Proofs about Frobenius

Basics
Counting irreducibles

Sizes of finite fields

Theorem: Let k be a finite field. Let t be the smallest positive integer such that

$$
\underbrace{1+\ldots+1}_{t}=0
$$

Then t is a prime number, and the number of elements in k is a power of t.

Proof: Define a map $f: \mathbf{Z} \rightarrow k$ by

$$
f(\ell)=\underbrace{1+\ldots+1}_{\ell} \in k
$$

This map respects addition and multiplication, in the sense that $f(\ell+m)=f(\ell)+f(n)$ and $f(\ell \cdot m)=f(\ell) \cdot f(m)$. This can be proven by induction, or heuristically by drawing pictures with braces. Let

$$
I=\{\ell \in \mathbf{Z}: f(\ell)=0\}
$$

It is pretty easy to check that I is closed under addition, and under multiplication by integers,
and thus must be of the form

$$
I=t \cdot \mathbf{Z}
$$

for some integer t, the least positive element in I. Therefore, we get a map

$$
f: \mathbf{Z} / t \rightarrow k
$$

that preserves addition and multiplication. If the latter f were not injective, then for some $1 \leq i<j \leq t$ we'd have $f(i)=f(j)$, but then $f(j-i)=0$ and $0<j-i<t$, contradiction.

The integer t is prime, since if $t=a b$ with $1<a \leq b<t$, then

$$
f(a) \cdot f(b)=0
$$

so since k is a field one or the other of the factors is 0 . But this contradicts the minimality of t. So t is prime.
Thus, the copy $f(\mathbf{Z} / t)$ of the field $\mathbf{F}_{t}=\mathbf{Z} / t$ sits inside k. We choose to view k as a vectorspace with scalars \mathbf{F}_{t}. It is finite, so must have finite dimension, and a basis e_{1}, \ldots, e_{n} over \mathbf{F}_{t}. The set of linear combinations of these basis elements is exactly the whole (field) vector space k, and there are t^{n} choices of coefficients, so k has t^{n} elements.

Corollary: There are no finite fields with number of elements other than powers of primes.

Definition: Given a finite field k, the uniquely determined prime integer p such that (a copy of) \mathbf{Z} / p sits insides k, and such that k is a vector space over \mathbf{Z} / p, is the characteristic of k.

Field extensions

Let k be a field. A field K containing k is an extension field of k, and k is a subfield of K.

Theorem: Let k be a field, $P(x)$ an irreducible polynomial of degree $d>0$ in $k[x]$. Then $k[x] / P$ is a field. Any element $\beta \in k[x] / P$ can be uniquely expressed as

$$
\beta=R(\alpha)
$$

where R is a polynomial with coefficients in k and of degree strictly less than the degree of P. $<d$. //

Remark: The degree of the extension K of k, written $[K: k$], is the degree of the polynomial P.

Remark: Thinking of α as 'existing' and being a root of the equation $P(x)=0$, we have adjoined a root of $P(x)=0$ to k. Write

$$
k(\alpha)=k[x] / P
$$

Corollary: For $k=\mathbf{F}_{q}$, for irreducible polynomial P of degree $n, K=k[x] / P(x)$ has q^{n} elements.

Proof: Every element of K has a unique expression as $Q(\alpha)$ for polynomial Q of degree $<n$. There are q choices for each coefficient, so q^{n} choices altogether.

Frobenius automorphism

Let $k=\mathbf{F}_{q}=G F(q)$ where $q=p^{n}$ is a power of a prime p. Fix $N>1$ and $K=\mathbf{F}_{q^{N}}=G F\left(q^{N}\right)$. The Frobenius automorphism of K over k is

$$
\Phi(\alpha)=\alpha^{q}
$$

Proposition: The Frobenius Φ of $K=\mathbf{F}_{q^{N}}$ over $k=\mathbf{F}_{q}$ is a bijection of K to K. In particular,

$$
\Phi^{N}=\underbrace{\Phi \circ \Phi \circ \ldots \circ \Phi}_{N}
$$

is the identity map on K (which maps every element of K to itself).

Proof: Since the Frobenius just takes $q^{\text {th }}$ powers and K is closed under multiplication, Φ maps K to K. A cute way to prove that $\Phi: K \rightarrow K$ is a bijection is to prove Φ^{N} is the identity map on K. Certainly $\Phi(0)=0$. The set $K^{\times}=K-\{0\}$ has $q^{N}-1$ elements, so (Lagrange's theorem, or computation) $\beta^{q^{N}-1}=1$ for $\beta \in K^{\times}$.

Proposition: $\alpha \in K$ is in k if and only if $\Phi(\alpha)=\alpha$.
Proof: The multiplicative group k^{\times}of nonzero elements in k has $q-1$ elements, so by Lagrange's theorem the order of any element α in k is a divisor d of $q-1$, so $\alpha^{q-1}=1$ and $\alpha^{q}=\alpha$.
On the other hand, suppose $\alpha \in K$ and $\Phi(\alpha)=\alpha$. Then α is a solution $x^{q}-x=0$ lying inside K. By unique factorization, an equation of degree q has at most q roots. We already found q roots of this equation, namely the elements of the smaller field k sitting inside K. So there simply can't be any other roots of that equation other than the elements of k.

Proposition: The Frobenius Φ of K over k has the property that, for any α, β in K,

$$
\begin{aligned}
\Phi(\alpha+\beta) & =\Phi(\alpha)+\Phi(\beta) \\
\Phi(\alpha \cdot \beta) & =\Phi(\alpha) \cdot \Phi(\beta)
\end{aligned}
$$

Thus, Φ preserves addition and multiplication. Φ is bijective, so is a field isomorphism.

Proof: The assertion about preserving multiplication is simply the assertion that the $q^{\text {th }}$ power of a product is the product of the $q^{\text {th }}$ powers.
The fact Φ preserves addition uses the fact that the exponent is q, a power of a prime number p. We claim that for α, β in K

$$
(\alpha+\beta)^{p}=\alpha^{p}+\beta^{p}
$$

Expanding by the binomial theorem, the lefthand side is

$$
\alpha^{p}+\binom{p}{1} \alpha^{p-1} b+\ldots+\binom{p}{p-1} \alpha^{1} b^{p-1}+\beta^{p}
$$

All the middle binomial coefficients are integers divisible by p, so are 0 in K. Repeatedly invoking this,

$$
\begin{gathered}
(\alpha+\beta)^{p^{2}}=\left(\alpha^{p}+\beta^{p}\right)^{p}=a^{p^{2}}+b^{p^{2}} \\
(\alpha+\beta)^{p^{3}}=\left(\alpha^{p}+\beta^{p}\right)^{p^{2}}=\left(a^{p^{2}}+b^{p^{2}}\right)^{p}=\alpha^{p^{3}}+\beta^{p^{3}}
\end{gathered}
$$

That is, by induction,

$$
(\alpha+\beta)^{p^{n N}}=\alpha^{p^{p^{N N}}}+\beta^{p^{n N}}
$$

That is, the Frobenius map preserves addition.

Proposition: Let $P(x)$ be a polynomial with coefficients in $k=\mathbf{F}_{q}$. Let $\alpha \in K$ be a root of $P(x)=0$. Then $\Phi(\alpha)=\alpha^{q}$, $\Phi^{2}(\alpha)=\Phi(\Phi(\alpha))=\alpha^{q^{2}}, \ldots$ are also roots of the equation.
Proof: Let
$P(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\ldots+c_{2} x^{2}+c_{1} x+c_{0}$ with all c_{i} 's in k. Apply Frobenius to both sides of

$$
0=c_{n} \alpha^{n}+c_{n-1} \alpha^{n-1}+\ldots+c_{2} \alpha^{2}+c_{1} \alpha+c_{0}
$$

to obtain

$$
0=\Phi\left(c_{n}\right) \Phi(\alpha)^{n}+\ldots+\Phi\left(c_{1}\right) \Phi(\alpha)+\Phi\left(c_{0}\right)
$$

since Φ preserves addition and multiplication. The c_{i} are in k, so Φ doesn't change them. Thus, in fact

$$
0=c_{n} \Phi(\alpha)^{n}+\ldots+c_{1} \Phi(\alpha)+c_{0}
$$

That is,

$$
0=P(\Phi(\alpha))
$$

So $\Phi(\alpha)$ is a root of $P(x)=0$. By repeating this, we obtain the assertion of the proposition.

Proposition: Let

$$
A=\left\{\alpha_{1}, \ldots, \alpha_{t}\right\}
$$

distinct elements of K, with the Frobeniusstable property, namely, that for any α in A, $\Phi(\alpha)$ is again in A. Then the polynomial

$$
\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{t}\right)
$$

(when multiplied out) has coefficients in k.
Proof: For a polynomial
$P(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\ldots+c_{2} x^{2}+c_{1} x+c_{0}$ with coefficients in K, define $\Phi(P)$ by letting Φ act on the coefficients

$$
\Phi(P)(x)=\Phi\left(c_{n}\right) x^{n}+\ldots+\Phi\left(c_{1}\right) x+\Phi\left(c_{0}\right)
$$

Since Φ preserves addition and multiplication in K, it preserves addition and multiplication of polynomials

$$
\begin{aligned}
\Phi(P+Q) & =\Phi(P)+\Phi(Q) \\
\Phi(P \cdot Q) & =\Phi(P) \cdot \Phi(Q)
\end{aligned}
$$

Applying Φ to the product

$$
\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{t}\right)
$$

mixes around the factors, since Φ just permutes A. The order in which the factors are multiplied doesn't matter, so

$$
\begin{aligned}
& \Phi\left(\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{t}\right)\right) \\
& =\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{t}\right)
\end{aligned}
$$

Thus, the multiplied-out version

$$
\begin{gathered}
\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{t}\right) \\
=c_{n} x^{n}+c_{n-1} x^{n-1}+\ldots+c_{2} x^{2}+c_{1} x+c_{0}
\end{gathered}
$$

has the property that

$$
\begin{gathered}
c_{n} x^{n}+c_{n-1} x^{n-1}+\ldots+c_{2} x^{2}+c_{1} x+c_{0} \\
\quad=\Phi\left(c_{n}\right) x^{n}+\ldots+\Phi\left(c_{1}\right) x+\Phi\left(c_{0}\right)
\end{gathered}
$$

Equality for polynomials means that corresponding coefficients are equal, so $\Phi\left(c_{i}\right)=$ c_{i}, hence $c_{i} \in k$, for all indices i.

Proposition: Let α be an element of $K=$ $k[x] / Q$. There is exactly one monic irreducible polynomial P in $k[x]$ such that α is a root of $P(x)=0$, namely

$$
\begin{gathered}
P(x)= \\
(x-\alpha)(x-\Phi(\alpha))\left(x-\Phi^{2}(\alpha)\right) \ldots\left(x-\Phi^{d-1}(\alpha)\right)
\end{gathered}
$$

where d is the smallest positive integer so that $\Phi^{d}(\alpha)=\alpha$.

Proof: Consider successive images $\Phi^{i}(\alpha)$ of α under Frobenius. Since the field is finite, at some point $\Phi^{i}(\alpha)=\Phi^{j}(\alpha)$ for some $0 \leq i<j$. Since Φ is a bijection of K to K, it has an inverse map Φ^{-1}. Applying the inverse i times to $\Phi^{i}(\alpha)=\Phi^{j}(\alpha)$,

$$
\alpha=\Phi^{0}(\alpha)=\Phi^{j-i}(\alpha)
$$

So $i=0$. Thus, for the smallest j so that $\Phi^{j}(\alpha)$ is already $\Phi^{j}(\alpha)=\Phi^{i}(\alpha)$ for $1 \leq i<j$, in fact

$$
\Phi^{j}(\alpha)=\alpha
$$

Let

$$
\alpha, \Phi(\alpha), \ldots, \Phi^{d-1}(\alpha)
$$

be the distinct images of α under Frobenius. Let

$$
\begin{gathered}
P(x)= \\
(x-\alpha)(x-\Phi(\alpha))\left(x-\Phi^{2}(\alpha)\right) \ldots\left(x-\Phi^{d-1}(\alpha)\right)
\end{gathered}
$$

Application of Φ permutes the factors on the right. When multiplied out, P is unchanged by application of Φ, so has coefficients in k.

If β is a root in K of a polynomial with coefficients in k, then $\Phi(\beta)$ is also a root. So any polynomial with coefficients in k of which α is a zero must have factors $x-\Phi^{i}(\alpha)$ as well, for $1 \leq i<d$. By unique factorization, this is the unique such polynomial.
P must be irreducible in $k[x]$, because if it factored in $k[x]$ as $P=P_{1} P_{2}$ then (by unique factorization) α would be a root of either $P_{1}(x)=0$ or $P_{2}(x)=0$, and all the d distinct elements $\Phi^{i}(\alpha)$ would be roots of the same equation. Since the number of roots is at most the degree, there cannot be any proper factorization, so P is irreducible.

Corollary: Let β be the image of x in $K=$ $\mathbf{F}_{q}[x] / Q$, and let n be the degree of Q. Then

$$
\begin{gathered}
Q(x)= \\
(x-\beta)(x-\Phi(\beta))\left(x-\Phi^{2}(\beta)\right) \ldots\left(x-\Phi^{n-1}(\beta)\right)
\end{gathered}
$$

Also $\Phi^{n}(\beta)=\beta$, and n is the smallest positive integer such that this is so.

Let e denote the identity map of $K=\mathbf{F}_{q}[x] / Q$ to itself, and

$$
G=\left\{e, \Phi, \Phi^{2}, \ldots, \Phi^{n-1}\right\}
$$

where Q is of degree n. This is a set of maps of K to itself, and these maps when restricted to \mathbf{F}_{q} are the identity map on \mathbf{F}_{q}. Since each Φ^{i} is the identity on \mathbf{F}_{q} and maps K bijectively to itself, we say that G is a set of automorphisms of K over \mathbf{F}_{q}.

Proposition: This set G of automorphisms of K over \mathbf{F}_{q} is a group, with identity e. (The Galois group of K over \mathbf{F}_{q}.) Proof: (Exercise using the definition of group.
Definition: The stabilizer subgroup G_{α} of α in G is

$$
G_{\alpha}=\{g \in G: g(\alpha)=\alpha\}
$$

Proposition: For α in K the stabilizer subgroup G_{α} of α is a subgroup of G.

Proposition: Given α in $K=\mathbf{F}_{q}[x] / Q$, the number of distinct images $\Phi^{i}(\alpha)$ of α under repeated applications of the Frobenius map is a divisor of the degree n of Q.

Proof: Actually, the collection of images $\Phi^{i}(\alpha)$ is in bijection with the cosets G / G_{α} where G_{α} is the stabilizer subgroup of α in the automorphism G. Indeed, if $g \in G$ and $h \in G_{\alpha}$, then

$$
(g h)(\alpha)=g(h(\alpha))=g(\alpha)
$$

This proves that $g G_{\alpha} \rightarrow g(\alpha)$ is well-defined. And if $g(\alpha)=g^{\prime}(\alpha)$, then $\alpha=g^{-1} g^{\prime}(\alpha)$, so $g^{-1} g^{\prime}$ is in the stabilizer subgroup G_{α}. So no two distinct cosets $g G_{\alpha}$ and $g^{\prime} G_{\alpha}$ of G_{α} send α to the same thing.

Corollary: For α in the field $K=k[x] / Q$, the degree of the unique monic irreducible polynomial P with coefficients in k so that $P(\alpha)=0$ is a divisor of the degree n of Q. Proof: From above,

$$
\begin{gathered}
P(x) \\
=(x-\alpha)(x-\Phi(\alpha))\left(x-\Phi^{2}(\alpha)\right) \ldots\left(x-\Phi^{d-1}(\alpha)\right)
\end{gathered}
$$

where $\alpha, \Phi(\alpha), \Phi^{2}(\alpha), \ldots, \Phi^{d-1}(\alpha)$ are the distinct images of α and d is the degree of P. From Lagrange's theorem, all cosets of G_{α} have the same cardinality.

$$
\operatorname{card}(G)=d \cdot \operatorname{card}\left(G_{\alpha}\right)
$$

In the special case of the image β of x in K, the stabilizer subgroup is just $\{e\}$, so

$$
\operatorname{card}(G)=n \cdot 1
$$

so $\operatorname{card}(G)=n$, and $d \mid n$.

Counting irreducibles

Proposition: Let P be an irreducible monic polynomial of degree d with d dividing the degree n of an irreducible Q. Then $P(x)=0$ has d distinct roots in $K=k[x] / Q$, and $P(x)$ factors into distinct linear factors in K.

Proof: The quotient ring $L=k[x] / P$ is a field. Let α be the image of x. We know $P(\alpha)=0$, and

$$
\begin{gathered}
P(x)= \\
(x-\alpha)(x-\Phi(\alpha))\left(x-\Phi^{2}(\alpha)\right) \ldots\left(x-\Phi^{d-1}(\alpha)\right)
\end{gathered}
$$

By Lagrange, $\alpha^{q^{d}-1}=1$. By unique factorization, $P(x)$ divides $x^{q^{d}-1}-1$.

On the other hand, the existence of a primitive root g in K means that $g^{q^{n}-1}=1$ but no smaller positive exponent works. Thus, g^{1}, g^{2}, $g^{3}, \ldots, g^{q^{n}-1}$ are distinct. For any t

$$
\left(g^{t}\right)^{q^{n}-1}=\left(g^{q^{n}-1}\right)^{t}=1^{t}=1
$$

so these $q^{n}-1$ elements are roots of $x^{q^{n}-1}-1=$ 0 . On the other hand, this equation is of degree $q^{n}-1$, so has at most $q^{n}-1$ roots. We conclude that
$x^{q^{n}-1}-1=\left(x-g^{1}\right)\left(x-g^{2}\right)\left(x-g^{3}\right) \ldots\left(x-g^{q^{n}-1}\right)$
For d dividing n,
$q^{n}-1=\left(q^{d}-1\right)\left(q^{(n-d)}+q^{(n-2 d)}+\ldots+q^{d}+1\right)$
Thus, $q^{d}-1$ divides $q^{n}-1$, and $x^{q^{d}-1}-1$ divides $x^{q^{n}-1}-1$. As $P(x)$ divides $x^{q^{d}-1}-1, P(x)$ divides $x^{q^{n}-1}-1$. Thus, $P(x)=0$ has d roots in K, since $x^{q^{n}-1}-1$ factors into linear factors in $K[x]$.

Proof: (of theorem) We count elements of K by grouping them in d-tuples of roots of elements of irreducible monic polynomials with coefficients in $k=\mathbf{F}_{q}$, where d runs over positive divisors of n including 1 and n. Let N_{d} be the number of irreducible monic polynomials of degree d with coefficients in $k=\mathbf{F}_{q}$. Then this grouping and counting argument gives

$$
q^{n}=\sum_{d \mid n} d \cdot N_{d}
$$

Let μ be the Möbius function

$$
\mu(n)=\left\{\begin{array}{cc}
(-1)^{t} & (t \text { primes divide } n) \\
& (\text { and } n \text { square-free }) \\
0 & (n \text { not squarefree })
\end{array}\right.
$$

By Möbius inversion (inclusion-exclusion!) we obtain the formula

$$
n \cdot N_{n}=\sum_{d \mid n} \mu(d) q^{n / d}
$$

which gives the assertion of the theorem.

