Proofs about Frobenius

Basics

Counting irreducibles

Sizes of finite fields

Theorem: Let k be a finite field. Let t be the smallest positive integer such that

$$\underbrace{1+\ldots+1}_t = 0$$

Then t is a prime number, and the number of elements in k is a power of t.

Proof: Define a map $f : \mathbf{Z} \to k$ by

$$f(\ell) = \underbrace{1 + \ldots + 1}_{\ell} \in k$$

This map respects addition and multiplication, in the sense that $f(\ell + m) = f(\ell) + f(n)$ and $f(\ell \cdot m) = f(\ell) \cdot f(m)$. This can be proven by induction, or heuristically by drawing pictures with braces. Let

$$I = \{\ell \in \mathbf{Z} : f(\ell) = 0\}$$

It is pretty easy to check that I is closed under addition, and under multiplication by integers, and thus must be of the form

$$I = t \cdot \mathbf{Z}$$

for some integer t, the least positive element in I. Therefore, we get a map

$$f: \mathbf{Z}/t \to k$$

that preserves addition and multiplication. If the latter f were not injective, then for some $1 \le i < j \le t$ we'd have f(i) = f(j), but then f(j-i) = 0 and 0 < j - i < t, contradiction. The integer t is prime, since if t = ab with $1 < a \le b < t$, then

$$f(a) \cdot f(b) = 0$$

so since k is a field one or the other of the factors is 0. But this contradicts the minimality of t. So t is prime.

Thus, the copy $f(\mathbf{Z}/t)$ of the field $\mathbf{F}_t = \mathbf{Z}/t$ sits inside k. We choose to view k as a vectorspace with scalars \mathbf{F}_t . It is finite, so must have finite dimension, and a basis e_1, \ldots, e_n over \mathbf{F}_t . The set of linear combinations of these basis elements is exactly the whole (field) vector space k, and there are t^n choices of coefficients, so k has t^n elements. ///

Corollary: There are no finite fields with number of elements other than powers of primes.

Definition: Given a finite field k, the uniquely determined prime integer p such that (a copy of) \mathbf{Z}/p sits insides k, and such that k is a vector space over \mathbf{Z}/p , is the **characteristic** of k.

Field extensions

Let k be a field. A field K containing k is an **extension field** of k, and k is a **subfield** of K.

Theorem: Let k be a field, P(x) an irreducible polynomial of degree d > 0 in k[x]. Then k[x]/P is a *field*. Any element $\beta \in k[x]/P$ can be *uniquely* expressed as

$$\beta = R(\alpha)$$

where R is a polynomial with coefficients in kand of degree strictly less than the degree of P. < d. //

Remark: The **degree** of the extension K of k, written [K : k], is the degree of the polynomial P.

Remark: Thinking of α as 'existing' and being a root of the equation P(x) = 0, we have **adjoined** a root of P(x) = 0 to k. Write

$$k(\alpha) = k[x]/P$$

Corollary: For $k = \mathbf{F}_q$, for irreducible polynomial P of degree n, K = k[x]/P(x) has q^n elements.

Proof: Every element of K has a unique expression as $Q(\alpha)$ for polynomial Q of degree < n. There are q choices for each coefficient, so q^n choices altogether. ///

Frobenius automorphism

Let $k = \mathbf{F}_q = GF(q)$ where $q = p^n$ is a power of a prime p. Fix N > 1 and $K = \mathbf{F}_{q^N} = GF(q^N)$. The **Frobenius automorphism** of K over k is

$$\Phi(\alpha) = \alpha^q$$

Proposition: The Frobenius Φ of $K = \mathbf{F}_{q^N}$ over $k = \mathbf{F}_q$ is a bijection of K to K. In particular,

$$\Phi^N = \underbrace{\Phi \circ \Phi \circ \ldots \circ \Phi}_N$$

is the identity map on K (which maps every element of K to itself).

Proof: Since the Frobenius just takes q^{th} powers and K is closed under multiplication, Φ maps Kto K. A cute way to prove that $\Phi: K \to K$ is a bijection is to prove Φ^N is the identity map on K. Certainly $\Phi(0) = 0$. The set $K^{\times} = K - \{0\}$ has $q^N - 1$ elements, so (Lagrange's theorem, or computation) $\beta^{q^N-1} = 1$ for $\beta \in K^{\times}$. **Proposition:** $\alpha \in K$ is in k if and only if $\Phi(\alpha) = \alpha$.

Proof: The multiplicative group k^{\times} of nonzero elements in k has q - 1 elements, so by Lagrange's theorem the *order* of any element α in k is a divisor d of q - 1, so $\alpha^{q-1} = 1$ and $\alpha^q = \alpha$.

On the other hand, suppose $\alpha \in K$ and $\Phi(\alpha) = \alpha$. Then α is a solution $x^q - x = 0$ lying inside K. By unique factorization, an equation of degree q has at most q roots. We already found q roots of this equation, namely the elements of the smaller field k sitting inside K. So there simply can't be any other roots of that equation other than the elements of k. ///

Proposition: The Frobenius Φ of K over k has the property that, for any α , β in K,

$$\begin{aligned} \Phi(\alpha + \beta) &= \Phi(\alpha) + \Phi(\beta) \\ \Phi(\alpha \cdot \beta) &= \Phi(\alpha) \cdot \Phi(\beta) \end{aligned}$$

Thus, Φ preserves addition and multiplication. Φ is bijective, so is a **field isomorphism**. *Proof:* The assertion about preserving multiplication is simply the assertion that the q^{th} power of a product is the product of the q^{th} powers.

The fact Φ preserves addition uses the fact that the exponent is q, a power of a prime number p. We claim that for α , β in K

$$(\alpha + \beta)^p = \alpha^p + \beta^p$$

Expanding by the binomial theorem, the lefthand side is

$$\alpha^{p} + {\binom{p}{1}} \alpha^{p-1}b + \ldots + {\binom{p}{p-1}} \alpha^{1}b^{p-1} + \beta^{p}$$

All the middle binomial coefficients are integers divisible by p, so are 0 in K. Repeatedly invoking this,

 $(\alpha + \beta)^{p^{2}} = (\alpha^{p} + \beta^{p})^{p} = a^{p^{2}} + b^{p^{2}}$ $(\alpha + \beta)^{p^{3}} = (\alpha^{p} + \beta^{p})^{p^{2}} = (a^{p^{2}} + b^{p^{2}})^{p} = \alpha^{p^{3}} + \beta^{p^{3}}$ That is, by induction,

$$(\alpha + \beta)^{p^{nN}} = \alpha^{p^{nN}} + \beta^{p^{nN}}$$

That is, the Frobenius map preserves addition.

Proposition: Let P(x) be a polynomial with coefficients in $k = \mathbf{F}_q$. Let $\alpha \in K$ be a root of P(x) = 0. Then $\Phi(\alpha) = \alpha^q$, $\Phi^2(\alpha) = \Phi(\Phi(\alpha)) = \alpha^{q^2}$, ... are also roots of the equation.

Proof: Let

 $P(x) = c_n x^n + c_{n-1} x^{n-1} + \ldots + c_2 x^2 + c_1 x + c_0$ with all c_i 's in k. Apply Frobenius to both sides of

 $0 = c_n \alpha^n + c_{n-1} \alpha^{n-1} + \ldots + c_2 \alpha^2 + c_1 \alpha + c_0$ to obtain

 $0 = \Phi(c_n)\Phi(\alpha)^n + \ldots + \Phi(c_1)\Phi(\alpha) + \Phi(c_0)$ since Φ preserves addition and multiplication. The c_i are in k, so Φ doesn't change them. Thus, in fact

$$0 = c_n \Phi(\alpha)^n + \ldots + c_1 \Phi(\alpha) + c_0$$

That is,

$$0 = P(\Phi(\alpha))$$

So $\Phi(\alpha)$ is a root of P(x) = 0. By repeating this, we obtain the assertion of the proposition.

Proposition: Let

$$A = \{\alpha_1, \ldots, \alpha_t\}$$

distinct elements of K, with the **Frobenius**stable property, namely, that for any α in A, $\Phi(\alpha)$ is again in A. Then the polynomial

$$(x-\alpha_1)(x-\alpha_2)\dots(x-\alpha_t)$$

(when multiplied out) has coefficients in k. *Proof:* For a polynomial

$$P(x) = c_n x^n + c_{n-1} x^{n-1} + \ldots + c_2 x^2 + c_1 x + c_0$$

with coefficients in K, define $\Phi(P)$ by letting Φ act on the coefficients

$$\Phi(P)(x) = \Phi(c_n)x^n + \ldots + \Phi(c_1)x + \Phi(c_0)$$

Since Φ preserves addition and multiplication in K, it preserves addition and multiplication of polynomials

$$\Phi(P+Q) = \Phi(P) + \Phi(Q) \Phi(P \cdot Q) = \Phi(P) \cdot \Phi(Q)$$

Applying Φ to the product

$$(x-\alpha_1)(x-\alpha_2)\dots(x-\alpha_t)$$

mixes around the factors, since Φ just permutes A. The order in which the factors are multiplied doesn't matter, so

$$\Phi((x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_t))$$
$$= (x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_t)$$

Thus, the multiplied-out version

$$(x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_t)$$
$$= c_n x^n + c_{n-1} x^{n-1} + \dots + c_2 x^2 + c_1 x + c_0$$
has the property that

$$c_n x^n + c_{n-1} x^{n-1} + \ldots + c_2 x^2 + c_1 x + c_0$$

= $\Phi(c_n) x^n + \ldots + \Phi(c_1) x + \Phi(c_0)$

Equality for polynomials means that corresponding coefficients are equal, so $\Phi(c_i) = c_i$, hence $c_i \in k$, for all indices i. /// **Proposition:** Let α be an element of K = k[x]/Q. There is exactly one monic irreducible polynomial P in k[x] such that α is a root of P(x) = 0, namely

$$P(x) =$$

$$(x-\alpha)(x-\Phi(\alpha))(x-\Phi^2(\alpha))\dots(x-\Phi^{d-1}(\alpha))$$

where d is the smallest positive integer so that $\Phi^d(\alpha) = \alpha$.

Proof: Consider successive images $\Phi^i(\alpha)$ of α under Frobenius. Since the field is finite, at some point $\Phi^i(\alpha) = \Phi^j(\alpha)$ for some $0 \le i < j$. Since Φ is a bijection of K to K, it has an inverse map Φ^{-1} . Applying the inverse i times to $\Phi^i(\alpha) = \Phi^j(\alpha)$,

$$\alpha = \Phi^0(\alpha) = \Phi^{j-i}(\alpha)$$

So i = 0. Thus, for the smallest j so that $\Phi^{j}(\alpha)$ is already $\Phi^{j}(\alpha) = \Phi^{i}(\alpha)$ for $1 \leq i < j$, in fact

$$\Phi^j(\alpha) = \alpha$$

Let

$$\alpha, \Phi(\alpha), \ldots, \Phi^{d-1}(\alpha)$$

be the distinct images of α under Frobenius. Let

P(x) =

$$(x-\alpha)(x-\Phi(\alpha))(x-\Phi^2(\alpha))\dots(x-\Phi^{d-1}(\alpha))$$

Application of Φ permutes the factors on the right. When multiplied out, P is unchanged by application of Φ , so has coefficients in k.

If β is a root in K of a polynomial with coefficients in k, then $\Phi(\beta)$ is also a root. So any polynomial with coefficients in k of which α is a zero must have factors $x - \Phi^i(\alpha)$ as well, for $1 \leq i < d$. By unique factorization, this is the unique such polynomial.

P must be irreducible in k[x], because if it factored in k[x] as $P = P_1P_2$ then (by unique factorization) α would be a root of either $P_1(x) = 0$ or $P_2(x) = 0$, and all the ddistinct elements $\Phi^i(\alpha)$ would be roots of the same equation. Since the number of roots is at most the degree, there cannot be any proper factorization, so P is irreducible. ///

Corollary: Let β be the image of x in $K = \mathbf{F}_q[x]/Q$, and let n be the degree of Q. Then

$$Q(x) =$$

$$(x-\beta)(x-\Phi(\beta))(x-\Phi^2(\beta))\dots(x-\Phi^{n-1}(\beta))$$

Also $\Phi^n(\beta) = \beta$, and *n* is the smallest positive integer such that this is so. ///

Let e denote the identity map of $K=\mathbf{F}_q[x]/Q$ to itself, and

$$G = \{e, \Phi, \Phi^2, \dots, \Phi^{n-1}\}$$

where Q is of degree n. This is a set of maps of K to itself, and these maps when restricted to \mathbf{F}_q are the identity map on \mathbf{F}_q . Since each Φ^i is the identity on \mathbf{F}_q and maps Kbijectively to itself, we say that G is a set of **automorphisms** of K over \mathbf{F}_q .

Proposition: This set G of automorphisms of K over \mathbf{F}_q is a group, with identity e. (The **Galois group** of K over \mathbf{F}_q .)

Proof: (Exercise using the definition of group.

Definition: The stabilizer subgroup G_{α} of α in G is

$$G_{\alpha} = \{g \in G : g(\alpha) = \alpha\}$$

Proposition: For α in K the stabilizer subgroup G_{α} of α is a subgroup of G.

///

Proposition: Given α in $K = \mathbf{F}_q[x]/Q$, the number of distinct images $\Phi^i(\alpha)$ of α under repeated applications of the Frobenius map is a divisor of the degree n of Q.

Proof: Actually, the collection of images $\Phi^i(\alpha)$ is in bijection with the cosets G/G_{α} where G_{α} is the stabilizer subgroup of α in the automorphism G. Indeed, if $g \in G$ and $h \in G_{\alpha}$, then

$$(gh)(\alpha) = g(h(\alpha)) = g(\alpha)$$

This proves that $gG_{\alpha} \to g(\alpha)$ is well-defined. And if $g(\alpha) = g'(\alpha)$, then $\alpha = g^{-1}g'(\alpha)$, so $g^{-1}g'$ is in the stabilizer subgroup G_{α} . So no two distinct cosets gG_{α} and $g'G_{\alpha}$ of G_{α} send α to the same thing. /// **Corollary:** For α in the field K = k[x]/Q, the degree of the unique monic irreducible polynomial P with coefficients in k so that $P(\alpha) = 0$ is a divisor of the degree n of Q. *Proof:* From above,

P(x)

 $= (x - \alpha)(x - \Phi(\alpha))(x - \Phi^2(\alpha))\dots(x - \Phi^{d-1}(\alpha))$

where α , $\Phi(\alpha)$, $\Phi^2(\alpha)$, ..., $\Phi^{d-1}(\alpha)$ are the distinct images of α and d is the degree of P. From Lagrange's theorem, all cosets of G_{α} have the same cardinality.

$$\operatorname{card}(G) = d \cdot \operatorname{card}(G_{\alpha})$$

In the special case of the image β of x in K, the stabilizer subgroup is just $\{e\}$, so

$$\operatorname{card}(G) = n \cdot 1$$

///

so $\operatorname{card}(G) = n$, and d|n.

Counting irreducibles

Proposition: Let P be an irreducible monic polynomial of degree d with d dividing the degree n of an irreducible Q. Then P(x) = 0has d distinct roots in K = k[x]/Q, and P(x)factors into distinct linear factors in K.

Proof: The quotient ring L = k[x]/P is a field. Let α be the image of x. We know $P(\alpha) = 0$, and

$$P(x) =$$

 $(x-\alpha)(x-\Phi(\alpha))(x-\Phi^2(\alpha))\dots(x-\Phi^{d-1}(\alpha))$

By Lagrange, $\alpha^{q^d-1} = 1$. By unique factorization, P(x) divides $x^{q^d-1} - 1$.

On the other hand, the existence of a primitive root g in K means that $g^{q^n-1} = 1$ but no smaller positive exponent works. Thus, g^1 , g^2 , g^3 , ..., g^{q^n-1} are distinct. For any t

$$(g^t)^{q^n-1} = (g^{q^n-1})^t = 1^t = 1$$

so these $q^n - 1$ elements are roots of $x^{q^n - 1} - 1 = 0$. On the other hand, this equation is of degree $q^n - 1$, so has at most $q^n - 1$ roots. We conclude that

$$x^{q^{n}-1}-1 = (x-g^{1})(x-g^{2})(x-g^{3})\dots(x-g^{q^{n}-1})$$

For d dividing n,

$$q^{n} - 1 = (q^{d} - 1)(q^{(n-d)} + q^{(n-2d)} + \ldots + q^{d} + 1)$$

Thus, $q^d - 1$ divides $q^n - 1$, and $x^{q^d - 1} - 1$ divides $x^{q^n - 1} - 1$. As P(x) divides $x^{q^d - 1} - 1$, P(x) divides $x^{q^n - 1} - 1$. Thus, P(x) = 0 has d roots in K, since $x^{q^n - 1} - 1$ factors into *linear* factors in K[x].

Proof: (of theorem) We count elements of K by grouping them in d-tuples of roots of elements of irreducible monic polynomials with coefficients in $k = \mathbf{F}_q$, where d runs over positive divisors of n including 1 and n. Let N_d be the number of irreducible monic polynomials of degree d with coefficients in $k = \mathbf{F}_q$. Then this grouping and counting argument gives

$$q^n = \sum_{d|n} d \cdot N_d$$

Let μ be the Möbius function

$$\mu(n) = \begin{cases} (-1)^t & (t \text{ primes divide } n) \\ & (\text{and } n \text{ square-free}) \\ 0 & (n \text{ not squarefree}) \end{cases}$$

By **Möbius inversion** (*inclusion-exclusion!*) we obtain the formula

$$n \cdot N_n = \sum_{d|n} \mu(d) \, q^{n/d}$$

which gives the assertion of the theorem.