
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 141, Number 9, September 2013, Pages 3029–3035
S 0002-9939(2013)11577-7
Article electronically published on May 31, 2013

OPERADS OF MODULI SPACES OF POINTS IN Cd

CRAIG WESTERLAND

(Communicated by Brooke Shipley)

Abstract. We compute the structure of the homology of an operad built
from the spaces THd,n of configurations of points in Cd, modulo translation
and homothety. We find that it is a mild generalization of Getzler’s gravity
operad, which occurs in dimension d = 1.

1. Introduction

In a wealth of papers, e.g., [Get94, Get95, GK94, GK98, Vor00, KSV95], a
number of connections between moduli spaces of curves and operads have been
firmly established. In this note, we explore an operad built out of moduli spaces of
points in higher-dimensional objects.

In [CGK09], Chen, Gibney, and Krashen study a variety THd,n of configurations
of n points in affine d-space modulo the action of the affine group and define a
compactification Td,n of this variety. In dimension d = 1, these varieties return the
familiar moduli spaces of points in P1: TH1,n = M0,n+1 and T1,n is the Deligne-
Mumford compactification M0,n+1.

Just as in dimension 1, THd,n and Td,n (or, for our purposes, their complex
points) give rise to operads. In the case of Td,n, as for M0,n+1, this structure
arises via grafting of trees of projective spaces (as in a free operad). The operadic
structure on THd,n may be derived from this via a form of transfer, though this
is not quite the approach we take here. Write H∗(THd) for the operad whose nth

term is ΣH∗(THd,n) (here Σ indicates a shift of degree by 1).

Definition 1.1. Let Gravd be the operad of graded Z-modules generated by k-
ary operations {a1, . . . , ak} ∈ Gravd(k) of dimension 2d − 1, and c ∈ Gravd(1) of
dimension −2, subject to the relations

{{a1, . . . , ak}, b1, . . . , bl} =
∑

1≤i<j≤k

(−1)ϵ(i,j){{ai, aj}, a1, . . . , âi, . . . , âj , . . . , ak,

b1, . . . , bl},

cd = 0, and c · {a1, . . . , ak} = {a1, . . . , c · ai, . . . , ak}, ∀i.

Here, ϵ(i, j) = (|a1| + · · · + |ai−1|)|ai| + (|a1| + · · · + |aj−1|)|aj | + |ai||aj |.

If d = 1, this is precisely the gravity operad introduced by Getzler in [Get94,
Get95], where it was shown to be isomorphic to the operad ΣH∗(M0,n+1). It is the
purpose of this note to extend this result to the higher-dimensional setting:

Received by the editors June 24, 2011 and, in revised form, December 1, 2011.
2010 Mathematics Subject Classification. Primary 14D22, 55N91, 55P48, 55R12, 55R80.
The author was partially supported by NSF grant DMS-0705428 and ARC grant DP1095831.

c⃝2013 American Mathematical Society
Reverts to public domain 28 years from publication

3029

Licensed to Univ of Minnesota-Twin Cities. Prepared on Thu May  7 23:35:29 EDT 2015 for download from IP 134.84.192.103.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



3030 CRAIG WESTERLAND

Theorem 1.2. There is an isomorphism of operads H∗(THd) ∼= Gravd in “arity”
n > 1.

We expect this computation to be useful in determining the structure of the
homology of the operad Td. One concrete application of this result is as follows
(derived from Theorem 1.2 and [Wes08]):

Corollary 1.3. Let X = Ω2dY for an SO(2d)-space Y (more generally, let X be
an algebra over the (2d)-dimensional framed little disks operad). Then the shifted

equivariant homology ΣHS1

∗ (X) is an algebra over the suboperad (Gravd)>1 of arity
> 1.

2. The cohomology of THd,n

Recall that the ordered configuration space of n points in Cd, Confn(Cd), is the
space

Confn(Cd) = {(x1, . . . , xn) | xi ̸= xj if i ̸= j} ⊆ (Cd)×n.

This space is acted upon (component-wise) by the affine group Aff(Cd) ∼= C×!Cd.
If n > 1, the action is free.

Definition 2.1. For n > 1, THd,n := Confn(Cd)/ Aff(Cd).

The affine group is homotopy equivalent to its subgroup S1 = U(1), so there is
a homotopy equivalence THd,n ≃ Confn(Cd)/S1.

Define p = p12 : Confn(Cd) → Conf2(Cd) by p(x1, . . . , xn) = (x1, x2). In general,
write pij(x1, . . . , xn) = (xi, xj). This is a fibration and is equivariant for the S1-
action. Therefore, there is a commutative diagram of fibrations:

Confn−2(Cd \ {a, b})
i !!

=

""

Confn(Cd)
p

!!

q

""

Conf2(Cd)

q

""

Confn−2(Cd \ {a, b})
i

!! Confn(Cd)/S1
p

!! Conf2(Cd)/S1

where a, b are fixed, distinct points in Cd.
Now, Conf2(Cd) is homotopy equivalent to S2d−1, so for degree reasons the Serre

spectral sequence for p collapses at E2. This allowed [CLM76] to prove that there
is a ring isomorphism

H∗(Confn(Cd)) = Λ[xij | 1 ≤ i ̸= j ≤ n]/(xij = xji, xijxjk + xjkxki + xkixij),

where xij is the pullback under p∗ij of the generator of H2d−1(Conf2(Cd)) = Z. (See
also [GJ94].)

Consequently, one can identify H∗(Confn−2(Cd \ {a, b})) as a quotient of
H∗(Confn(Cd)):

H∗(Confn−2(Cd \ {a, b})) ∼= H∗(Confn(Cd))/(x12)

= Λ[xij | 1 ≤ i ̸= j ≤ n]/(xij = xji, xijxjk + xjkxki

+ xkixij , x12).

Now, since Conf2(Cd) is S1-equivariantly homotopy equivalent to S2d−1,

Conf2(Cd)/S1 ≃ CP d−1.
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Therefore the Serre spectral sequence for p is of the form

E∗,∗
2 = H∗(CP d−1) ⊗ H∗(Confn−2(Cd \ {a, b})) =⇒ H∗(THd,n).

Again, the spectral sequence collapses because all differentials are determined on
the fibre, and there are no possible nonzero targets for generators of the cohomology
of the fibre for degree reasons. Furthermore, the relations in the cohomology of the
fibre are generated in degrees 2d − 1 and 4d − 2. Therefore there cannot be any
multiplicative extensions, as there are no classes of these degrees in E2 which vanish
upon restriction to the fibre.

We conclude:

Proposition 2.2. There is a ring isomorphism

H∗(THd,n) = H∗(CP d−1) ⊗ H∗(Confn−2(Cd \ {a, b}))

= Z[c]/(cd) ⊗ Λ[xij | 1 ≤ i ̸= j ≤ n]/(xij = xji, xijxjk + xjkxki

+ xkixij , x12).

It is worth remarking that in dimension d = 1, this is a reflection of the wholly
unsurprising fact that there is a homeomorphism M0,n+1

∼= Confn−2(C \ {0, 1}).

3. The action of U(d)

Notice that there is an action of U(d) on Confn(Cd), of which the S1 = U(1)-
action is but a part. The Pontrjagin ring of U(d) is

H∗(U(d)) = Λ[∆1, . . . ,∆d],

where ∆k is a generator of dimension 2k−1, obtained iteratively from fibrations over
odd-dimensional spheres (see, e.g., [MT91, SW03]). These classes induce natural
maps

∆k : H∗(Confn(Cd)) → H∗+(2k−1)(Confn(Cd))

via the group action.

Proposition 3.1. H∗(Confn(Cd)) is a free Λ[∆d]-module over H∗(Confn−2(Cd \
{a, b})).

Proof. We use the dual action in cohomology. That is, H∗(U(d)) acts on
H∗(Confn(Cd)) via dual maps ∆∗

k which decrease degree by 2k − 1. Because each
∆k is primitive, ∆∗

k is a derivation. It is easy to see for degree reasons that the
action of ∆∗

k on H∗(Confn(Cd)) is null except when k = d, and there,

∆∗
d(xij) = 1, ∀ij.

If we define yij := xij − x12, then H∗(Confn(Cd)) is generated multiplicatively
by yij , ij ̸= 12, along with x12. Write Y for the subalgebra generated by {yij | ij ̸=
12}. By the computations above, i∗ carries Y isomorphically onto H∗(Confn−2(Cd\
{a, b})).

Note that
H∗(Confn(Cd)) = Y ⊕ Y · x12.

That is, H∗(Confn(Cd)) is a free Λ[x12]-module, generated by Y . Clearly ∆∗
d(yij) =

0, and since ∆∗
d is a derivation, this implies that Y ⊆ ker∆∗

d. For a general element
y + y′x12, we see that

∆∗
d(y + y′x12) = 0 + 0 · x12 + y′∆∗

d(x12) = y′,
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so, in fact, Y = ker∆∗
d. We conclude that as a Λ[∆∗

d]-module, H∗(Confn(Cd))
is free over Y · x12. Dually, H∗(Confn(Cd)) is therefore a free Λ[∆d]-module over
Y ∗ = i∗(H∗(Confn−2(Cd \ {a, b}))). !

Remark 3.2. This implies that the subspace ker∆d = im∆d is isomorphic to the
shifted copy

ker∆d
∼= Σ2d−1H∗(Confn−2(Cd \ {a, b})).

4. THd as an operad

Proposition 4.1. For each d > 0, there is an operad T Hd in the category of S-
modules whose nth term T Hd(n) is weakly equivalent to the (shifted) suspension
spectrum ΣΣ∞(THd,n)+ for n > 1.

The category of S-modules, introduced in [EKMM97], is a rigidification of the
stable homotopy category of spectra to admit a symmetric monoidal smash product.
For those with little background or patience for the stable homotopy category, this
proposition has the immediate (and down-to-earth) consequence:

Corollary 4.2. The collection H∗(THd)(n) := ΣH∗(THd,n), n > 1, form a (non-
unital) operad in the category of graded abelian groups.

We note that the shift by 1 is important; it accounts for a degree shifting S1-
transfer map inherent in this construction. On T Hd, this transfer exists as an
actual map between the spectra forming the operad. For H∗(THd), it comes from a
homological transfer map: for an S1-bundle E → B, the transfer sends an element
of Hq(B) to the (q + 1)-dimensional cycle lying over it in Hq+1(E).

Proof. Let D2d denote the operad of 2d-dimensional little disks, following [May72].
In [SW03], this was shown to be an SO(2d)-operad (i.e., an operad in the category
of SO(2d)-spaces). Consider the group homomorphism S1 → SO(2d), where z ∈ S1

acts on Cd = R2d by z · (z1, . . . , zd) = (z · z1, . . . , z · zd). By restriction, this makes
D2d into an S1-operad. Using the machinery of [Wes08], we define T Hd as the

homotopy fixed point operad T Hd := DhS1

2d .
Now D2d(n) is S1-equivariantly homotopy equivalent to Confn(Cd). Moreover,

since the action of S1 on the latter space is free (n > 1) and its quotient THd,n is
equivalent to a finite CW complex, D2d(n) is S1-equivariantly finitely dominated.
Thus by Theorem D of [Kle01], the norm map gives a homotopy equivalence

T Hd(n) = D2d(n)hS1

≃ ΣΣ∞(D2d(n)hS1)+ ≃ ΣΣ∞(THd,n)+.

!

Although this result does not apply to the unary part of the homotopy fixed
point operad (i.e., the Spanier-Whitehead dual DhS1

2d (1) = F (BS1
+, S0)), it will

play a role in the section below in studying the interaction of the Chern class with
the rest of the operad.

A low-technology proof of Corollary 4.2 is given in section 3.2 of [Wes08].
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5. The proof of Theorem 1.2

Since D2d is an SO(2d)-operad (and hence a U(d)-operad), H∗(D2d) is an
H∗(U(d))-operad. Moreover, the primitivity of ∆d implies that it is a derivation
for the operad composition on H∗(D2d(n)) = H∗(Confn(Cd)). That is, the operad
compositions ◦i satisfy

∆d(a ◦i b) = (∆da) ◦i b + (−1)|a|a ◦i (∆db).

See [SW03]. A consequence of this fact is therefore that ker∆d ⊆ H∗(D2d) =
H∗(Conf∗(Cd)) is a suboperad. One can now copy the proof of Theorem 4.5 of
[Get94] to get

Theorem 5.1. The operad ker∆d is generated by operations {a1, . . . , ak} of “arity”
k (the ai are dummy variables) of dimension 2d − 1, subject to relations

{{a1, . . . , ak}.b1, . . . , bl}

=
∑

1≤i<j≤k

(−1)ϵ(i,j){{ai, aj}, a1, . . . , âi, . . . , âj , . . . , ak, b1, . . . , bl},

where ϵ(i, j) = (|a1| + · · · + |ai−1|)|ai| + (|a1| + · · · + |aj−1|)|aj | + |ai||aj |.

This almost proves Theorem 1.2; what remains is to identify

H∗(THd,n) = Z[c]/(cd) ⊗ ker∆d

and to show that the operad structure behaves as indicated.
We note that there is a natural map

φ : THd,n → BS1

that classifies the principal S1-bundle Confn(Cd) → THd,n. This makes H∗(THd,n)
into an H∗(BS1)-module by

α · x := φ∗(α) ∩ x.

In this setting, the first Chern class c ∈ H2(BS1) acts as if it were dimension
−2. By Proposition 2.2, cd acts as 0, making H∗(THd)(n) = ΣH∗(THd,n) a free
Z[c]/cd-module over

Σ2d−1H∗(Confn−2(Cd \ {a, b})) = ker∆d.

Here we have shifted H∗(Confn−2(Cd \{a, b})) up in dimension by 2(d−1) to make
up for the fact that Z[c]/cd acts by decreasing degree.

By Proposition 3.1 and Theorem 5.1, H∗(THd,n) = Gravd(n); all relations are
verified except

c · {a1, . . . , ak} = {a1, . . . , c · ai, . . . , ak}.

This is, however, automatic in the continuous cohomology of the operad DhS1

2d , as
seen in [Wes08]. More concretely, one can proceed as follows. The composition in
D2d is that of an S1-operad: each ◦i map

D2d(k) × D2d(l)
◦i !!D2d(k + l − 1)
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is equivariant (where S1 acts diagonally on the left side). Take l = 1. Then D2d(1)
is contractible, so, oddly, this diagram commutes up to S1-equivariant homotopy:

D2d(k) × D2d(1)

T ≃
""

◦i

≃
!!D2d(k)

D2d(1) × D2d(k)

≃
◦1

##♥♥♥♥♥♥♥♥♥♥♥♥

(T is the map that switches factors). Quotienting by S1, we have a homotopy
commutative diagram

THd,k+1 ×BS1

T ≃
""

D2d(k) ×S1 D2d(1)$$

T ≃
""

◦i

≃
!!D2d(k)/S1

BS1 × THd,k+1 D2d(1) ×S1 D2d(k)$$

≃
◦1

%%❧❧❧❧❧❧❧❧❧❧❧❧❧❧

Apply (co)homology; the relations follow by comparing the passage along the top
and bottom rows.
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