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Graph-based learning

Let (X ,W) be a graph.

X ⊂ Rd are the vertices.

W = (wxy)x ,y∈X are nonnegative edge weights.

In data science/machine learning, data is often given a graph structure. In this case wxy

is large when x and y are similar, and small or wxy = 0 otherwise.

Common graph-based learning tasks

Clustering

I Grouping similar datapoints

Semi-supervised learning.

I Clustering with some label information.
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MNIST (70,000 28× 28 pixel images of digits 0-9)

Each image is a datapoint

x ∈ R28×28 = R784.

Geometric weights:

wxy = η

(
|x − y |
ε

)

k -nearest neighbor graph:

wxy = η

(
|x − y |
εk (x)

)
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Clustering MNIST

https://divamgupta.com
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Graph cuts

Question: How do we cluster graph data?

Consider binary clustering (two classes). We can try to minimize a graph cut energy

(Min-Cut) min
A⊂X

Cut(A) :=
∑

x ,y∈X
x∈A,y 6∈A

wxy .

Tends to produce unbalanced classes (e.g., A = {x}).
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Graph cuts

Question: How do we cluster graph data?

Consider binary clustering (two classes). We can try to minimize a graph cut energy

(Balanced-Cut) min
A⊂X

Cut(A)

Vol(A)Vol(X \A)
,

where
Vol(A) =

∑
x∈A

∑
y∈X

wxy .

Gives good clusterings but very computationally hard (NP-hard).
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Spectral clustering
For A ⊂ X set

u(x) =

{
1, if x ∈ A

0, otherwise.

Then we have

Cut(A) =
∑

x ,y∈X
x∈A,y 6∈A

wxy =
1

2

∑
x ,y∈X

wxy(u(x)− u(y))2

and
Vol(A) =

∑
x ,y∈X

wxyu(x).

This allow us to write the balanced cut problem as

min
u:X→{0,1}

∑
x ,y∈X

wxy(u(x)− u(y))2∑
x ,y,x ′,y′∈X

u(x)wxy(1− u(y ′))wx ′y′
.

Calder (UofM) Discrete regularity HJ2020 11 / 66



Spectral clustering
For A ⊂ X set

u(x) =

{
1, if x ∈ A

0, otherwise.

Then we have

Cut(A) =
∑

x ,y∈X
x∈A,y 6∈A

wxy =
1

2

∑
x ,y∈X

wxy(u(x)− u(y))2

and
Vol(A) =

∑
x ,y∈X

wxyu(x).

This allow us to write the balanced cut problem as

min
u:X→{0,1}

∑
x ,y∈X

wxy(u(x)− u(y))2∑
x ,y,x ′,y′∈X

u(x)wxy(1− u(y ′))wx ′y′
.

Calder (UofM) Discrete regularity HJ2020 11 / 66



Spectral clustering
For A ⊂ X set

u(x) =

{
1, if x ∈ A

0, otherwise.

Then we have

Cut(A) =
∑

x ,y∈X
x∈A,y 6∈A

wxy =
1

2

∑
x ,y∈X

wxy(u(x)− u(y))2

and
Vol(A) =

∑
x ,y∈X

wxyu(x).

This allow us to write the balanced cut problem as

min
u:X→{0,1}

∑
x ,y∈X

wxy(u(x)− u(y))2∑
x ,y,x ′,y′∈X

u(x)wxy(1− u(y ′))wx ′y′
.

Calder (UofM) Discrete regularity HJ2020 11 / 66



Spectral clustering

Consider solving the similar, relaxed, problem

min
u:X→R∑

x∈X u(x) 6=0

∑
x ,y∈X

wxy(u(x)− u(y))2∑
x∈X

u(x)2
.

The solution is the smallest non-trivial eigenvector (Fiedler vector) of the graph
Laplacian

∆u(x) =
∑
y∈X

wxy(u(x)− u(y)).

Binary spectral clustering:

1 Compute Fiedler vector u : X → R.

2 Set A = {x ∈ X : u(x) > 0}.
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Spectral clustering

Spectral clustering: To cluster into k groups:

1 Compute first k eigenvectors of the graph Laplacian ∆:

u1, . . . , uk : X → R.

2 Define the spectral embedding Ψ : X → Rk by

Ψ(x) = (u1(x), u2(x), . . . , uk (x)).

3 Cluster the point cloud Y = Ψ(X ) with your favorite clustering algorithm (often
k -means).
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Spectral methods in data science

Spectral methods are widely used for dimension reduction and clustering in data science
and machine learning.

Spectral clustering [Shi and Malik (2000)] [Ng, Jordan, and Weiss (2002)]

Laplacian eigenmaps [Belkin and Niyogi (2003)]

Diffusion maps [Coifman and Lafon (2006)]

Calder (UofM) Discrete regularity HJ2020 14 / 66



Spectral embedding: MNIST

Digits 1 and 2 from MNIST visualized with spectral projection
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Spectral embedding: MNIST

Digits 1 (blue) and 2 (red) from MNIST visualized with spectral projection
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Application: Segmenting broken bone fragments

Spectral clustering with weights

wij = exp (−C |ni − nj |p) .

between nearby points on the mesh, where ni is the outward normal vector at vertex i .

Calder (UofM) Discrete regularity HJ2020 17 / 66



Outline

1 Introduction
Graph-based learning
Spectral clustering
The manifold assumption

2 Main results
Lipschitz regularity
Spectral convergence

3 Sketch of the proof
Outline
Lifting to the manifold
Lipschitz estimate

4 Future work
Homogenization at small length scales

Calder (UofM) Discrete regularity HJ2020 18 / 66



Manifold assumption

Let M⊂ Rd be a compact, connected, orientable, smooth, m-dimensional manifold.

We give to M the Riemannian structure induced by the ambient space Rd . The
geodesic distance between x , y ∈M is denoted dM(x , y) and

BM(x , r) = {y ∈M : dM(x , y) < r}.

By dVol we denote the volume form on M.
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Manifold assumption
Let ρ ∈ C 2(M), ρ > 0, and let

Xn = {x1, . . . , xn}

be an i.i.d. sample from the distribution ρdVolM.

Let η : [0,∞)→ [0,∞) be non-increasing with

η(t) = 0 for t > 1.

We assume η|[0,1] is Lipschitz and that∫
Rm

η(|w |)dw = 1,

Let ε > 0. The weights in the graph are

wxy = η

(
|x − y |
ε

)
.

The resulting graph is called a random geometric graph.
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Spectral convergence

The spectrum of the graph-Laplacian converges (n →∞, ε→ 0) to the spectrum of the
weighted Laplace-Beltrami operator

∆Mu = −ρ−1divM(ρ2∇Mu).

Spectral convergence results under manifold assumption:

Belkin and Niyogi (2007)

Shi (2015): O(n−1/(4m+14)) rate in L2.

Trillos and Slepcev (2016)

Singer and Wu (2017)

Trillos, Gerlach, Hein, and Slepcev (2018): O(n−1/4m) rate in L2

C., Trillos (2019): O(n−1/(m+4)) rate in L2

Dunson, Wu, Wu (2019): O(n−1/(4m+15)) rate in L∞

Similar non-probabilistic results

Fujiwara (1995), Burago, Ivanov and Kurylev (2014)
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Outline of talk

Challenges for analysis:

Spectral convergence results are hard because many useful PDE tools do not
transfer to the graph-setting.

Randomness in the graph can average out (homogenize) in ways that are difficult
to analyze.

Question: What type of PDE tools (e.g., elliptic regularity) can we push to the random
geometric graph setting?

Today’s talk: Lipschitz regularity for solutions of graph Poisson equations

∆u = f

and applications to spectral convergence.

Calder, J. and Garcia Trillos, N., Lewicka, M. Lipschitz regularity of graph Laplacians
on random data clouds, In preparation, 2020.
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Main results: Global Lipschitz regularity

Take the manifold assumption for Xn = {x1, x2, . . . , xn}.

We define the graph Laplacian ∆ε,Xn : L2(Xn)→ L2(Xn) by

∆ε,Xnu(xi) =
1

nεm+2

n∑
j=1

η

(
|xi − xj |

ε

)(
u(xi)− u(xj )

)
.

Theorem (C., Garcia Trillos, Lewicka, 2020)

Let ε� 1. Then, with probability at least 1− C ε−6m exp
(
−cnεm+4

)
we have

|u(xi)− u(xj )| ≤ C
(
‖u‖L∞(Xn ) + ‖∆ε,Xnu‖L∞(Xn )

)
· (dM(xi , xj ) + ε)

for all u ∈ L2(Xn) and all xi , xj ∈ Xn .
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Main results: Interior Lipschitz regularity

We define the graph Laplacian ∆ε,Xn : L2(Xn)→ L2(Xn) by

∆ε,Xnu(x) =
1

nεm+2

n∑
j=1

η

(
|x − xj |

ε

)(
u(x)− u(xj )

)
.

Theorem (C., Garcia Trillos, Lewicka, 2020)

Let 0 < r < diam(M) where diam(M) is the diameter ofM. Then, for every ε > 0

satisfying (| log(ε)|+1)ε
r

� 1, with probability at least 1− C ε−6m exp
(
−cnεm+4

)
we have

|u(xi)− u(xj )| ≤ C‖u‖L∞(Xn∩BM(x ,7r))

(
ε+
| log(ε)|ε

r
+

dM(xi , xj )

r

)
+ C ε‖∆ε,Xnu‖L∞(Xn∩BM(x ,7r)),

for all u ∈ L2(Xn), x ∈M, r > 0, and xi , xj ∈ BM(x , r) ∩ Xn .
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Main results: Lipschitz regularity of eigenvectors

Theorem (C., Garcia Trillos, Lewicka, 2020)

Let Λ > 0 and ε� 1, and suppose that ε ≤ c
Λ+1

. Then, with probability at least

1− C ε−6m exp
(
−cnεm+4

)
− 2n exp

(
−cn(Λ + 1)−m

)
we have

|u(xi)− u(xj )| ≤ C (Λ + 1)m+1‖u‖L1(Xn )(dM(xi , xj ) + ε)

valid for all non-identically zero u ∈ L2(Xn) with λu ≤ Λ and all xi , xj ∈ Xn . Here,

λu =
‖∆ε,Xnu‖L∞(Xn )

‖u‖L∞(Xn )
.

Corollary (C., Garcia Trillos, Lewicka, 2020)

Under the same conditions as above

‖u‖L∞(Xn ) ≤ C (Λ + 1)m+1‖u‖L1(Xn ),

for all u non-identically zero with λu ≤ Λ.
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Main results: Spectral convergence

Recall the continuum weighted Laplace-Beltrami operator.

∆Mu(x) = −ρ−1divM(ρ2∇Mu).

We also define

[u]ε,Xn = max
x ,y∈Xn

|u(x)− u(y)|
dM(x , y) + ε

.

Theorem (C., Garcia Trillos, Lewicka, 2020)

Let ε� 1 and suppose that un,ε is a normalized eigenvector of ∆ε,Xn . Then, with
probability at least 1− C (n + ε−6m) exp

(
−cnεm+4

)
there exists a normalized

eigenfunction u of ∆M for which

‖un,ε − u‖L∞(Xn ) + [un,ε − u]ε,Xn ≤ C ε,

where the constant C depends on u,M, ρ.

Optimal choice for ε satisfies nεm+4 = C log(n), which gives rates O(n−1/(m+4)).
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Outline of proof

Main ideas:

1 We lift the problem from the graph to the manifold M obtaining a related
nonlocal Laplacian

∆εu(x) =
1

εm+2

∫
M
η

(
dM(x , y)

ε

)(
u(x)− u(y)

)
ρ(y) dVol(y).

2 We prove the Lipschitz estimate for ∆ε using a specific coupling of suitable

random walks.

I The coupling is based on the reflection coupling of [Lindvall & Rogers,
1986], with additional ingredients to handle a drift term.
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Lifting to the manifold
Recall the graph Laplacian

∆ε,Xnu(x) =
1

nεm+2

n∑
j=1

η

(
|x − xj |

ε

)(
u(x)− u(xj )

)
.

If u :M→ R is a smooth function, then we can compute for any x ∈M

E[∆ε,Xnu(x)] =
1

εm+2

∫
M
η

(
|x − y |
ε

)(
u(x)− u(y)

)
ρ(y) dVol(y).

An application of Bernstein’s inequality yields

P(|∆ε,Xnu(x)− E[∆ε,Xnu(x)]| ≥ CLip(u)t) ≤ 2 exp(−Cnεm+2t2) for 0 < t ≤ 1

Theorem (Bernstein’s inequality)

Let Y1, . . . ,Yn be i.i.d. with mean µ = E[Yi ] and variance σ2 = E[(Yi − E[Yi ])
2], and

assume |Yi | ≤ M almost surely for all i . Then for any t > 0

P

(∣∣∣∣∣
n∑

i=1

Yi − nµ

∣∣∣∣∣ > nt

)
≤ 2 exp

(
− nt2

2σ2 + 4Mt/3

)
.
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Lifting to the manifold
Recall the graph Laplacian

∆ε,Xnu(xi) =
1

nεm+2

n∑
j=1

η

(
|xi − xj |

ε

)(
u(xi)− u(xj )

)
.

If u :M→ R is a smooth function, then we can compute for any x ∈M

E[∆ε,Xnu(x)] =
1

εm+2

∫
M
η

(
|x − y |
ε

)(
u(x)− u(y)

)
ρ(y) dVol(y).

An application of Bernstein’s inequality yields

P(|∆ε,Xnu(x)− E[∆ε,Xnu(x)]| ≥ CLip(u)t) ≤ 2 exp(−Cnεm+2t2) for 0 < t ≤ 1

For ε� 1 and |x − y | ≤ ε we have

|x − y | ≤ dM(x , y) ≤ |x − y |+ O(ε3).

Therefore

P(|∆ε,Xnu(x)−∆εu(x)| ≥ CLip(u)t + C ε) ≤ 2 exp(−Cnεm+2t2) for 0 < t ≤ 1
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Pointwise consistency

As an aside, for smooth functions u, the nonlocal Laplacian

∆εu(x) =
1

εm+2

∫
M
η

(
dM(x , y)

ε

)(
u(x)− u(y)

)
ρ(y) dVol(y)

is consistent with a weighted Laplace-Beltrami operator

∆Mu(x) = −ρ−1divM(ρ2∇Mu).

Indeed, by Taylor expanding u we can show that

∆εu(x) = ση∆Mu(x) + O(ε‖u‖C3).

This gives pointwise consistency of graph Laplacians [Hein 2007]

P(|∆ε,Xnu(x)− ση∆Mu(x)| ≥ CLip(u)t + C ε‖u‖C3) ≤ 2 exp(−Cnεm+2t2).

Note this requires nεm+2 � 1, and for t = ε we need nεm+4 � 1.
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Interpolation
We define the interpolation operator Iε,Xn : L2(Xn)→ L2(M) and the degree

Iε,Xnu(x) =
1

dε,Xn (x)

n∑
i=1

η

(
|x − xi |

ε

)
u(xi),

where dε,Xn (x) is the degree of x , given by

dε,Xn (x) =
n∑

i=1

η

(
|x − xi |

ε

)
.

Theorem (C., Garcia Trillos, Lewicka, 2020)

Let ε� 1. Then, with probability at least 1− C ε−6m exp
(
− cnεm+4

)
we have

|∆ε(Iε,Xnu)(x)| ≤ C
(
‖∆ε,Xnu‖L∞(Xn∩B(x ,ε)) + osc

Xn∩B(x ,2ε)
u
)

for all u ∈ L2(Xn) and all x ∈M.

∆εu(x) =
1

εm+2

∫
M
η

(
dM(x , y)

ε

)(
u(x)− u(y)

)
ρ(y) dVol(y).
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where dε,Xn (x) is the degree of x , given by

dε,Xn (x) =
n∑

i=1

η

(
|x − xi |

ε

)
.

Corollary (C., Garcia Trillos, Lewicka, 2020)

Let ε� 1. With probability at least 1− C ε−6m exp
(
−cnεm+4

)
we have

‖∆ε(Iε,Xnu)‖L∞(M) ≤ C
(
‖∆ε,Xnu‖L∞(Xn ) + ε‖u‖L∞(Xn )

)
for all u ∈ L2(Xn).

∆εu(x) =
1

εm+2

∫
M
η

(
dM(x , y)

ε

)(
u(x)− u(y)

)
ρ(y) dVol(y).
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Interpolation: Proof sketch

Let u : Xn → R and denote f (x) = u(x)− Iε,Xnu(x) and ηε(t) = ε−dη(t/ε). Then

Iε,Xnu(x) =
εd

dε,Xn (x)

n∑
j=1

ηε(|x − xj |)u(xj )

=
εd

dε,Xn (x)

n∑
j=1

ηε(|x − xj |)
(
Iε,Xnu(xj ) + f (xj )

)
= ε2d

n∑
k=1

[
n∑

j=1

ηε(|x − xj |)ηε(|xj − xk |)
dε,Xn (x)dε,Xn (xj )

]
u(xk ) + Iε,Xn f (x)

≈ 1

nρ(x)

n∑
k=1

[∫
M
ηε(|x − y |)ηε(|y − xk |) dVolM(y)

]
u(xk ) + Iε,Xn f (x)

=
1

nρ(x)

∫
M
ηε(|x − y |)

[
n∑

k=1

ηε(|y − xk |)u(xk )

]
dVolM(y) + Iε,Xn f (x)

≈ 1

ρ(x)

∫
M
ηε(|x − y |)ρ(y)Iε,Xnu(y) dVolM(y) + Iε,Xn f (x)
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Interpolation: Proof sketch

Let u : Xn → R and denote f (x) = u(x)− Iε,Xnu(x) and ηε(t) = ε−dη(t/ε). Then

Iε,Xnu(x)− 1

ρ(x)

∫
M
ηε(|x − y |)ρ(y)Iε,Xnu(y) dVolM(y) ≈ Iε,Xn f (x).

Then we check that

f (xi) = u(xi)− Iε,Xnu(xi) =
nεm+2

dε,Xn (xi)
∆ε,Xnu(xi)

and

u(x)− 1

ρ(x)

∫
M
ηε(|x − y |)ρ(y)u(y) dVolM(y) =

ε2

ρ(x)
∆εu(x) + O(ε2‖u‖∞).
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Interpolation

Theorem (C., Garcia Trillos, Lewicka, 2020)

Let ε� 1. Then, with probability at least 1− C ε−6m exp
(
− cnεm+4

)
we have

|∆ε(Iε,Xnu)(x)| ≤ C
(
‖∆ε,Xnu‖L∞(Xn∩B(x ,ε)) + osc

Xn∩B(x ,2ε)
u
)

for all u ∈ L2(Xn) and all x ∈M.
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Nonlocal operator

We have now lifted the problem to the manifold, and can assume u satisfies the
mean-value type property

u(x) =
1

ρ(x)

∫
BM(x ,ε)

ηε(|x − y |)ρ(y)u(y) dVolM(y) + ε2f (x)

for all x ∈M. The length scale ε > 0 is fixed and small.

We prove an approximate Lipschitz estimate for u depending on ‖u‖∞ and ‖f ‖∞:

|u(x)− u(y)| ≤ C (‖u‖∞ + ‖f ‖∞)(dM(x , y) + ε).

The proof uses the method of coupled random walks, similar to [Lindvall & Rogers,
1986].

At a high level, this is equivalent to doubling the variables and using comparison to
bound u(x)− u(y) ≤ ϕ(x , y) for a suitable supersolution ϕ.
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Sketch of proof: Simple random walk
Assume u satisfies the mean-value property

u(x) = −
∫
B(x ,ε)

u(y) dy

for fixed ε > 0 and all B(x , ε).

Let x , y ∈ Rd and assume we wish to estimate

|u(x)− u(y)| ≤ C |x − y |+ . . .

WLOG assume x = ted and y = −ted , t ≥ ε. Let Xk ,Yk be coupled simple random
walks with X0 = x , Y0 = y and

Xk = Xk−1 + εUk

Yk = Yk−1 + ε(Uk − 2(Uk · ed)ed),

where U1,U2, . . . , are i.i.d. random variables uniformly distributed on B(0, 1).
For r � t , define the stopping time

τ = inf
{
k > 0 : Xk ≤

ε

2
or |Xk | > r

}
.
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Stopping time

Since u(Xk ) and u(Yk ) are martingales, Doob’s optional stopping yields

u(x)− u(y) = E[u(Xτ )− u(Yτ )]
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Exiting on ∂B(0, r)

If we have |Xτ | > r then we estimate

E[u(Xτ )− u(Yτ ) | |Xτ | > r ] ≤ 2‖u‖L∞(B(0,r+ε)).

P(|Xτ | > r) ≤ Ct

r
= C

|x − y |
r

.

Calder (UofM) Discrete regularity HJ2020 46 / 66



Exiting on ∂B(0, r)

If we have |Xτ | > r then we estimate

E[u(Xτ )− u(Yτ ) | |Xτ | > r ] ≤ 2‖u‖L∞(B(0,r+ε)).

P(|Xτ | > r) ≤ Ct

r
= C

|x − y |
r

.

Calder (UofM) Discrete regularity HJ2020 46 / 66



Exiting on plane xd = 0

If |Xτ | ≤ r , then |Xτ −Yτ | < ε and so

E[u(Xτ )−u(Yτ ) | |Xτ | ≤ r ] ≤ sup
{
|u(x ′)− u(y ′)| : x ′, y ′ ∈ B(0, r) and |x ′ − y ′| ≤ ε

}︸ ︷︷ ︸
Θ(r,ε)

.
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Basic Lipschitz estimate

Conditioning on |Xτ | > r yields

u(x)− u(y) = E[u(Xτ )− u(Yτ )]

≤ 2‖u‖L∞(B(0,r+ε))P(|Xτ | > r) + Θ(r , ε)P(|Xτ | ≤ r)

≤ C‖u‖L∞(B(0,r+ε))
|x − y |

r
+ Θ(r , ε).

where

Θ(r , ε) := sup
{
|u(x ′)− u(y ′)| : x ′, y ′ ∈ B(0, r) and |x ′ − y ′| ≤ ε

}
.

Calder (UofM) Discrete regularity HJ2020 48 / 66



Basic Lipschitz estimate

Conditioning on |Xτ | > r yields

u(x)− u(y) = E[u(Xτ )− u(Yτ )]

≤ 2‖u‖L∞(B(0,r+ε))P(|Xτ | > r) + Θ(r , ε)P(|Xτ | ≤ r)

≤ C‖u‖L∞(B(0,r+ε))
|x − y |

r
+ Θ(r , ε).

where

Θ(r , ε) := sup
{
|u(x ′)− u(y ′)| : x ′, y ′ ∈ B(0, r) and |x ′ − y ′| ≤ ε

}
.

Calder (UofM) Discrete regularity HJ2020 48 / 66



Local estimate

For x , y with |x − y | ≤ ε (and x = −y) we use the mean value property:

u(x)− u(y) =
1

|B(0, ε)|

(∫
B(x ,ε)

u(z ) dz −
∫
B(y,ε)

u(z ) dz

)

=
1

|B(0, ε)|

∫
B(x ,ε)\B(y,ε)

(u(x)− u(−x)) dx

≤ η · sup
{
|u(x ′)− u(y ′)| : x ′, y ′ ∈ B(0, r + ε) and |x ′ − y ′| ≤ 3ε

}
,

where η =
|B(x , ε) \ B(y , ε)|

|B(0, ε)| < 1.
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Global estimate

It follows that

Θ(r , ε) := sup {|u(x)− u(y)| : x , y ∈ B(0, r) and |x − y | ≤ ε}

satisfies Θ(r , ε) ≤ η ·Θ(r + ε, 3ε) for η < 1.

Thus, for |x − y | ≤ r we have

|u(x)− u(y)| ≤ C‖u‖L∞(B(0,r+ε))
|x − y |

r
+ η ·Θ(r + ε, 3ε).

On a periodic domain with no boundary (e.g., a closed manifold)

Θ(r + ε, 3ε) ≤ C‖u‖L∞ε+ η ·Θ(r + ε, 3ε),

and so
Θ(r + ε, 3ε) ≤ C (1− η)−1‖u‖L∞ε.

This yields the global estimate

|u(x)− u(y)| ≤ C‖u‖L∞(|x − y |+ ε).
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Source terms

The argument extends directly to the inclusion of a source term

u(x) = −
∫
B(x ,ε)

u(y) dy + ε2f (x).

In this case
Zk = u(Xk )− u(Yk ) + ε2‖f ‖L∞k

is a submartingale, and Doob’s optional stopping yields Z0 ≤ E[Zτ ] or

u(x)− u(y) ≤ E[u(Xτ )− u(Yτ )] + ε2‖f ‖L∞E[τ ].

The proof proceeds similarly to obtain

|u(x)− u(y)| ≤ C (‖u‖L∞ + ‖f ‖L∞)(|x − y |+ ε).

Reference for simple random walk case: [Lewicka & Peres, 2019].
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Coupled walks with drift

In the flat setting, our mean value property is

u(x) =
1

ρ(x)

∫
B(x ,ε)

ηε(|x − y |)ρ(y)u(y) dy + ε2f (x).

We Taylor expand ρ(y) = ρ(x) +∇ρ(x) · (y − x) + O(ε2) to obtain

u(x) =

∫
B(x ,ε)

ηε(|x − y |)u(y)(1 + b(x) · (y − x)) dy + O(ε2),

where b(x) = ∇ log ρ(x). Assuming ε|b(x)| ≤ 1 we can write

u(x) = (1− ε|b(x)|)
∫
B(x ,ε)

ηε(|x − y |)u(y) dy

+ε|b(x)|
∫
B(x ,ε)

ηε(|x − y |)
(
1− b(x) · (y − x)

ε|b(x)|

)
u(y) dy + O(ε2).
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Coupled walks with drift

Write v(x) = b(x)
|b(x)| and z = y−x

ε
to simplify:

u(x) = (1− ε|b(x)|)
∫
B(0,1)

η(z )u(x + εz ) dz

+ε|b(x)|
∫
B(0,1)

η(z ) (1− v(x) · z ) u(x + εz ) dy + O(ε2).

Construction of coupled walks:

Let U0,U1,U2, . . . be i.i.d. with density η(z ).

Let V0,V1,V2, . . . be i.i.d. with density η(z )(1− e1 · z ).

Let Q0,Q1,Q2, . . . be i.i.d. uniform on [0, 1].

Define X0 = x and

Xk+1 = Xk + ε

{
Uk , if Qk > ε|b(Xk )|
O(e1, v(Xk ))Vk , otherwise,

where O(w , v) is an orthogonal matrix satisfying O(w , v)w = v .
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Coupled walks with drift

Construction of coupled walks:

Let U0,U1,U2, . . . be i.i.d. with density η(z ).

Let V0,V1,V2, . . . be i.i.d. with density η(z )(1− e1 · z ).

Let Q0,Q1,Q2, . . . be i.i.d. uniform on [0, 1].

Define X0 = x and

Xk+1 = Xk + ε

{
Uk , if Qk > ε|b(Xk )|
O(e1, v(Xk ))Vk , otherwise,

where O(w , v) is an orthogonal matrix satisfying O(w , v)w = v .

The coupled walk Yk is constructed by setting Y0 = y and

Yk+1 = Yk + ε

{
R(Yk −Xk )Uk , if Qk > ε|b(Yk )|
O(e1, v(Yk ))Vk , otherwise,

where R(v) is a reflection matrix about the vector v .
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Martingale property

Let Fk denote the σ-algebra induced by U0, . . . ,Uk , V0, . . . ,Vk , and Q0, . . . ,Qk . The
coupled walks are constructed to have the approximate martingale property

E[u(Xk+1) | Fk ] =
1

ρ(Xk )

∫
B(Xk ,ε)

ηε(|Xk − y |)ρ(y)u(y) dy + O(ε2).

E[u(Yk+1) | Fk ] =
1

ρ(Yk )

∫
B(Yk ,ε)

ηε(|Yk − y |)ρ(y)u(y) dy + O(ε2).

The rest of the argument from the simple random walk setting goes through roughly the
same.
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Lifting to the manifold
Our main result is in the (embedded) manifold setting M⊂ Rd . In this case

u(x) =
1

ρ(x)

∫
BM(x ,ε)

ηε(dM(x , y))ρ(y)u(y) dVolM(y) + ε2f (x).

γxy = geodesic from x to y .

Define txy ∈ TyM by

txy =
dγxy
ds

(dM(x , y)).

Let us denote by

Pxy : TxM→ TyM

parallel transport along γxy .

Note that

txy = Pxy(−tyx ).
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Coupled walks with drift onM
Construction of coupled walks:

Let U0,U1,U2, . . . be i.i.d. with density η(z ).

Let V0,V1,V2, . . . be i.i.d. with density η(z )(1− e1 · z ).

Let Q0,Q1,Q2, . . . be i.i.d. uniform on [0, 1].

Define X0 = x and

Xk+1 =

{
expXk

(εUk ), if Qk > ε|b(Xk )|
expXk

(εO(e1, v(Xk ))Vk ), otherwise,

where O(w , v) is an orthogonal matrix satisfying O(w , v)w = v .

The coupled walk Yk is constructed by setting Y0 = y and

Yk+1 =

{
expYk

(εR(tXkYk )PXkYkUk ), if Qk > ε|b(Yk )|
expYk

(εO(e1, v(Yk ))PXkYkVk ), otherwise,

where R(v) is a reflection matrix about the vector v .
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Future work

1 Similar estimates for other normalizations of the graph Laplacian

I Random walk Laplacian

∆rwu(x ) = u(x )− 1

dx

∑
y∈X

wxyu(y), dx =
∑
y∈X

wxy .

I Normalized Laplacian

∆normu(x ) = u(x )−
∑
y∈X

wxy√
dxdy

u(y).

2 Other elliptic regularity results (C 1,α, etc.).

3 Applications to other graph-based learning algorithms

I Laplacian regularized semi-supervised learning.

4 Extending these results to smaller length scales using homogenization/percolation
theory.
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Length scale regimes

Pointwise consistency of graph Laplacians requires

nεm+2 � log(n) ⇐⇒ ε�
(

log(n)

n

) 1
m+2

.

Our Lipschitz regularity and O(ε) spectral rates require

nεm+4 � log(n) ⇐⇒ ε�
(

log(n)

n

) 1
m+4

.

On the other hand, the graph is connected with high probability when

nεm ≥ C log(n) ⇐⇒ ε ≥
(
C log(n)

n

) 1
m

.
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Some natural questions

Question 1: What can we say in the length scale regime

(
log(n)

n

) 1
m

� ε�
(

log(n)

n

) 1
m+4

?

Question 2: What about smaller length scales

ε ∼
(

log(n)

n

) 1
m

where the graph is disconnected but has a giant component (supercritical percolation
cluster)?

For Question 1, the Γ-convergence framework of Slepcev & Trillos establishes spectral

convergence for ε�
(

log(n)
n

) 1
m

, but the rates O(
√
ε) are far from sharp.

Do we expect, and can we prove, shaper rates?
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Numerical experiments

Eigenmode 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Eigenvalue 2 2 2 6 6 6 6 6 12 12 12 12 12 12 12

E.value rate 2.4 2.6 3.1 2.3 2.3 2.5 2.6 3 2.1 2.1 2.2 2.3 2.4 2.8 3.3
E.vector rate 2.3 2.3 2.3 2.2 2.2 2.2 2.3 2.7 2.2 2.1 2.1 2.2 2.2 2.3 2.5

Table: Rates of convergence of the form O(εb) (value of b is shown) for
eigenvalues and eigenvectors of the graph Laplacian on the 2-sphere. Errors are
averaged over 100 trials with n ranging from n = 500 to n = 105.

Rates of convergence for

ε =

(
log n

n

) 1
m+2

.

At this length scale, our results give no convergence rate. For O(εb) rate we require

ε ≥
(

log n

n

) 1
m+2+2b

.
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Homogenization at smaller length scales

The graph Laplacian

∆ε,Xnu(x) =
1

nεm+2

n∑
j=1

η

(
|x − xj |

ε

)(
u(x)− u(xj )

)
is not consistent with a continuum Laplacian when

ε ≤
(

log(n)

n

) 1
m+2

.

However, we can construct other (homogenized) Laplacians that are consistent.
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Homogenization at smaller length scales
Suppose ∆ε,Xnu ≡ 0. Let X0,X1,X2, . . . , be a random walk on the graph. Then u(Xk )
is a martingale and so for any k

u(x) = E[u(Xk ) |X0 = x ]

If we define

Lku(x) := E[u(x)− u(Xk ) |X0 = x ].

Then Lku ≡ 0. Lk is a graph Laplacian; indeed, we can write

Lku(x) =
n∑

i=1

P(Xk = xi |X0 = x)(u(x)− u(xi))

The graph Laplacian Lk has effective length scale εk = ε
√
k . Hence, for O(εk )

pointwise consistency, we should only need

ε
√
k = εk ≥

(
log(n)

n

) 1
m+4

.
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Homogenization at smaller length scales

We can write this condition as

nεm(ε4k
m+4
m )� log(n).

If we assume nεm+p � log(n) for p ≥ 0, then the smallest choice for k yields the
effective length scale

ε = εk = ε
m+p
m+4 .

If we take p = 0, we are at graph connectivity, and

ε = εk = ε
m

m+4 .

So we expect nearly linear rates even at the smallest length scales.

All of this requires proving Gaussian estimates on the heat kernel

pk (x , xi) = P(Xk = xi |X0 = x)

when ε is small.
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