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Abstract. We show that the asymptotics of solutions to stationary Navier

Stokes equations in 4, 5 or 6 dimensions in the whole space with a smooth

compactly supported forcing are given by the linear Stokes equation. We do
not need to assume any smallness condition. The result is in contrast to three

dimensions, where the asymptotics for steady states are different from the

linear Stokes equation, even for small data, while the large data case presents
an open problem. The case of dimension n = 2 is still harder.
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1. Introdution

An important problem in the theory of steady Navier Stokes equations is to
understand the asymptotic behavior of solutions at large distances. Consider

−∆u+ u · ∇u+∇p = f
div u = 0

}
in Rn (1.1)

with an external force f . To simplify the technical details, we shall restrict ourselves
to a local, regular force in our presentation, i.e., we assume that f is smooth and
compactly supported. We consider the case u(x) → 0 as x → ∞. The case when
one assumes u(x) → u∞ 6= 0 as x → ∞ turns out to be easier, see [1] and Section
X.8 in [5]. While from the physical point of view the most interesting dimensions
are, of course, n = 3 and n = 2, the higher-dimensional stationary Navier Stokes
equation is interesting mathematically. The regularity of steady solutions in higher
dimensions have received a lot of attention, as a simpler model for the regularity
problem for the time dependent problem. See e.g. [12–14, 16–19, 21]. Here we
focus on a different aspect of the high dimensional steady Navier Stokes equations,
and study the large distance asymptotics. These problems can be viewed as an
analogue of the scattering theory questions in the elliptic setting, and – as we
shall see below – have connections with regularity theory. In scattering theory for
dispersive equations it can also be the case that some statements are harder to
prove in low dimensions, at least if local regularity issues are settled. The reason
is similar as in our case: slower decay of the solutions of the linear part of the
equations.

The dimension n plays a crucial role in determining the asymptotics, which can
already be seen at the linearized level. In the dimension n = 3, the fundamental

1 jia@math.umn.edu.
2 sverak@math.umn.edu.
Department of Mathematics, University of Minnesota, 206 Church St S.E., Minneapolis MN

55455, USA.

1



2

solution to the Stokes system decays with a rate O
(

1
|x|

)
. Consequently, we can

expect that the nonlinearity u · ∇u to decay with a rate O
(

1
|x|3

)
. Treating u · ∇u

as perturbation and inverting the linear Stokes operator, we can then expect that

the contribution of u · ∇u to the solution u to be of the order O
(

1
|x|

)
, which is

consistent with the decay of the linear solution. Hence, dimension n = 3 appears to
be a critical dimension from this point of view. The result in Korolev and Sverak [7]

shows that for small f , the solution to (1.1) indeed decays with the rate O
(

1
|x|

)
.

However, the precise asymptotics is different from the one given by the linear Stokes
system and is given by an explicit solution found by Landau. More precisely, there
exists ε∗ > 0 such that for a steady state u in R3 satisfying∣∣u(x)

∣∣ ≤ ε∗
1 + |x|

,

one has the following. Denote

Tij = pδij + uiuj +

[
∂ui
∂xj

+
∂uj
∂xi

]
(the energy momentum tensor), and let

b =

ˆ
|x|=R

Tij nj dσ,

which is independent of R for sufficiently large R as a consequence of

div T = 0

outside the support of f . The steady state has the asymptotic

u = U b +O

(
1

|x|1+β

)
(1.2)

for β ∈ (0, 1). In the above formula, U b is the Landau solution, which can be
thought of an axi-symmetric solutions of

−∆U b + U b · ∇U b +∇P b = b δ(x),

with the symmetry axis given by b. We refer to [7] for the explicit expression for
U b, and more discussion. It appears to be an interesting open problem to determine
the precise decay rate of the difference u − U b, and, in particular, whether β can
be taken as β = 1 in (1.2).

The result in [7] can be explained at a heuristic level by the fact that the contri-
bution from the nonlinear term u·∇u has the same order of magnitude as the typical
solution of the linear Stokes system and thus affects the leading term asymptotics.
The two dimensional situation is much more complicated still, as the fundamental
solution to the linear Stokes system does not even decay, and the above heuristics
no longer works. Recently, Guillod [6] put forward some interesting conjectures (in
dimension n = 2) on the possible asymptotics. We refer the reader to [6] for details.

Although the above analysis, based on linearization, suggests that the steady

states in dimension three decays with a rate O
(

1
|x|

)
, it remains a major problem
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to prove this claim once no smallness condition is assumed on f . In large data case,
the main a priori estimate for a steady solution is the finite Dirichlet energyˆ

R3

|∇u|2 dx ≤ C(f).

The finite Dirichlet energy only gives a decay of the order o

(
1√
|x|

)
on average,

which is much slower than the expected rate of decay O
(

1
|x|

)
. It appears to be an

outstanding open problem to prove O
(

1
|x|

)
decay for steady states in dimension 3.

In higher dimensions n ≥ 4, the problem on the decay of steady states becomes
more tractable on a heuristic level, at least. For instance in dimension 4, the a
priori estimate ˆ

R4

|∇u|2(x) dx ≤ C(f)

already suggests decay of u with the rate o
(

1
|x|

)
. This decay rate is already con-

sistent with scale invariance

u(x)→ uλ(x) = λu(λx), p(x)→ pλ(x) = λ2p(λx),

for λ > 0, in the sense that uλ enjoys uniform bound exterior to B1(0) for all λ > 1

assuming that u has the decay O
(

1
|x|

)
.

In this short note, we show that the problem is indeed easier in higher dimensions.
More precisely, we show that the leading term of the steady state is given by the
linear Stokes system:

u(x) = G ∗ f(x) +


O( log |x|

|x|3 ) n = 4

O( 1
|x|4 ) n = 5

O( 1
|x|5 ) n = 6

as |x| → ∞, (1.3)

where G is the fundamental solution to the steady Stokes system. Unlike for results
in dimension 3, we do not have to assume any smallness condition on f .

In principle, the decay problem in higher dimensions n ≥ 7 is easier (as we shall
see below in the proof). However, local regularity could become a problem for large
dimensions. Since our method uses a version of ε-regularity criteria in the spirit of
Scheffer [20] and Caffarelli-Kohn-Nirenberg [3], which is not known for n ≥ 7, we
will only work with dimensions up to 6.

In this paper, we consider general suitable weak solutions to (1.1). There is an
important scalar quantity

H = |u|2 +
p

2
,

called the “head pressure”, which satisfies the scalar equation

−∆H + u · ∇H = −|∇ × u|2 − div f + f · u.

Frehse and Růžička proved regularity for weak solutions to (1.1) for which the head
pressure H satisfies a suitable maximal principle and established the existence of
such solutions for higher dimensions (up to dimension 15 in periodic domains). We
refer the reader to the series of works [12–14,16–19] for details. It is an interesting
question if similar asymptotic expansion as in (1.3) for dimensions n > 6 can be
obtained if we also exploit the special scalar quantity H.
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2. ε−regularity criteria

We always assume n = 4, 5 or 6. We consider u ∈ Ḣ1(Rn) ⊆ L
2n
n−2 (Rn), which

solves
−∆u+ u · ∇u+∇p = f

div u = 0

}
in Rn (2.1)

with f ∈ C∞c (Rn).
We say u is suitable if u satisfies the following version of energy inequality:ˆ

Rn
|∇u|2(x)φ(x) dx ≤

ˆ
Rn

|u|2

2
∆φ+

|u|2

2
u · ∇φ+ pu · ∇φ+ fuφ dx (2.2)

for all smooth compactly supported φ ≥ 0. Note that this notion is a local one as
long as one requires φ to be supported in a local set. The existence of such solutions
are well known, see [9].

The main result we have to use about suitable weak solutions is the following
ε-regularity theorem.

Theorem 2.1. There exist a sufficiently small ε0 > 0 and positive numbers ck, k ≥
0, such that the following statement holds. For any suitable weak solution u ∈
H1(B1) to {

−∆u+ u · ∇u+∇p = 0
div u = 0

(2.3)

with ‖u‖L3(B1) ≤ ε0 satisfies u ∈ C∞(B1/2), and ‖u‖Ck(B1/2) ≤ ck for all k ≥ 0.

The theorem can be proved by classical methods of [10] and [3, 20]. One can
for instance follow the argument in [10] for n = 4, 5. It is not immediately clear if
the same proof works in dimension n = 6, due to the lack of compactness in the
embedding H1(R6)→ L3(R6). In this case, one can find a proof in [11](see theorem
2.2 and its proof), which is in the spirit of [3]. In [11], the bounds are not explicitly
stated but they are implied in the proof. As remarked in [11], the methods used in
proving ε-regularity are not likely to work for higher dimensions than 6, due to the
fact that the Dirichlet energy can only control L3

loc norm of u in dimensions up to
6, and in higher dimensions (2.2) no longer makes sense.

We will present a unified proof of this theorem following the approach of [10].
Let us introduce some notations. Denote (g)r0,x0 as the average of g over the ball
Br0(x0) and  

Br0 (x0)

g dx =
1

|Br0(x0)|

ˆ
Br0 (x0)

g dx.

Let

Y (g, r0, x0) :=

( 
Br0 (x0)

∣∣u− (u)r0,x0

∣∣3) 1
3

.

In the case x0 = 0, we omit the x0 in the above notations. Thus we have, e.g.,

(g)r0 = (g)r0,0, Y (g, r0) = Y (g, r0, 0).

We firstly prove

Lemma 2.1. For all θ ∈ (0, 1), there exists a sufficiently small ε0 = ε0(θ) > 0, and
constant C > 0 which is independent of θ, such that if u is a suitable weak solution
to (2.3) in B2 satisfying

Y (u, 2) ≤ ε0,
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and ∣∣(u)2
∣∣ ≤ 1,

then
Y (u, θ) ≤ Cθ Y (u, 2). (2.4)

Proof: Suppose the lemma is false, then we can find εi → 0+ and suitable weak
solutions ui, pi to (2.3), such that

Y (ui, 2) = εi,
∣∣(ui)2∣∣ ≤ 1,

and that (2.4) does not hold. pi satisfies in B2

−∆pi = div div
[
(ui − (ui)2)⊗ (ui − (ui)2)

]
,

and
−∇pi = −∆ui + ui · ∇

(
ui − (ui)2

)
.

From the assumption
Y (u, 2) ≤ ε,

we get that ∥∥ui − (ui)2
∥∥
L3(B2)

≤ εi.
Standard elliptic estimates imply that modulo constants we have∥∥pi∥∥

L
3
2 (B 5

3
)
. εi.

Denote
ai = (ui)2

and
ui = εi v

i + ai, pi = εi q
i.

Then vi, qi verify ∥∥vi∥∥
L3(B 5

3
)
. 1,

∥∥qi∥∥
L

3
2 (B 5

3
)
. 1, (2.5)

and the equation

−∆vi + ai · ∇vi + εi v
i · ∇vi +∇qi = 0, (2.6)

with
div vi = 0.

We also note that
∣∣ai∣∣ ≤ 1. With some calculations, (2.2) implies thatˆ

B2

∣∣∇vi∣∣2 φdx ≤ ˆ
B2

(
|vi|2

2
+ qi

)
vi · ∇φ+

|vi|2

2
∆φ+

|vi|2

2
ai · ∇φdx, (2.7)

for all φ ≥ 0 smooth and compactly supported in B2. Take φ ∈ C∞c (B 5
3
) with

φ|B 4
3

≡ 1. From the bounds (2.5) and (2.7), we get that
ˆ
B 4

3

|∇vi|2 dx . 1.

Thus bounds on vi, qi imply that we can assume, by taking a subsequence, that

vi → v

in Lm(B 4
3
) for m < 3 and weakly in H1(B 4

3
), and

qi → q
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weakly in L
3
2 (B 4

3
). We can also assume that the constants ai → a ∈ R3 with

|a| ≤ 1. It is clear that vi, qi satisfy the equation

−∆v + a · ∇v +∇p = 0,

with

div v = 0

and ∥∥v∥∥
L3(B 4

3
)

+
∥∥q∥∥

L
3
2 (B 4

3
)

+
∣∣a∣∣ . 1.

Elliptic estimates then imply that v, q are smooth in B1. In particular,

‖v‖C1(B 7
6
) . 1.

To obtain information on vi from v, let us write

vi = v + ṽi, qi = q + q̃i.

Clearly ṽi, q̃i are uniformly bounded in L3(B 4
3
) and L

3
2 (B 4

3
) respectively. In addi-

tion, ṽi → 0 in Lm(B 4
3
) for any m < 3. ṽi, q̃i verify the equation

−∆ṽi +
(
ai − a

)
· ∇v + ai · ∇ṽi + εi v

i · ∇vi +∇q̃i = 0.

Hence

−∆q̃i = εi div div
(
vi ⊗ vi

)
.

We can decompose q̃i as

q̃i = q̃i1 + q̃i2,

where

q̃i1 = εi(−∆)−1div div
(
vi ⊗ vi χB 4

3

)
,

and q̃i2 solves

−∆q̃i2 = 0.

Then elliptic estimates imply ∥∥q̃i1∥∥L 3
2 (R6)

. εi,

and ∥∥q̃i2∥∥C1(B 7
6
)
. 1.

Using the smoothness property of v, (2.2) implies that

ˆ
B 7

6

∣∣∇ṽi∣∣2 φdx ≤ ˆ
B 7

6

(
εi
|vi|2

2
+ q̃i

)
ṽi · ∇φ− εi v · ∇v ṽi φ+

+ εi
|vi|2

2
v · ∇φ− εi ṽi · ∇v ṽi φ−

(
ai − a

)
· ∇v ṽi φ+

|ṽi|2

2
ai · ∇φdx, (2.8)

for nonnegative φ ∈ C∞c (B 7
6
) with φ|B1 ≡ 1. We need to show that the right hand

side of (2.8) goes to zero as i→∞. It suffices to consider the termˆ
B 7

6

q̃i ṽi · ∇φdx =

ˆ
B 7

6

q̃i1 ṽ
i · ∇φdx+

ˆ
B 7

6

q̃i2 ṽ
i · ∇φdx.
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The vanishing of q̃i1 and the smoothness of q̃i2 respectively, together with the fact
that ṽi → 0 in Lm(B 4

3
) for any m < 3, show that this term vanishes as i → ∞.

Therefore, (2.8) implies that ˆ
B1

∣∣∇ṽi∣∣2 dx→ 0,

and consequently
vi → v, in L3(B1).

By the smoothness of v, we have( 
Bθ

∣∣v − (v)θ
∣∣3 dx) 1

3

≤ Cθ.

Hence, for large i, ( 
Bθ

∣∣vi − (vi)θ
∣∣3 dx) 1

3

≤ Cθ.

A contradiction. The lemma is proved.

By scaling and translation invariance, Lemma 2.1 has the following consequence.

Lemma 2.2. Let ε0, C be from Lemma 2.1. Fix θ > 0 sufficiently small so that
Cθ < 1

2 . Let u, p be a suitable weak solution to (2.3) in Br0(x0) with

Y (u, r0, x0) ≤ ε0 r−10 ,
∣∣(u)r0,x0

∣∣ ≤ r−10 ,

then

Y (u, θr0, x0) ≤ 1

2
Y (u, r0, x0). (2.9)

Now we can prove Theorem 2.1.
Proof of Theorem 2.1: For any x0 ∈ B 1

2
. Clearly

Y
(
u,

1

2
, x0
)
. ε0,

and ∣∣(u) 1
2 ,x0

∣∣ . ε0.

As long as we choose ε0 sufficiently small, we can apply Lemma 2.2 and obtain that

Y
(
u,
θ

2
, x0
)
≤ 1

2
Y
(
u,

1

2
, x0
)
.

If we can iteratively apply Lemma 2.2 on balls B θk

2

(x0) for k = 0, 1, . . . , we would

obtain that

Y
(
u,
θk

2
, x0
)
≤ 1

2k
Y
(
u,

1

2
, x0
)
.

We only need to verify that ∣∣(u) θk
2 ,x0

∣∣ ≤ 1,

assuming that

Y
(
u,
θj

2
, x0
)
≤ 1

2j
Y
(
u,

1

2
, x0
)
. 2−jε0,

for j = 0, 1, . . . , k − 1. Using the inequality∣∣(u) θj
2 ,x0

− (u) θj+1

2 ,x0

∣∣ . Y
(
u,
θj

2
, x0
)
,
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for j = 0, 1, . . . , k − 1, we get that∣∣(u) θk
2 ,x0

− (u) 1
2 ,x0

∣∣ . ε0.

Consequently ∣∣(u) θk
2 ,x0

∣∣ . ε0.

Hence we can iteratively apply Lemma 2.2 and obtain that

Y
(
u,
θk

2
, x0
)
≤ 1

2k
Y
(
u,

1

2
, x0
)
. 2−kε0, (2.10)

for all k. As x0 ∈ B 1
2

is arbitrary, (2.10) implies that u is Hölder continuous in B 1
2
.

The claimed higher regularity in Theorem 2.1 then follows from standard elliptic
estimates.

We shall also need the following variant of Theorem 2.1

Theorem 2.2. Let ε0 be from Theorem 2.1. Let u be a suitable weak solution to
(2.3) with ‖u‖L3(B1) ≤ ε0 δ for δ < 1. Then there exists constant C > 1 which is
independent of u and δ, such that ‖u‖C(B1/4) ≤ Cδ.

Proof: By Theorem 2.1, we know that

‖u‖Ck(B1/2) ≤ ck.

Thus ‖u · ∇u‖L3(B1/2) ≤ c1ε0δ. Denote

g = u · ∇u.

Then

−∆u+∇p = g,

with

‖u‖L3(B 3
4
) ≤ ε0 δ

and

‖g‖L3(B 3
4
) . ε0 δ.

By elliptic estimates, one immediately gets that

‖u‖W 2,3(B 1
2
) . ε0 δ.

Sobolev embedding then gives

‖u‖Lm(B 1
2
) . ε0 δ

for all m <∞. Hence, we have in fact that

‖g‖Lm(B 1
2
) . ε0 δ,

for all m <∞. Elliptic estimates immediately imply that

‖u‖W 2,m(B 1
4
) . ε0 δ,

for all m <∞. By Sobolev embedding, Theorem 2.2 follows.
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3. Main Theorem and proof

We can now state our main results formally.

Theorem 3.1. Let u ∈ Ḣ1(Rn) ↪→ L
2n
n−2 (Rn) be a suitable weak solution to equa-

tions (2.1). Then

u(x) = G ∗ f(x) +


O( log |x|

|x|3 ) n = 4

O( 1
|x|4 ) n = 5

O( 1
|x|5 ) n = 6

as |x| → ∞ (3.1)

where G is the fundamental solution to linear Stokes equation. That is,

G(x) = − 1

2nωn

[
1

n− 2

I

|x|n−2
+
x⊗ x
|x|n

]
,

where ωn is the volume of the unit ball in Rn, I is the identity n × n matix and
x⊗ x is the matrix which has (i, j) item xi xj.

Proof : We consider the cases n = 4, n = 5 and n = 6 separately. For n = 4,
by Sobolev embedding, u ∈ Ḣ1(R4) ⊂ L4(R4). Take a large R > 1 and consider
|x| = 2R, then direct calculation shows that

R−1
ˆ
BR(x)

|u|3 dy ≤

(ˆ
BR(x)

|u|4 dy

)3/4

→ 0,

as R→ +∞. Thus by a rescalled version of Theorem 2.1 and 2.2, we get that∣∣u(x)
∣∣ = o

(
1

|x|

)
,
∣∣∇u(x)

∣∣ = o

(
1

|x|2

)
, (3.2)

for |x| → +∞. Fix small number ε > 0 and sufficiently large R > 1. Set

v(x) = Ru(Rx). (3.3)

(3.2) implies that ∣∣v(x)
∣∣+
∣∣∇v(x)

∣∣ ≤ ε, on ∂B1,

if R is taken large enough depending on ε. In addition,∣∣v(x)
∣∣ = o

(
1

|x|

)
,
∣∣∇v(x)

∣∣ = o

(
1

|x|2

)
,

as x→∞. By Lemma 3.1 below, we get the desired decay estimate∣∣v(x)
∣∣ = O

(
1

|x|2

)
.

Using the relation (3.3), we get that∣∣u(x)
∣∣ = O

(
1

|x|2

)
.

This decay is already sufficient to obtain the precise asymptotics for u. To see this,
we write {

−∆u+∇p = f − div u⊗ u
div u = 0

in R4.

Thus we can write

u(x) = G ∗ f(x)−G ∗ (div u⊗ u)(x).
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It suffices to prove ∣∣G ∗ (div u⊗ u)(x)
∣∣ = O

(
log |x|
|x|3

)
under the condition that ∣∣u(x)

∣∣ = O

(
1

|x|2

)
,

as |x| → ∞. This can be verified by direct calculations.

In the case that n = 5, by Sobolev embedding, u ∈ Ḣ1(R5) ⊂ L10/3(R5).
Suppose |x| = 2R is large, then

R−2
ˆ
BR

|u|3dy ≤ R−3/2
(ˆ

BR(x)

|u|10/3 dy

)9/10

is small. Thus by rescalled versions of Theorem 2.1 and 2.2, we conclude that u is
smooth outside a large ball BM and∣∣u(x)

∣∣ = o

(
1

|x|3/2

)
.

As before, we can write

u = G ∗ f −G ∗
(
div u⊗ u

)
.

Using ∣∣u(x)
∣∣ = o

(
1

|x|3/2

)
and ∣∣G(x)

∣∣ ≤ C

|x|3
,

we obtain ∣∣u(x)
∣∣ = o

(
1

|x|2

)
,

which is an improvement of the original estimate. By applying this procedure
several times, we obtain the desired estimate.

The case n = 6 is almost identical to n = 5.

It remains to state and prove

Lemma 3.1. There exists a sufficiently small δ > 0 such that the following state-
ment holds. Let u be a smooth solution to (2.3) in R4\B1, satisfying∣∣u(x)

∣∣ ≤ δ

|x|
,
∣∣∇u(x)

∣∣ ≤ δ

|x|2
, (3.4)

then we have the improved decay estimate∣∣u(x)
∣∣ . 1

|x|2
,
∣∣∇u(x)

∣∣ . 1

|x|3
, (3.5)

for x ∈ R3\B1.
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Proof: By Theorem 2.1 in [8], we can find a solution ũ(x) to (1.1) for |x| ≥ 1, such
that ũ is smooth and ũ = u on ∂B1. Moreover,

ũ(x) .
1

|x|2

for |x| > 1 and some absolute constant C > 0. 1 We claim that

u(x) = ũ(x), for |x| ≥ 1.

This uniqueness is an easy result in our case as we have a “smallness condition”.
One can proceed for instance as follows. Denote

w = u− ũ.

Then w satisfies{
−∆w + w · ∇u+ u · ∇w − w · ∇w +∇p = 0

div w = 0
in R4\B1.

Since w|∂B1
= 0, ∇w ∈ L2, w ∈ L4, w = o( 1

|x| ) as |x| → ∞, we obtain by integra-

tion by parts:

ˆ
R4\B1

|∇w|2 dx ≤ −
ˆ
R4\B1

(w · ∇u)w dx

=

ˆ
R4\B1

u (w · ∇w) dx

.
ˆ
R4\B1

δ

|x|
|w||∇w| dx

. δ

(ˆ
R4\B1

|∇w|2 dx

)1/2(ˆ
R4\B1

|w|2

|x|2
dx

)1/2

. δ

ˆ
R4\B1

|∇w|2 dx.

If δ is sufficiently small, then the above inequality will force w to be identically
zero. Thus we obtain that

u = ũ for |x| > 1.

Since

|ũ(x)| = O

(
1

|x|2

)
,

we also have

|u(x)| = O

(
1

|x|2

)
, as |x| → ∞.

The lemma is proved.

1We will outline an alternative approach which is somewhat more direct in the appendix.
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4. Appendix: An alternative approach to Lemma 3.1

The goal of this section is to outline a more direct approach, based more on
methods introduced in this note, to Lemma 3.1. Let u be from Lemma 3.1. Take
u as the solution to the boundary value problem for the steady Stokes equation in
the unit ball

−∆u+∇p = 0, in B1.

with div u = 0 and u|∂B1 = u|∂B1 . Since u|∂B1 is smooth, classical estimates for
the steady Stokes equations give that u, p are smooth in B1. Define

U(x) =

 u(x) for |x| ≥ 1,

u(x) for |x| < 1;

and

P (x) =

 p(x) for |x| ≥ 1,

p(x) for |x| < 1.

Then U, P verify

−∆U + U · ∇U +∇P =
(
u · ∇u

)
χB1

+ Σ,

in R4, with divU = 0. In the above, Σ is a smooth surface measure supported on
∂B1. Since u is small, both u and Σ have “smallness condition”. Denote

g :=
(
u · ∇u

)
χB1 + Σ.

We shall use perturbation argument to find another divergence free solution V to

−∆V + V · ∇V +∇Q = g, (4.1)

with better decay properties than those known for U . We can choose the norm∥∥h∥∥
X

:=
∥∥h∥∥

L
5
2 (R4)

+
∥∥∇h∥∥

L2(R4)
,

and the space

X :=

{
h :
∥∥h∥∥

X
<∞

}
.

We can re-write equation (4.1) as

V = G ∗ g −G ∗
(
V · ∇V

)
. (4.2)

We only need to verify that the map

V ∈ X → G ∗ g −G ∗
(
V · ∇V

)
∈ X

is a contraction mapping in BCδ ⊆ X. This property can be verified by direct
calculations. We shall only show that∥∥G ∗ Σ

∥∥
X

. δ,

assuming that Σ is a surface measure supported on the unit sphere with smooth
densities and that the density function has Cm norm smaller than Cδ with a suffi-
ciently large m. By the decay property of G, we only need to show that∥∥∇G ∗ Σ

∥∥
L2(R4)

. Cδ. (4.3)
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By the property of Fourier transform of smooth measures supported on sphere, we
see that ∣∣F(Σ)(ξ)∣∣ . δ

(1 + |ξ|) 3
2

,

where we use the notation F(h) to denote the Fourier transform of h. In combina-
tion of the fact that ∣∣F(G)(ξ)∣∣ . 1

|ξ|2
,

we get that ∣∣F(G ∗ Σ
)
(ξ)
∣∣ . δ

|ξ|2 (1 + |ξ|) 3
2

,

Hence, ∥∥ |∇|sG ∗ Σ
∥∥
L2(R4)

. δ,

for 0 < s < 3
2 . (4.3) thus follows. V ∈ X implies that V ∈ L3(R4). The improved

decay breaks the scaling and now we can treat the nonlinearity V · ∇V as pertur-
bations when we consider decay. Indeed, from V ∈ L3, rescaled version of Theorem
2.1 and 2.2 already implies that ∣∣V (x)

∣∣ . 1

|x| 43
,

for large x. Treating V · ∇V as perturbation and following the arguments as in the
proof of Theorem 3.1, we can conclude that∣∣V (x)

∣∣ . δ

1 + |x|2
.

The same argument as in the proof of Lemma 3.1 shows that

U = V.

Hence U has the same decay.
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