6.1. There exist spectra Mg,n (for n �= 3 mod 4 and all g) defined in the fashion above using the ring spectrum
M0,n := Ω2Sn+ (in the case n = 2, we use M0,2 = Ω2S3+) and the element fn ∈ π2n−3(M0,n). They are associative
module spectra over M0,n. Moreover, 2-locally, Yg,n+ splits stably as

Yg,n+ �
g∨

i=0

(
Σ(n−1)iMg−i,n

)∨2i (g
i )

and the action of M0,n on Mg,n is inherited from the action of M0,n on Yg,n+.

Proof. The result is tautologically true in the case g = 0, since Ω2Sn = Y0,n. So fix n and assume that the result is
true for Yh,n for all h < g. We construct Mg,n as suggested above: let it be the cofiber of the map

Mg−1,n ∧ S2n−3 1∧fn−→ Mg−1,n ∧ M0,n
μ−→ Mg−1,n

where μ is the module structure map for Mg−1,n (which we have assumed to be associative).
To obtain the terms of the splitting involving Mh,n for h < g one maps them in from Yg−1,n+ in the following

fashion. We have g different maps

Map∗
(
X1, S

n
) × Map∗

(
Xg−1, S

n
) → Map∗

(
Xg,S

n
)

corresponding to the g different ways to collapse Xg → X1 ∨ Xg−1. These maps restrict to maps

Y1,n+ ∧ Yg−1,n+ → Yg,n+. (∗)

There is a map Sn−1 ∨Sn−1 → Y1,n+ whose image in homology is 〈l1, l2〉 : the two projections pi :X1 = S1 ×S1 →
S1 give maps

Sn−1 E−→ ΩSn
p∗

i−→ Map∗
(
X1, S

n
)
.

Clearly these maps factor through Y1,n; the wedge of the two gives the desired map. Then composing this map with
the one given by (∗) gives a family of g maps(

Sn−1 ∨ Sn−1) ∧ Yg−1,n+ → Yg,n+.

These maps inject in homology; the ith has image consisting of all multiples of l2i−1 or l2i , but not both (i.e., every-
thing is divisible by l2i−1 or l2i but not l2i−1l2i . Wedging all g maps together defines

φg :
((

Sn−1 ∨ Sn−1) ∧ Yg−1,n+
)∨g → Yg,n+.

This induces an isomorphism of the homology of the domain with the subspace

H∗
(
Ω2Sn

) ⊗ {
l
i1
1 · · · li2g

2g | ∃j s.t. i2j−1 = 1, i2j = 0, or i2j−1 = 0, i2j = 1
}
.

We may rewrite the domain of φg as (Σn−1Yg−1,n+)∨2g . Employing the lemma for Yg−1,n+ and juggling indices
appropriately allow us to write this as(

Σn−1Yg−1,n+
)∨2g �

g∨(
Σ(n−1)iMg−i,n

)∨2i (g
i ).
i=1
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So to complete the theorem, we need to produce a map αg :Mg,n → Yg,n+ that induces an isomorphism of
H∗(Mg,n) with the subspace

H∗
(
Ω2Sn

) ⊗ Λ[l1 · l2, l3 · l4, . . . , l2g−1 · l2g]
since the direct sum of this space and the image of φg∗ is H∗(Yg,n+). Then the wedge of αg and φg is a homology
isomorphism, proving the splitting. From this splitting, Mg,n inherits an associative M0,n-module structure from
Yg,n+. This completes the inductive step, as it allows us to define Mg+1,n.

Let j denote both the inclusion Ω2Sn+ ⊆ Y1,n+ and any of the g inclusions Yg−1,n+ → Yg,n+. Then the following
diagram homotopy commutes:

Yg−1,n+ ∧ S2n−3 1∧fn Yg−1,n+ ∧ Y0,n+ μ

1×j

Yg−1,n+

j

Yg−1,n+ ∧ Y1,n+ μ
Yg,n+

We can, of course, replace Yg−1,n+ with the split summand Mg−1,n. Examining the definition of fn, we can replace it
with gn, allowing us to rewrite the diagram as

Mg−1,n ∧ S2n−3 1∧gn
Mg−1,n ∧ C2(R4)(n−2)γ2

μ

1∧j

Mg−1,n

j

Mg−1,n ∧ Y1,n+ μ
Yg,n+

Now, j ◦ gn = 0: the content of Lemma 5.5 is that j extends to the cofiber Cgn of gn. Since the cofiber of the top
row is Mg,n, the map j on the right side of the diagram extends to a map Mg,n → Yg,n+. The indeterminacy of this
collection of maps is the set [Mg−1,n ∧ S2n−2, Yg,n+]; if we specify an element βg in this set we fix a particular map
αg :Mg,n → Yg,n+.

To choose this map, note that since j ◦ gn = 0, 1 ∧ j extends to the cofiber of 1 ∧ gn (which is Mg−1,n ∧ Cgn).
Again, we have a number of choices for this map, governed by the indeterminacy [Mg−1,n ∧ S2n−2,Mg−1,n ∧ Y1,n+].
However, Lemma 5.5 provides us with specific maps Cgn → Y1,n+. Smashing with Mg−1,n gives specific extensions
of 1 ∧ j , thus fixing a particular element β ′

g of the indeterminacy [Mg−1,n ∧S2n−2,Mg−1,n ∧Y1,n+]. Composing with
the map μ :Mg−1,n ∧ Y1,n+ → Yg,n+ defines the element βg , and hence αg .

To finish, we need to prove that αg,∗ induces the claimed map in homology. As a graded vector space, H∗(Mg,n) ∼=
H∗(Mg−1,n) + Σ2n−2H∗(Mg−1,n). We know that this commutes:

Mg−1,n
αg−1

j

Yg−1,n+
j

Mg,n αg
Yg,n+

Inductively, we assume that αg−1∗ :H∗(Mg−1,n) → H∗(Ω2Sn)⊗Λ[l1 · l2, l3 · l4, . . . , l2g−3 · l2g−2], is an isomorphism.
So we need to only show that αg∗ carries Σ2n−2H∗(Mg−1,n) isomorphically onto

H∗
(
Ω2Sn

) ⊗ Λ[l1 · l2, l3 · l4, . . . , l2g−3 · l2g−2] · l2g−1 · l2g.

Our choice of αg implies the commutativity of this diagram:

Mg−1,n ∧ Cgn
μ

Mg,n

αg

Mg−1,n ∧ Y1,n+ μ
Yg,n+

If x ∈ H2n−2(Cgn) is the generator coming from the extension (i.e., the nonzero class not in H∗(C2(R2)(n−2)γ2)), then
the top row carries H∗(Mg−1,n) · x onto the subspace Σ2n−2H∗(Mg−1,n) ⊆ H∗(Mg,n). By Lemma 5.5, the composite
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of the left and bottom rows carries x to l2g−1 · l2g , so αg∗ carries Σ2n−2H∗(Mg−1,n) onto H ∗(Ω2Sn) ⊗ Λ[l1 · l2,

l3 · l4, . . . , l2g−3 · l2g−2] · l2g−1 · l2g , as desired. �
6.2. Splittings of the spectra Mg,n

The purpose of this section is to show that the spectra Mg,n naturally split into a wedge of simpler spectra. Recall
that this is true of M0,n. Because the multiplication in M0,n respects these wedge gradings, it is reasonable to believe
that M1,n—cofibers of maps defined by the multiplication in M0,n—also split into wedges. Another heuristic argument
is that overlaying the splitting of Yg,n in the previous section with the Snaith splitting should give a sharper splitting
of Yg,n. The first approach—exploiting the multiplicative structure—is easier to implement.

We rewrite the stable splittings of Ω2Sn+ as

M0,n �
∨
k�0

M0,n(k)

with M0,n(k) = Ck(R2)(n−2)γk if n > 2. For n = 2, set M0,2(k) = Dk(R2). Again, M0,2 � ∨
k�0 M0,2(k), but there is

some redundancy; M0,2(2k + 1) is contractible (and M0,2(2k) � ΣkB� k
2�). Then the loop multiplication on M0,n is

given by

M0,n(i) ∧ M0,n(j) → M0,n(i + j).

Proposition 6.2. There are spectra Mg,n(k) defined for n � 2, n �= 3 mod 4 and all g, k � 0, so that

Mg,n =
∨
k�0

Mg,n(k).

The composite of αg :Mg,n → Yg,n and the inclusion Yg,n → Map∗(Xg,S
n) carries Mg,n(k) into the summand

Ck(Xg \ {∗})(n−2)γk if n > 2 (if n = 2, Mg,2(k) maps into Dk(Xg \ {∗})). Consequently, the M0,n-module structure on
Mg,n respects this wedge grading: the action μ :M0,n ∧ Mg,n → Mg,n is given by a wedge of maps

M0,n(i) ∧ Mg,n(j) → Mg,n(i + j).

Finally, for g � 1, Mg,n(k) is constructed as the cofiber of the map

Mg−1,n(k − 2) ∧ S2n−3 1∧gn−→ Mg−1,n(k − 2) ∧ M0,n(2)
μ−→ Mg−1,n(k).

Proof. As usual, we induct on g. For g = 0, the result is already known. So assume the proposition for all Mh,n with
h < g. Then the following diagram commutes:

Mg−1,n ∧ S2n−3 1∧fn Mg−1,n ∧ M0,n
μ

Mg−1,n

∨
k�0 Mg−1,n(k) ∧ S2n−3 1∧gn

= ∨
k�0 Mg−1,n(k) ∧ M0,n(2)

μ ∨
k�0 Mg−1,n(k)

=

The cofiber of the top row is Mg,n. Since the action M0,n ∧Mg−1,n → Mg−1,n respects the wedge grading, the bottom
row is a sum of the maps defining Mg,n(k) in the statement of the proposition. So the cofiber of the bottom (and hence
the top) row splits as the wedge

∨
k�0 Mg,n(k).

For the remainder of the proof, we treat the cases n > 2; the reader can make the obvious modifications for n = 2,
noting that g2 maps into the summand D2(R2) = M0,2(2). To show that Mg,n(k) maps into Ck(Xg \ {∗})(n−2)γk is
equivalent to saying that the following composite αg(k, r)

Mg,n(k) → Mg,n

αg−→ Yg,n → Map∗
(
Xg,S

n
) → Cr

(
Xg \ {∗})(n−2)γr

is 0 if r �= k. By assumption, the restriction of αg(k, r) to Mg−1,n(k) is αg−1(k, r) (composed with the inclusion
Cr(Xg−1 \ {∗})(n−2)γr → Cr(Xg \ {∗})(n−2)γr ), and hence zero if r �= k. So αg(k, r) lifts to Mg−1,n(k − 2) ∧ S2n−2.
This lift is a component of the map βg , so might be denoted βg(k, r). βg is the indeterminacy of the map
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Mg−1,n(k − 2) ∧ Cgn → Yg,n which extends the map from Mg−1,n(k − 2) ∧ C2(R2)(n−2)γ2 to Yg−1,n given by αg−1
and multiplication. Inductively, this last function maps into Ck(Xg−1 \ {∗})(n−2)γk . So the indeterminacy is 0 if r �= k.
Hence αg(k, r) = 0 if r �= k. �
6.3. Periodicity results for the spectra Mg,n(k)

In this section, we employ the results of [8]—that 4γk is trivial for surfaces—to prove a similar periodicity for the
stable summands of Yg,n. As usual, the case n = 2 is a slight exception.

Proposition 6.3. For n �= 2,

Mg,n+4(k) � Σ4kMg,n(k).

Also,

Mg,6(k) � Σ4k
k∨

i=0

Mg,2(i).

Combining the results of this proposition, Lemma 6.1, and Proposition 6.2 gives Theorem 1.7 and hence Theo-
rem 1.3.

Proof. First, take n �= 2. For g = 0, this is known—2γk is trivial over Ck(R2) so certainly

M0,n+4(k) = Ck
(
R2)(n+2)γk � Σ4kCk

(
R2)(n−2)γk = Σ4kM0,n(k).

Recall that 4γk is trivial over Ck(Xg \ {∗}) for each g and k. Thus Ck(Xg \ {∗})(n+2)γk � Σ4kCk(Xg \ {∗})(n−2)γk .
We therefore defined gn+4 = Σ8gn.

Assume the result for h < g. Take the sequence whose cofiber is Mg,n+4(k),

Mg−1,n+4(k − 2) ∧ S2(n+4)−3 → Mg−1,n+4(k − 2) ∧ M0,n+4(2) → Mg−1,n+4(k), (∗)

and precompose it with the equivalence Σ4k(Mg−1,n(k−2)∧S2n−3) � Mg−1,n+4(k−2)∧S2(n+4)−3. Postcomposing
with Mg−1,n+4(k) � Σ4kMg−1,n(k) gives a map

Σ4k
(
Mg−1,n(k − 2) ∧ S2n−3) → Σ4kMg−1,n(k).

This is in fact the map whose cofiber is Σ4kMg−1,n(k). This is because we have defined gn+4 = Σ8gn (the first map
in (∗)), and because the configuration model for multiplication (the second map in (∗)) in dimension n + 4 is just a
suspension of the model in dimension n. Since we bracketed the defining map for Mg,n+4(k) with equivalences to get
the defining map for Σ4kMg,n(k), these spectra are equivalent.

The difference between the cases n = 2 and n �= 2 arises at the base of the induction:

M0,6(k) = Ck
(
R2)4γk � Σ4kCk

(
R2)

+ � Σ4k
k∨

i=0

Di
(
R2).

Since we have defined Di(R2) = M0,2(i), this gives the result for g = 0. Again, assume that the result holds for h < g;
we have the commutative diagram

Mg−1,6(k − 2) ∧ S9 1∧g6

�

Mg−1,6(k − 2) ∧ M0,6(2)

�

Σ4k(
∨k−2

i=0 Mg−1,2(i) ∧ S1)
Σ4k(1∧g2)

Σ4k(
∨k−2

i=0 Mg−1,2(i) ∧ C2(R2)+)

In fact g2 maps into the summand D2(R2). So we may replace C2(R2)+ with D2(R2) = M0,2(2) in the diagram.
Then the same inductive argument as in the case n > 2 may be used to prove the equivalence for n = 2. �
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It is worth noting that M0,4n(k) splits into a wedge as M0,2+4n(k) does. However, the argument in the latter half of
the proof above cannot be modified to split Mg,4n(k) into even smaller pieces because g4n, unlike g2, maps into both
summands of C2(R2)(4n−2)γk , whereas g2 just maps into M0,2(2).

6.4. Characterization of the cohomology of Mg,n(k)

Write H∗(MZ/2) = 〈1, e〉 and H∗(Cη) = 〈1, f 〉 where e and f have dimensions 1 and 2, respectively. The fol-
lowing has as a corollary parts (1) and (2) of Theorem 1.2 via repeated application.

Lemma 6.4.

(1) Mg,2(2k + 1) is contractible.
(2) There is a map Mg,2(2k) → Mg−1,2(2k) ∧ MZ/2 whose image in homology is

H∗
(
Mg−1,2(2k)

) · 1 + H∗
(
Mg−1,2(2k − 2)

) · e.
(3) There is a map Mg,5(k) → Mg−1,5(k) ∧ Cη whose image in homology is

H∗
(
Mg−1,5(k)

) · 1 + H∗
(
Mg−1,5(k − 2)

) · f.

Proof. For the first item, note that it holds for g = 0 and that Mg,2(2k + 1) is constructed as the cofiber of a map from
S1 ∧ Mg−1,2(2k − 1) to Mg−1,2(2k + 1). The result holds by induction.

The following commutes:

Mg−1,2(2k − 2) ∧ S1 1∧g2

=

Mg−1,2(2k − 2) ∧ M0,2(2)
μ

Mg−1,2(2k)

=

Mg−1,2(2k − 2) ∧ M0,2(2)
μ

Mg−1,2(2k)
2

Mg−1,2(2k)

The cofiber of the top row is Mg,2(2k), and the cofiber of the second map on the bottom row is Mg−1,2(2k) ∧
MZ/2, thus providing the desired map. That the image in homology is as described is clear, since H∗(Mg,2(2k)) =
H∗(Mg−1,2(2k)) + Σ2H∗(Mg−1,2(2k − 2)).

A similar diagram gives the result for n = 5:

Mg−1,5(k − 2) ∧ S7 1∧g5

Σ(1∧ı)

Mg−1,5(k − 2) ∧ M0,5(2)
μ

Mg−1,5(k)

=

ΣMg−1,5(k − 2) ∧ M0,5(2)
Σμ

ΣMg−1,5(k)
η∧1

Mg−1,5(k)

where ı :S6 → M0,5(2) is the inclusion of the bottom cell. �
We now address part (3) of Theorem 1.2, the computation of the cohomology of Lg(k) = Mg,4(2k). Since the

stable summands of Map∗(Xg,S
4) are Thom spaces of bundles over the configuration spaces of Xg \ {∗}, they have

the same cohomology (as vector spaces) as the configuration spaces, with different Steenrod operations. Our goal
is to say the same for the cohomology of Mg,4(k) and

∨k
i=0 Mg,2(i). We will use the notation α

(n)
g for the map

αg :Mg,n(k) → Map∗(Xg,S
n) as we will examine n = 2 and n = 4 simultaneously.

Lemma 6.5. The composite

H∗
(
Mg,4(k)

) α
(4)
g∗−→ H∗

(
Ck

(
Xg \ {∗})2γk

) T−→ H∗
(
Ck

(
Xg \ {∗})+

)
(where T is the homology Thom isomorphism) carries H∗(Mg,4(k)) isomorphically onto the image of
H∗(

∨k
Mg,2(i)) in H∗(Ck(Xg \ {∗})+).
i=0
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Proof. In the case g = 0, this holds since α
(n)
0 is the identity for each n, T is an isomorphism, and

Ck
(
R2)

+ �
k∨

i=0

Di
(
R2) =

k∨
i=0

M0,2(i).

So assume the result for each h < g. Recall that

H∗
(
Mg,n(k)

) = H∗
(
Mg−1,n(k)

) + Σ2n−2H∗
(
Mg−1,n(k − 2)

)
and that

α(n)
g∗

(
H∗

(
Mg,n(k)

)) = α
(n)
g−1∗

(
H∗

(
Mg−1,n(k)

)) + α
(n)
g−1∗

(
H∗

(
Mg−1,n(k − 2)

))
l2g−1l2g.

So, by induction

T α(4)
g∗

(
H∗

(
Mg,n(k)

)) = α
(2)
g−1∗

(
H∗

(
k∨

i=0

Mg−1,2(i)

))
+ T

(
α

(4)
g−1∗

(
H∗

(
Mg−1,n(k − 2)

))
l2g−1l2g

)
.

We claim that the last term is α
(2)
g−1∗(H∗(

∨k
i=0 Mg−1,2(i)))z2g−1z2g . Let

μ :Ci
(
Xg−1 \ {∗})2γi ∧ Cj

(
X1 \ {∗})2γj → Ci+j

(
Xg \ {∗})2γi+j

be the multiplication map. This is induced by a multiplication on the level of configuration spaces; hence the Thom
isomorphism respects these multiplicative structures in homology (compare with the proof of Proposition 7.3). We
may use μ in our case:

T
(
α

(4)
g−1∗

(
H∗(Mg−1,n(k − 2)

))
l2g−1l2g

) = T
(
μ∗

(
α

(4)
g−1∗

(
H∗

(
Mg−1,n(k − 2)

)) ⊗ l2g−1l2g

))
.

It is clear that T (l2g−1l2g) = z2g−1z2g , and since multiplication and T commute, this is

T
(
α

(4)
g−1∗

(
H∗

(
Mg−1,n(k − 2)

)))
z2g−1z2g.

By induction, this gives the claim. The result follows. �
We now demonstrate part (3) of Theorem 1.2.

Proof of Theorem 1.2(3). The previous lemma showed that, as graded vector spaces,

H∗
(
Mg,4(k)

) ∼= H∗

(
k∨

i=0

Mg,2(i)

)
u2

k

where u2
k is the (homology) Thom class for 2γk . H∗(Mg,2(i)) ⊆ H∗(Yg,2), so α2

g allows us to identify H∗(Mg,4(k)) as

a subset of H∗(Ck(R2)) ⊗ Λ[z1z2, . . . z2g−1z2g]u2
k (see the proof of Lemma 6.1). So if v2

k is the cohomology Thom
class, H ∗(Mg,4(k)) is a quotient of

H ∗(Ck
(
R2)) ⊗ Λ

[
x

(1)
1 y

(1)
1 , . . . , x

(g)

1 y
(g)

1

]
v2
k .

The Steenrod operations on this space are given by

χ
(
Sqn

)(
xv2

k

) =
n∑

i=0

χ
(
Sqn−i

)
(x)�wi(2γk)v

2
k .

We have calculated these conjugate Stiefel–Whitney classes:

�w(2γk) = (�w(γk)
)2 = 1 + �w2

1 + �w2
2 + · · · = 1 + σ1 + σ2 + · · ·

(the σi are defined in Section 4.5), so

χ
(
Sqn

)(
xv2

k

) =
g∑

χ
(
Sqn−2i

)
(x)σiv

2
k .
i=0
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Consequently we may write H ∗(Mg,4(k)) as a quotient of

Σ2kH ∗
(

k∨
i=0

Mg,2(i)

)
⊗ H ∗(Cη)⊗g

where, if we write H ∗(Cη)⊗g = Λ[t1, . . . , tg] (with dim(ti) = 2), ti is identified with x
(i)
1 y

(i)
1 , and hence the j th

elementary symmetric exterior polynomial in the ti with σj .
This is precisely what part (3) of Theorem 1.2 says. �

7. Filtration arguments

In this section we construct a weight filtration v on H∗(C∞(Xg \ {∗})), the homogeneous summands of which are
the homology of the stable summands of C∞(Xg \ {∗}), Dk(Xg \ {∗}). We employ this to give a stable splitting of the
configuration spaces and a proof of Proposition 1.4.

7.1. A filtration on H∗(C∞(Xg \ {∗}))
In [3] a filtration w is put on the homology of Map∗(Xg,S

3). We may write

H∗
(
Map∗

(
Xg,S

3)) ∼= H∗
(
Ω2S3) ⊗ H∗

(
ΩS3)⊗2g = F2[an, n � 1] ⊗ F2[l1, . . . , l2g]

where |an| = 2n −1 and |li | = 2. Then the filtration w is defined by assigning w(an) = 2n−1, w(li) = 1, and extending
multiplicatively: w(ab) = w(a) + w(b). In [3], a theorem is proven with the following proposition as a corollary:

Proposition 7.1. [3] The homology of the kth stable summand of Map∗(Xg,S
3) given by the Snaith splitting,

H∗(Ck(Xg \ {∗})γk ), is the subset of H∗(Map∗(Xg,S
3)) of filtration w equal to k.

Recall that H∗(C∞(Xg \ {∗})) ∼= H∗(Map∗(Xg,S
2)0). Corollary 4.2 allows us to identify H∗(C∞(Xg \ {∗})) as

isomorphic to H∗(Ω2S3) ⊗ H∗(ΩS2)⊗2g as vector spaces. Write H∗(ΩS2)⊗2g = F2[z1, . . . , z2g] where |zi | = 1.

Definition 7.2. Define a filtration v on

H∗
(
C∞(

Xg \ {∗})) ∼= F2[an, n � 1] ⊗ F2[z1, . . . , z2g]
by setting v(an) = 2n and v(zi) = 1 and extending via v(ab) = v(a) + v(b).

Notice that if we identify H∗(Map∗(Xg,S
3)) with its image in H∗(C∞(Xg \ {∗})) ∼= H∗(Map∗(Xg,S

2)0) under
the Hopf fibration η̄∗, an is carried to itself, and li is carried to z2

i . Therefore for x ∈ H∗(Map∗(Xg,S
3))

v(x) = 2w(x).

Proposition 7.3. H∗(Ck(Xg \ {∗})) is the subset of H∗(C∞(Xg \ {∗})) of filtration v � k. Therefore H̃∗(Dk(Xg \ {∗}))
is the subset of filtration precisely k.

Proof. Clearly, the filtration w restricts to the filtration on H∗(Ω2S3) defined in Theorem 2.7, whose kth filtered
piece is the subspace A(k) := H∗(Ck(R2)γk ). Therefore the part of H∗(Map∗(Xg,S

3)) of filtration w = k is

H̃∗
(
Ck

(
Xg \ {∗})γk

) =
⊕

Σti�k

A(k − Σti) ⊗ l
t1
i · · · lt2g

2g .

We need to find the subspace of H∗(Ck(Xg \ {∗})) corresponding to this subspace under the Thom isomorphism.
Specifically, we have the diagram

H̃∗(Ck(Xg \ {∗})γk )
⊆

Tk ∼=

H∗(Map∗(Xg,S
3))

H̃∗(Ck(Xg \ {∗})) H∗(C∞(Xg \ {∗}))
⊆
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where Tk is the (homology) Thom isomorphism for γk . We want to compute the image of Tk in H∗(C∞(Xg \ {∗})).
We have seen that the module maps mi,j :Ci(R2)×Cj (Xg \{∗}) → Ci+j (Xg \{∗}) are covered by maps γi ×γj →

γi+j So the maps induced by mi,j upon passage to Thom spaces

μi,j :Ci
(
R2)γi ∧ Cj

(
Xg \ {∗})γj → Ci+j

(
Xg \ {∗})γi+j

commute with the Thom isomorphism. That is,

Ti+j

(
μi,j∗(x ⊗ y)

) = mi,j∗
(
Ti(x) ⊗ Tj (y)

)
.

Briefly, write the products μ and m by a dot ·; it will be apparent from the context which product is being used, and
the previous equality shows that it does not matter much anyway.

Pick an element α ∈ H̃∗(Ck(Xg \ {∗})γk ), and write

α =
∑

i

μi,k−i

(
aiui

(
R2) ⊗ biuk−i

(
Xg \ {∗})) =

∑
i

(
aiui

(
R2)) · (biuk−i

(
Xg \ {∗}))

where ui(R
2) is the Thom class of γi over Ci(R2), and uk−i (Xg \ {∗}) is the Thom class of γk−i over Ck−i (Xg \ {∗}).

Moreover, do this in a fashion in which it is impossible to write biuk−i (Xg \ {∗})) as a product with some xun(R
2)

for some n > 0 using the maps μ.
Then bi ∈ H∗(ΩS2)⊗2g . By assumption,

w
((

aiui

(
R2)) · (biuk−i

(
Xg \ {∗}))) = k

and w(aiui(R
2)) = i, so w(biuk−i (Xg \ {∗})) = k − i. In general, w(x) � 1

2 |x|, so

2(k − i) �
∣∣biuk−i

(
Xg \ {∗})∣∣ = |bi | + k − i

and so v(bi) = |bi | � k − i.
We know (using Brown and Peterson’s computation [6] of the homotopy type of the configuration spaces of R2,

for instance) that H∗(Ci(R2)) is the subspace

� i
2 �⊕

n=0

A(n).

These elements are of weight v � i. So v(ai) � i. Therefore v(ai · bi) � k, and so

v
(
Tk(α)

) = v

(∑
i

ai · bi

)
� k.

Consequently Tk maps H̃∗(Ck(Xg \ {∗})γk ) injectively into the space v � k; by dimension counts, this is a surjection
as well. �
7.2. Splitting configuration spaces

Via McDuff’s work in [18] we obtain the following as a corollary to Theorem 1.3:

Corollary 7.4. The r th configuration space, Cr(Xg \ {∗})+ of the punctured surface Xg \ {∗} is stably equivalent to
the wedge of(

ΣiMg−i,2(k)
)∨2i (g

i ) ∧ S2(j1+···+j2g)

over all nonnegative choices of i, k, and j1, . . . , j2g so that i + k + 2(j1 + · · · + j2g) � r .

Proof. Since Ck(Xg \ {∗})+ is a stable summand of Map∗(Xg,S
2)0+, it is equal to a wedge of a subcollection of the

summands of

Map∗
(
Xg,S

2)
0+ �

(
g∨(

Σi

∞∨
Mg−i,2(k)

)∨2i (g
i )

)
∧

( ∞∨
S2j

)∧2g

. (∗∗)

i=0 k=0 j=0
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We determine which subcollection by examining the homology of these summands.
First, we note that H∗(Mg,2(k)) ⊆ H∗(Map∗(Xg,S

2)0) is homogeneous of fixed weight k, since we know that
Mg,2(k) maps into Dk(Xg \ {∗}) via αg . Secondly, any of the terms H∗(S2j ) coming from one of the copies of
H∗(ΩS3) are of weight 2j . Similarly, any of the terms H∗(ΣiMg−i,2(k)) is therefore of weight i + k. Since the
definition of v is multiplicative, we obtain all of the terms listed in the corollary. �
7.3. A proof of Proposition 1.4

Recall the Hopf–James map

ΩSn H−→ ΩS2n−1

whose fibre, at the prime 2, is given by the suspension map E :Sn−1 → ΩSn. This leads to the defining diagram of
Yg,n:

Yg,n
i

Map∗(Xg,S
n)

rn(g)

(Sn−1)×2g

E×2g (ΩSn)×2g

H×2g (ΩS2n−1)×2g

The composite (H×2g ◦ rn(g))∗ makes H ∗(Map∗(Xg,S
n)) a H ∗((ΩS2n−1)×2g)-module. We will define a subspace

Zg,n ⊆ H ∗(Map∗(Xg,S
n)) and show that it is a free basis for the action of H ∗((ΩS2n−1)×2g). The proof of Proposi-

tion 1.4 will then essentially follow by showing that i∗ carries Zg,n isomorphically onto H ∗(Yg,n).
Recall that Map∗(Xg,S

2)0 � Yg,2 × (ΩS3)×2g , and that rk denotes the approximation map

rk :Ck
(
Xg \ {∗}) → Map∗(Xg,S

2)0.

Definition 7.5. Define Zg,n ⊆ H ∗(Map∗(Xg,S
n)) as the span of the set{

r∗
k (x)un−2

k , ∀k, ∀x ∈ H ∗(Yg,2) ⊆ H ∗(Map∗
(
Xg,S

2)
0

)}
where un−2

k is the Thom class of the bundle γ n−2
k over Ck(Xg \ {∗}).

In other words, Zg,n is the part of H ∗(Map∗(Xg,S
2)0) coming from Yg,2 lifted to H ∗(Map∗(Xg,S

n)) via the
various Thom isomorphisms from the stable summands Map∗(Xg,S

n).

Lemma 7.6. Zg,n is an A∗-submodule of H ∗(Map∗(Xg,S
n)).

Proof. We compute the total conjugate Steenrod operation on a generator using the definition of �w and naturality
with respect to rk :

χ(Sq)
(
r∗
k (x)un−2

k

) = (
r∗
k

(
χ(Sq)(x)

))�w(
(n − 2)γk

)
un−2

k .

Bödigheimer, Cohen, and Milgram have shown that Yg,2 is a factor of Map∗(Xg,S
2)0; hence H ∗(Yg,2) is a sub

A∗-algebra of H ∗(Map∗(Xg,S
2)0). So since x ∈ H ∗(Yg,2)

χ(Sq)(x) ∈ H ∗(Yg,2).

Moreover, Corollary 4.8 implies that �w((n − 2)γk) ∈ r∗
k (H ∗(Yg,2)). Since H ∗(Yg,2) is closed under multiplication,

this implies that(
r∗
k

(
χ(Sq)(x)

))�w(
(n − 2)γk

) ∈ r∗
k

(
H ∗(Yg,2)

)
and so

χ(Sq)
(
r∗(x)un−2) ∈ Zg,n.
k k
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Since A∗ is generated by the conjugate Steenrod operations, this demonstrates that Zg,n is closed under the action of
the Steenrod algebra. �

Denote by Tk the Thom isomorphism

Tk : H̃∗
(
Ck

(
Xg \ {∗})(n−2)γk

) → H̃∗
(
Ck

(
Xg \ {∗})).

We need the following computational lemma.

Lemma 7.7. For a ⊗ l
α1
1 · · · lα2g

2g ∈ H∗(Yg,n) ⊆ H∗(Map∗(Xg,S
n)) (hence 0 � αi � 1) of filtration k + ∑

αi ,

Tk+∑
αi

(
a ⊗ l

α1
1 · · · lα2g

2g

) = Tk(a) ⊗ (
z
α1
1 · · · zα2g

2g + HO
)

where HO are terms involving powers of zi greater than 1.

Proof. We begin with the case a = 1, g = 1; that is,

Tα1+α2

(
l
α1
1 l

α1
2

) = z
α1
1 z

α1
2 + HO.

If only one of the αi are nonzero, this follows from the fact that

C1
(
X1 \ {∗}) � S1 ∨ S1

so there is no choice but to have T1(li) = zi .
Next examine T2(l1l2). The only possible targets lie in

H2
(
C2(X1 \ {∗})) = 〈

z2
1, z1z2, z

2
2

〉
Z/2 acts on X1 = R2/Z2 by switching coordinates; this interchanges the two loops in the 1-skeleton. By symmetry
with respect to this action, in fact

T2(l1l2) ∈ 〈
z2

1 + z2
2, z1z2

〉
.

The subspace 〈l2
1 , l2

2〉 is free Z/2-module, hence 〈T2(l
2
1), T2(l

2
2)〉 must be as well. The only free subspaces of

H2(C
2(X1 \ {∗})) are〈
z2

1, z
2
2

〉
and

〈
z2

1 + z1z2, z
2
2 + z1z2

〉
.

Thus T2(l1l2) must lie in the complement of one of these two subspaces. In either case, this implies that

T2(l1l2) = z1z2 + r
(
z2

1 + z2
2

)
for some r ∈ F2.

The general case now follows from the multiplicative properties used throughout this article. In particular, we use
the multiplication

Ck
(
R2) × Cα1+α2

(
X1 \ {∗}) × · · · × Cα2g−1+α2g

(
X1 \ {∗}) → Ck+∑

αi
(
Xg \ {∗})

and the induced map on Thom spaces to obtain the class a ⊗ l
α1
1 · · · lα2g

2g The result then follows from the fact that
multiplication commutes with the Thom isomorphism. �
Corollary 7.8. Zg,n is carried isomorphically onto H ∗(Yg,n) via i∗.

Notice that, since i is a map of spaces, this isomorphism is one of A∗-modules.

Proof. An equivalent formulation of this fact is the statement that the Kronecker product

〈·, ·〉 :H∗
(
Map∗

(
Xg,S

n
)) ⊗ H ∗(Map∗

(
Xg,S

n
)) → F2

remains nonsingular when restricted to i∗(H∗(Yg,n)) ⊗ Zg,n. A typical generator of i∗(H∗(Yg,n)) is of the form

A = a ⊗ l
α1 · · · lα2g
1 2g
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where a ∈ H∗(Ω2Sn), 0 � αi � 1. A typical generator of Zg,n is of the form

B = r∗
k

(
b ⊗ xβ

)
un−2

k+∑
βi

where b ∈ H ∗(Ω2S2
0), β = (β1, . . . , β2g) is a sequence of {0,1}, and

xβ = (
x

(1)
1

)β1
(
y

(1)
1

)β2 · · · (x(g)

1

)β2g−1
(
y

(g)

1

)β2g .

Then

〈A,B〉 = 〈
Tk+∑

βi

(
a ⊗ l

α1
1 · · · lα2g

2g

)
, r∗

k+∑
βi

(
b ⊗ xβ

)〉
= 〈

Tk(a) ⊗ (
z
α1
1 · · · zα2g

2g + HO
)
, r∗

k+∑
βi

(
b ⊗ xβ

)〉
= 〈

Tk(a), r∗
k (b)

〉 · 〈zα1
1 · · · zα2g

2g + HO,xβ
〉

= 〈
a, r∗

k (b)un−2
k

〉 · g∏
i=1

δβi
αi

. (†)

The first term in the last line of (†) is the Kronecker product on Ω2Sn. This form is nonsingular, as is the form given
by the second term. So (†) implies that the Kronecker product on i∗(H∗(Yg,n)) ⊗ Zg,n is the tensor product of two
nonsingular forms, and is thus also nonsingular. �
Proof of Proposition 1.4. We claim that H ∗(Map∗(Xg,S

n)) is a free H ∗(ΩS2n−1)⊗2g-module on the subspace Zg,n;
that is, multiplication in H ∗(Map∗(Xg,S

n)) induces an isomorphism

H ∗(ΩS2n−1)⊗2g ⊗ Zg,n → H ∗(Map∗
(
Xg,S

n
))

.

Since this isomorphism is induced by multiplication, it is necessarily an isomorphism of A∗-modules. Then Proposi-
tion 1.4 follows from Corollary 7.8. Consider the cohomological Serre spectral sequence of the fibration

Yg,n
i−→ Map∗

(
Xg,S

n
) j−→ (

ΩS2n−1)×2g

where j = H×2g ◦ rn(g). The E2 term is of the form

E2 = H ∗(ΩS2n−1)⊗2g ⊗ H ∗(Yg,n).

The spectral sequence must collapse at E2, since (as vector spaces)

E2 ∼= H ∗(ΩS2n−1)⊗2g ⊗ H ∗(Sn−1)⊗2g ⊗ H ∗(Ω2Sn
) ∼= H ∗(ΩSn

)⊗2g ⊗ H ∗(Ω2Sn
)

which we know to be isomorphic to E∞ = H ∗(Map∗(Xg,S
n)). More carefully, since E2 is locally finite dimensional,

any nonzero differential would reduce the dimension of each graded piece of E∞ to less than that of E2. But since E2

is abstractly isomorphic to H ∗(Map∗(Xg,S
n)) ∼= E∞ this is not possible.

Restricting the multiplication in H ∗(Map∗(Xg,S
n))⊗H ∗(Map∗(Xg,S

n)) to the subspace H ∗(ΩS2n−1)⊗2g ⊗Zg,n

gives a map

H ∗(ΩS2n−1)⊗2g ⊗ Zg,n → H ∗(Map∗
(
Xg,S

n
))

.

Reducing this multiplication to the filtration quotients from the spectral sequence gives

H ∗(ΩS2n−1)⊗2g ⊗ H ∗(Yg,n) → E2 ∼= E∞

since, by Corollary 7.8, H ∗(Yg,n) ∼= Zg,n. The spectral sequence is one of algebras; thus this multiplication is an
isomorphism. Since the filtered multiplication is an isomorphism, so too is the original multiplication. �
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8. Unbased mapping spaces

We compute the cohomology of the unbased mapping spaces Map(Xg,S
n). The main tool is the Serre spectral

sequence for the fibration

Map
(
Xg,S

n
) ev−→ Sn

given by evaluation of functions at the basepoint of Xg . The fibre is Map∗(Xg,S
n). We first treat the special case

g = 1 and n = 2:

Lemma 8.1. The Serre spectral sequence for Map(X1, S
2)d collapses at the E2 term for maps of every degree d .

The proof of this follows an approach to these sort of collapsing results described in [14]: one uses the suspension
E :S2 → ΩS3 to map the homology spectral sequence under consideration injectively to one that collapses. For a
careful exposition of this proof for g = 0, see [15, Lemma 2.5].

Proposition 8.2. For n � 2 and g � 0, the cohomology Serre spectral sequence for the fibration ev collapses at the
E2 term; there is an isomorphism of vector spaces

H ∗(Map
(
Xg,S

n
)) ∼= H ∗(Map∗

(
Xg,S

n
)) ⊗ H ∗(Sn

)
.

Proof. For genus 1 and n > 2, since X1 is parallelizable, this follows (like Proposition 2.5) from the main result
of [3]; if n = 2 we use the previous lemma. For genus 0, consider the commutative diagram of fibrations over Sn:

Ω2Sn Map∗(X1, S
n)

Map(X0, S
n)

ev

Map(X1, S
n)

ev

Sn = Sn

Since the Serre spectral sequence collapses for the right-hand fibration, and the induced map on the cohomology of
the fibres is a surjection, the spectral sequence for the left-hand fibration collapses.

For genus g > 1 we have a two step process to proving the collapse of the spectral sequence. Consider the commu-
tative diagram

Map∗(X1, S
n)×g Map∗(X1, S

n)×g= μ Map∗(Xg,S
n)

Map(X1, S
n)×g

ev×g

Map(X
∨g

1 , Sn)
μ

ev

Map(Xg,S
n)

ev

(Sn)×g Sn
Δ = Sn

Here Δ is the g-fold diagonal, and the center fibration is a pullback of the left one over Δ. The map from the center
fibration to the right one is induced by the iterated multiplication described in Section 3 and its obvious extension to
Map(X

∨g

1 , Sn).
Since the spectral sequence for the left fibration collapses and Δ∗ is a surjection, the spectral sequence for the

center fibration collapses. Since the map μ on the fibres is an injection in cohomology (as in Corollary 4.2), the
spectral sequence for the right-hand fibration collapses. �

The arguments of Proposition 2.6 can be modified to show that Map(Xg,S
3) is equivalent to Map∗(Xg,S

3) × S3.
Despite the evidence of the previous proposition, the analogue for target spheres of arbitrary dimension is not true
(even stably) in general:
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Proposition 8.3. If n is even, then Map(Xg,S
n) is not stably equivalent to Map∗(Xg,S

n) × Sn.

Proof. S1 is a factor of X1; this induces a retraction Map(X1, S
n) → LSn (the free loop space of Sn). So LSn is

a stable summand of Map(X1, S
n). Were Map(X1, S

n) equivalent to Map∗(X1, S
n) × Sn, this would give a stable

splitting LSn � ΩSn × Sn. While this is true for n odd, it is false for n even. Briefly, LSn admits a configuration
model, and hence a Snaith splitting. The second term is

C2(S1)
+ ∧Σ2

(
Sn−1 ∧ Sn−1) � S1+ ∧Σ2

(
Sn−1 ∧ Sn−1).

If n is even, this is Σ2n−2MZ/2, whereas ΩSn × Sn is a wedge of spheres. One may propagate this splitting failure
to higher genus using the multiplicative techniques described in previous sections. �
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