Discrete regularity for graph Laplacians

Jeff Calder
School of Mathematics
University of Minnesota

Workshop on Stochastic Analysis Related to Hamilton-Jacobi PDEs Institute for Pure and Applied Mathematics

May 19, 2020
Joint work with: Nicolas Garcia Trillos (Wisconsin) and Marta Lewicka (Pittsburgh)

Research supported by NSF-DMS grant 1713691

Outline

(1) Introduction

- Graph-based learning
- Spectral clustering
- The manifold assumption
(2) Main results
- Lipschitz regularity
- Spectral convergence
(3) Sketch of the proof
- Outline
- Lifting to the manifold
- Lipschitz estimate
(4) Future work
- Homogenization at small length scales

Outline

(1) Introduction

- Graph-based learning
- Spectral clustering
- The manifold assumption
(2) Main results
- Lipschitz regularity
- Spectral convergence
(3) Sketch of the proof
- Outline
- Lifting to the manifold
- Lipschitz estimate

4) Future work

- Homogenization at small length scales

Outline

(1) Introduction

- Graph-based learning
- Spectral clustering
- The manifold assumption
(2) Main results
- Lipschitz regularity
- Spectral convergence
(3) Sketch of the proof
- Outline
- Lifting to the manifold
- Lipschitz estimate

4) Future work

- Homogenization at small length scales

Graph-based learning

Let $(\mathcal{X}, \mathcal{W})$ be a graph.

- $\mathcal{X} \subset \mathbb{R}^{d}$ are the vertices.
- $\mathcal{W}=\left(w_{x y}\right)_{x, y \in \mathcal{X}}$ are nonnegative edge weights.

Graph-based learning

Let $(\mathcal{X}, \mathcal{W})$ be a graph.

- $\mathcal{X} \subset \mathbb{R}^{d}$ are the vertices.
- $\mathcal{W}=\left(w_{x y}\right)_{x, y \in \mathcal{X}}$ are nonnegative edge weights.

In data science/machine learning, data is often given a graph structure. In this case $w_{x y}$ is large when x and y are similar, and small or $w_{x y}=0$ otherwise.

Graph-based learning

Let $(\mathcal{X}, \mathcal{W})$ be a graph.

- $\mathcal{X} \subset \mathbb{R}^{d}$ are the vertices.
- $\mathcal{W}=\left(w_{x y}\right)_{x, y \in \mathcal{X}}$ are nonnegative edge weights.

In data science/machine learning, data is often given a graph structure. In this case $w_{x y}$ is large when x and y are similar, and small or $w_{x y}=0$ otherwise.

Common graph-based learning tasks

- Clustering
- Grouping similar datapoints
- Semi-supervised learning.
- Clustering with some label information.

MNIST (70,000 28×28 pixel images of digits 0-9)

| 5 | 0 | 4 | 1 | 9 | 2 | 1 | 3 | 1 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 5 | 3 | 6 | 1 | 7 | 2 | 8 | 6 | 9 |
| 4 | 0 | 9 | 1 | 1 | 2 | 4 | 3 | 2 | 7 |
| 3 | 8 | 6 | 9 | 0 | 5 | 6 | 0 | 7 | 6 |
| 1 | 8 | 1 | 9 | 3 | 9 | 8 | 5 | 9 | 3 |
| 3 | 0 | 7 | 4 | 9 | 8 | 0 | 9 | 4 | 1 |
| 4 | 4 | 6 | 9 | 4 | 5 | 6 | 1 | 0 | 0 |
| 1 | 7 | 1 | 6 | 3 | 0 | 2 | 1 | 1 | 1 |
| 9 | 0 | 2 | 6 | 7 | 8 | 3 | 9 | 0 | 4 |
| 6 | 7 | 4 | 6 | 8 | 0 | 7 | 8 | 3 | 1 |

MNIST (70,000 28×28 pixel images of digits 0-9)

| 5 | 0 | 4 | 1 | 9 | 2 | 1 | 3 | 1 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 5 | 3 | 6 | 1 | 7 | 2 | 8 | 6 | 9 |
| 4 | 0 | 9 | 1 | 1 | 2 | 4 | 3 | 2 | 7 |
| 3 | 8 | 6 | 9 | 0 | 5 | 6 | 0 | 7 | 6 |
| 1 | 8 | 1 | 9 | 3 | 9 | 8 | 5 | 9 | 3 |
| 3 | 0 | 7 | 4 | 9 | 8 | 0 | 9 | 4 | 1 |
| 4 | 4 | 6 | 0 | 4 | 5 | 6 | 1 | 0 | 0 |
| 1 | 7 | 1 | 6 | 3 | 0 | 2 | 1 | 1 | 7 |
| 9 | 0 | 2 | 6 | 7 | 8 | 3 | 9 | 0 | 4 |
| 6 | 7 | 4 | 6 | 8 | 0 | 7 | 8 | 3 | 1 |

- Each image is a datapoint

$$
x \in \mathbb{R}^{28 \times 28}=\mathbb{R}^{784}
$$

MNIST (70,000 28×28 pixel images of digits 0-9)

| 5 | 0 | 4 | 1 | 9 | 2 | 1 | 3 | 1 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 5 | 3 | 6 | 1 | 7 | 2 | 8 | 6 | 9 |
| 4 | 0 | 9 | 1 | 1 | 2 | 4 | 3 | 2 | 7 |
| 3 | 8 | 6 | 9 | 0 | 5 | 6 | 0 | 7 | 6 |
| 1 | 8 | 1 | 9 | 3 | 9 | 8 | 5 | 9 | 3 |
| 3 | 0 | 7 | 4 | 9 | 8 | 0 | 9 | 4 | 1 |
| 4 | 4 | 6 | 0 | 4 | 5 | 6 | 1 | 0 | 0 |
| 1 | 7 | 1 | 6 | 3 | 0 | 2 | 1 | 1 | 7 |
| 9 | 0 | 2 | 6 | 7 | 8 | 3 | 9 | 0 | 4 |
| 6 | 7 | 4 | 6 | 8 | 0 | 7 | 8 | 3 | 1 |

- Each image is a datapoint

$$
x \in \mathbb{R}^{28 \times 28}=\mathbb{R}^{784}
$$

- Geometric weights:

$$
w_{x y}=\eta\left(\frac{|x-y|}{\varepsilon}\right)
$$

MNIST (70,000 28×28 pixel images of digits 0-9)

| 5 | 0 | 4 | 1 | 9 | 2 | 1 | 3 | 1 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 5 | 3 | 6 | 1 | 7 | 2 | 8 | 6 | 9 |
| 4 | 0 | 9 | 1 | 1 | 2 | 4 | 3 | 2 | 7 |
| 3 | 8 | 6 | 9 | 0 | 5 | 6 | 0 | 7 | 6 |
| 1 | 8 | 1 | 9 | 3 | 9 | 8 | 5 | 9 | 3 |
| 3 | 0 | 7 | 4 | 9 | 8 | 0 | 9 | 4 | 1 |
| 4 | 4 | 6 | 0 | 4 | 5 | 6 | 1 | 0 | 0 |
| 1 | 7 | 1 | 6 | 3 | 0 | 2 | 1 | 1 | 1 |
| 9 | 0 | 2 | 6 | 7 | 8 | 3 | 9 | 0 | 4 |
| 6 | 7 | 4 | 6 | 8 | 0 | 7 | 8 | 3 | 1 |

- Each image is a datapoint

$$
x \in \mathbb{R}^{28 \times 28}=\mathbb{R}^{784}
$$

- Geometric weights:

$$
w_{x y}=\eta\left(\frac{|x-y|}{\varepsilon}\right)
$$

- k-nearest neighbor graph:

$$
w_{x y}=\eta\left(\frac{|x-y|}{\varepsilon_{k}(x)}\right)
$$

Clustering MNIST

https://divamgupta.com

Outline

(1) Introduction

- Graph-based learning
- Spectral clustering
- The manifold assumption
(2) Main results
- Lipschitz regularity
- Spectral convergence
(3) Sketch of the proof
- Outline
- Lifting to the manifold
- Lipschitz estimate

4) Future work

- Homogenization at small length scales

Graph cuts

Question: How do we cluster graph data?

Graph cuts

Question: How do we cluster graph data?

Consider binary clustering (two classes). We can try to minimize a graph cut energy

$$
\text { (Min-Cut) } \min _{A \subset \mathcal{X}} \operatorname{Cut}(A):=\sum_{\substack{x, y \in \mathcal{X} \\ x \in A, y \notin A}} w_{x y} \text {. }
$$

Graph cuts

Question: How do we cluster graph data?

Consider binary clustering (two classes). We can try to minimize a graph cut energy

$$
\text { (Min-Cut) } \min _{A \subset \mathcal{X}} \operatorname{Cut}(A):=\sum_{\substack{x, y \in \mathcal{X} \\ x \in A, y \notin A}} w_{x y} .
$$

Tends to produce unbalanced classes (e.g., $A=\{x\}$).

Graph cuts

Question: How do we cluster graph data?

Consider binary clustering (two classes). We can try to minimize a graph cut energy

$$
\text { (Balanced-Cut) } \quad \min _{A \subset \mathcal{X}} \frac{\operatorname{Cut}(A)}{\operatorname{Vol}(A) \operatorname{Vol}(\mathcal{X} \backslash A)}
$$

where

$$
\operatorname{Vol}(A)=\sum_{x \in A} \sum_{y \in X} w_{x y} .
$$

Graph cuts

Question: How do we cluster graph data?

Consider binary clustering (two classes). We can try to minimize a graph cut energy

$$
\text { (Balanced-Cut) } \min _{A \subset \mathcal{X}} \frac{\operatorname{Cut}(A)}{\operatorname{Vol}(A) \operatorname{Vol}(\mathcal{X} \backslash A)}
$$

where

$$
\operatorname{Vol}(A)=\sum_{x \in A} \sum_{y \in X} w_{x y}
$$

Gives good clusterings but very computationally hard (NP-hard).

Spectral clustering

For $A \subset \mathcal{X}$ set

$$
u(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { otherwise }\end{cases}
$$

Spectral clustering

For $A \subset \mathcal{X}$ set

$$
u(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { otherwise } .\end{cases}
$$

Then we have

$$
\operatorname{Cut}(A)=\sum_{\substack{x, y \in \mathcal{X} \\ x \in A, y \notin A}} w_{x y}=\frac{1}{2} \sum_{x, y \in \mathcal{X}} w_{x y}(u(x)-u(y))^{2}
$$

and

$$
\operatorname{Vol}(\mathrm{A})=\sum_{x, y \in \mathcal{X}} w_{x y} u(x) .
$$

Spectral clustering

For $A \subset \mathcal{X}$ set

$$
u(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { otherwise } .\end{cases}
$$

Then we have

$$
\operatorname{Cut}(A)=\sum_{\substack{x, y \in \mathcal{X} \\ x \in A, y \notin A}} w_{x y}=\frac{1}{2} \sum_{x, y \in \mathcal{X}} w_{x y}(u(x)-u(y))^{2}
$$

and

$$
\operatorname{Vol}(\mathrm{A})=\sum_{x, y \in \mathcal{X}} w_{x y} u(x) .
$$

This allow us to write the balanced cut problem as

$$
\min _{u: \mathcal{X} \rightarrow\{0,1\}} \frac{\sum_{x, y \in \mathcal{X}} w_{x y}(u(x)-u(y))^{2}}{\sum_{x, y, x^{\prime}, y^{\prime} \in \mathcal{X}} u(x) w_{x y}\left(1-u\left(y^{\prime}\right)\right) w_{x^{\prime} y^{\prime}}}
$$

Spectral clustering

Consider solving the similar, relaxed, problem

$$
\min _{\substack{u: \mathcal{X} \rightarrow \mathbb{R} \\ \sum_{x \in \mathcal{X}} u(x) \neq 0}} \frac{\sum_{x, y \in \mathcal{X}} w_{x y}(u(x)-u(y))^{2}}{\sum_{x \in \mathcal{X}} u(x)^{2}}
$$

Spectral clustering

Consider solving the similar, relaxed, problem

$$
\min _{\substack{u: \mathcal{X} \rightarrow \mathbb{R} \\ \sum_{x \in \mathcal{X}}^{u(x) \neq 0}}} \frac{\sum_{x, y \in \mathcal{X}} w_{x y}(u(x)-u(y))^{2}}{\sum_{x \in \mathcal{X}} u(x)^{2}}
$$

The solution is the smallest non-trivial eigenvector (Fiedler vector) of the graph Laplacian

$$
\Delta u(x)=\sum_{y \in \mathcal{X}} w_{x y}(u(x)-u(y)) .
$$

Spectral clustering

Consider solving the similar, relaxed, problem

$$
\min _{\substack{u: \mathcal{X} \rightarrow \mathbb{R} \\ \sum_{x \in \mathcal{X}} u(x) \neq 0}} \frac{\sum_{x, y \in \mathcal{X}} w_{x y}(u(x)-u(y))^{2}}{\sum_{x \in \mathcal{X}} u(x)^{2}}
$$

The solution is the smallest non-trivial eigenvector (Fiedler vector) of the graph Laplacian

$$
\Delta u(x)=\sum_{y \in \mathcal{X}} w_{x y}(u(x)-u(y))
$$

Binary spectral clustering:

(1) Compute Fiedler vector $u: \mathcal{X} \rightarrow \mathbb{R}$.
(2) Set $A=\{x \in \mathcal{X}: u(x)>0\}$.

Spectral clustering

Spectral clustering: To cluster into k groups:
(1) Compute first k eigenvectors of the graph Laplacian Δ :

$$
u_{1}, \ldots, u_{k}: \mathcal{X} \rightarrow \mathbb{R}
$$

Spectral clustering

Spectral clustering: To cluster into k groups:
(1) Compute first k eigenvectors of the graph Laplacian Δ :

$$
u_{1}, \ldots, u_{k}: \mathcal{X} \rightarrow \mathbb{R}
$$

(2) Define the spectral embedding $\Psi: \mathcal{X} \rightarrow \mathbb{R}^{k}$ by

$$
\Psi(x)=\left(u_{1}(x), u_{2}(x), \ldots, u_{k}(x)\right)
$$

Spectral clustering

Spectral clustering: To cluster into k groups:
(1) Compute first k eigenvectors of the graph Laplacian Δ :

$$
u_{1}, \ldots, u_{k}: \mathcal{X} \rightarrow \mathbb{R}
$$

(2) Define the spectral embedding $\Psi: \mathcal{X} \rightarrow \mathbb{R}^{k}$ by

$$
\Psi(x)=\left(u_{1}(x), u_{2}(x), \ldots, u_{k}(x)\right)
$$

(3) Cluster the point cloud $\mathcal{Y}=\Psi(\mathcal{X})$ with your favorite clustering algorithm (often k-means).

Spectral methods in data science

Spectral methods are widely used for dimension reduction and clustering in data science and machine learning.

- Spectral clustering [Shi and Malik (2000)] [Ng , Jordan, and Weiss (2002)]
- Laplacian eigenmaps [Belkin and Niyogi (2003)]
- Diffusion maps [Coifman and Lafon (2006)]

Spectral embedding: MNIST

Digits 1 and 2 from MNIST visualized with spectral projection

Spectral embedding: MNIST

Digits 1 (blue) and 2 (red) from MNIST visualized with spectral projection

Application: Segmenting broken bone fragments

Spectral clustering with weights

$$
w_{i j}=\exp \left(-C\left|\mathbf{n}_{i}-\mathbf{n}_{j}\right|^{p}\right)
$$

between nearby points on the mesh, where \mathbf{n}_{i} is the outward normal vector at vertex i.

Outline

(1) Introduction

- Graph-based learning
- Spectral clustering
- The manifold assumption
(2) Main results
- Lipschitz regularity
- Spectral convergence
(3) Sketch of the proof
- Outline
- Lifting to the manifold
- Lipschitz estimate

4) Future work

- Homogenization at small length scales

Manifold assumption

Let $\mathcal{M} \subset \mathbb{R}^{d}$ be a compact, connected, orientable, smooth, m-dimensional manifold.

Manifold assumption

Let $\mathcal{M} \subset \mathbb{R}^{d}$ be a compact, connected, orientable, smooth, m-dimensional manifold.

We give to \mathcal{M} the Riemannian structure induced by the ambient space \mathbb{R}^{d}. The geodesic distance between $x, y \in \mathcal{M}$ is denoted $d_{\mathcal{M}}(x, y)$ and

$$
B_{\mathcal{M}}(x, r)=\left\{y \in \mathcal{M}: d_{\mathcal{M}}(x, y)<r\right\} .
$$

By $d V o l$ we denote the volume form on \mathcal{M}.

Manifold assumption

Let $\rho \in C^{2}(\mathcal{M}), \rho>0$, and let

$$
\mathcal{X}_{n}=\left\{x_{1}, \ldots, x_{n}\right\}
$$

be an i.i.d. sample from the distribution $\rho d \operatorname{Vol}_{\mathcal{M}}$.

Manifold assumption

Let $\rho \in C^{2}(\mathcal{M}), \rho>0$, and let

$$
\mathcal{X}_{n}=\left\{x_{1}, \ldots, x_{n}\right\}
$$

be an i.i.d. sample from the distribution $\rho d V o l_{\mathcal{M}}$.
Let $\eta:[0, \infty) \rightarrow[0, \infty)$ be non-increasing with

$$
\eta(t)=0 \quad \text { for } \quad t>1
$$

We assume $\left.\eta\right|_{[0,1]}$ is Lipschitz and that

$$
\int_{\mathbb{R}^{m}} \eta(|w|) d w=1
$$

Manifold assumption

Let $\rho \in C^{2}(\mathcal{M}), \rho>0$, and let

$$
\mathcal{X}_{n}=\left\{x_{1}, \ldots, x_{n}\right\}
$$

be an i.i.d. sample from the distribution $\rho d \operatorname{Vol}_{\mathcal{M}}$.
Let $\eta:[0, \infty) \rightarrow[0, \infty)$ be non-increasing with

$$
\eta(t)=0 \quad \text { for } \quad t>1
$$

We assume $\left.\eta\right|_{[0,1]}$ is Lipschitz and that

$$
\int_{\mathbb{R}^{m}} \eta(|w|) d w=1
$$

Let $\varepsilon>0$. The weights in the graph are

$$
w_{x y}=\eta\left(\frac{|x-y|}{\varepsilon}\right) .
$$

The resulting graph is called a random geometric graph.

Spectral convergence

The spectrum of the graph-Laplacian converges $(n \rightarrow \infty, \varepsilon \rightarrow 0)$ to the spectrum of the weighted Laplace-Beltrami operator

$$
\Delta_{\mathcal{M}} u=-\rho^{-1} \operatorname{div}_{\mathcal{M}}\left(\rho^{2} \nabla_{\mathcal{M}} u\right)
$$

Spectral convergence

The spectrum of the graph-Laplacian converges $(n \rightarrow \infty, \varepsilon \rightarrow 0)$ to the spectrum of the weighted Laplace-Beltrami operator

$$
\Delta_{\mathcal{M}} u=-\rho^{-1} \operatorname{div}_{\mathcal{M}}\left(\rho^{2} \nabla_{\mathcal{M}} u\right)
$$

Spectral convergence results under manifold assumption:

- Belkin and Niyogi (2007)
- Shi (2015): $O\left(n^{-1 /(4 m+14)}\right)$ rate in L^{2}.
- Trillos and Slepcev (2016)
- Singer and Wu (2017)
- Trillos, Gerlach, Hein, and Slepcev (2018): $O\left(n^{-1 / 4 m}\right)$ rate in L^{2}
- C., Trillos (2019): $O\left(n^{-1 /(m+4)}\right)$ rate in L^{2}
- Dunson, Wu, Wu (2019): $O\left(n^{-1 /(4 m+15)}\right)$ rate in L^{∞}

Similar non-probabilistic results

- Fujiwara (1995), Burago, Ivanov and Kurylev (2014)

Outline of talk

Challenges for analysis:

- Spectral convergence results are hard because many useful PDE tools do not transfer to the graph-setting.

Outline of talk

Challenges for analysis:

- Spectral convergence results are hard because many useful PDE tools do not transfer to the graph-setting.
- Randomness in the graph can average out (homogenize) in ways that are difficult to analyze.

Outline of talk

Challenges for analysis:

- Spectral convergence results are hard because many useful PDE tools do not transfer to the graph-setting.
- Randomness in the graph can average out (homogenize) in ways that are difficult to analyze.

Question: What type of PDE tools (e.g., elliptic regularity) can we push to the random geometric graph setting?

Outline of talk

Challenges for analysis:

- Spectral convergence results are hard because many useful PDE tools do not transfer to the graph-setting.
- Randomness in the graph can average out (homogenize) in ways that are difficult to analyze.

Question: What type of PDE tools (e.g., elliptic regularity) can we push to the random geometric graph setting?

Today's talk: Lipschitz regularity for solutions of graph Poisson equations

$$
\Delta u=f
$$

and applications to spectral convergence.

Calder, J. and Garcia Trillos, N., Lewicka, M. Lipschitz regularity of graph Laplacians on random data clouds, In preparation, 2020.

Outline

(1) Introduction

- Graph-based learning
- Spectral clustering
- The manifold assumption
(2) Main results
- Lipschitz regularity
- Spectral convergence
(3) Sketch of the proof
- Outline
- Lifting to the manifold
- Lipschitz estimate

4) Future work

- Homogenization at small length scales

Outline

(1) Introduction

- Graph-based learning
- Spectral clustering
- The manifold assumption
(2) Main results
- Lipschitz regularity
- Spectral convergence
(3) Sketch of the proof
- Outline
- Lifting to the manifold
- Lipschitz estimate

4) Future work

- Homogenization at small length scales

Main results: Global Lipschitz regularity

Take the manifold assumption for $\mathcal{X}_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.

We define the graph Laplacian $\Delta_{\varepsilon, \mathcal{X}_{n}}: L^{2}\left(\mathcal{X}_{n}\right) \rightarrow L^{2}\left(\mathcal{X}_{n}\right)$ by

$$
\Delta_{\varepsilon, \mathcal{X}_{n}} u\left(x_{i}\right)=\frac{1}{n \varepsilon^{m+2}} \sum_{j=1}^{n} \eta\left(\frac{\left|x_{i}-x_{j}\right|}{\varepsilon}\right)\left(u\left(x_{i}\right)-u\left(x_{j}\right)\right) .
$$

Main results: Global Lipschitz regularity

Take the manifold assumption for $\mathcal{X}_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.

We define the graph Laplacian $\Delta_{\varepsilon, \mathcal{X}_{n}}: L^{2}\left(\mathcal{X}_{n}\right) \rightarrow L^{2}\left(\mathcal{X}_{n}\right)$ by

$$
\Delta_{\varepsilon, \mathcal{X}_{n}} u\left(x_{i}\right)=\frac{1}{n \varepsilon^{m+2}} \sum_{j=1}^{n} \eta\left(\frac{\left|x_{i}-x_{j}\right|}{\varepsilon}\right)\left(u\left(x_{i}\right)-u\left(x_{j}\right)\right)
$$

Theorem (C., Garcia Trillos, Lewicka, 2020)
Let $\varepsilon \ll 1$. Then, with probability at least $1-C \varepsilon^{-6 m} \exp \left(-c n \varepsilon^{m+4}\right)$ we have

$$
\left|u\left(x_{i}\right)-u\left(x_{j}\right)\right| \leq C\left(\|u\|_{L^{\infty}\left(\mathcal{X}_{n}\right)}+\left\|\Delta_{\varepsilon, \mathcal{X}_{n}} u\right\|_{L^{\infty}\left(\mathcal{X}_{n}\right)}\right) \cdot\left(d_{\mathcal{M}}\left(x_{i}, x_{j}\right)+\varepsilon\right)
$$

for all $u \in L^{2}\left(\mathcal{X}_{n}\right)$ and all $x_{i}, x_{j} \in \mathcal{X}_{n}$.

Main results: Interior Lipschitz regularity

We define the graph Laplacian $\Delta_{\varepsilon, \mathcal{X}_{n}}: L^{2}\left(\mathcal{X}_{n}\right) \rightarrow L^{2}\left(\mathcal{X}_{n}\right)$ by

$$
\Delta_{\varepsilon, \mathcal{X}_{n}} u(x)=\frac{1}{n \varepsilon^{m+2}} \sum_{j=1}^{n} \eta\left(\frac{\left|x-x_{j}\right|}{\varepsilon}\right)\left(u(x)-u\left(x_{j}\right)\right) .
$$

Theorem (C., Garcia Trillos, Lewicka, 2020)

Let $0<r<\operatorname{diam}(\mathcal{M})$ where $\operatorname{diam}(\mathcal{M})$ is the diameter of \mathcal{M}. Then, for every $\varepsilon>0$ satisfying $\frac{(\log (\varepsilon) \mid+1) \varepsilon}{r} \ll 1$, with probability at least $1-C \varepsilon^{-6 m} \exp \left(-c n \varepsilon^{m+4}\right)$ we have

$$
\begin{gathered}
\left|u\left(x_{i}\right)-u\left(x_{j}\right)\right| \leq C\|u\|_{L^{\infty}\left(\mathcal{X}_{n} \cap B_{\mathcal{M}}(x, 7 r)\right)}\left(\varepsilon+\frac{|\log (\varepsilon)| \varepsilon}{r}+\frac{d_{\mathcal{M}}\left(x_{i}, x_{j}\right)}{r}\right) \\
+C \varepsilon\left\|\Delta_{\varepsilon, \mathcal{X}_{n}} u\right\|_{L^{\infty}\left(\mathcal{X}_{n} \cap B_{\mathcal{M}}(x, 7 r)\right)},
\end{gathered}
$$

for all $u \in L^{2}\left(\mathcal{X}_{n}\right), x \in \mathcal{M}, r>0$, and $x_{i}, x_{j} \in B_{\mathcal{M}}(x, r) \cap \mathcal{X}_{n}$.

Main results: Lipschitz regularity of eigenvectors

Theorem (C., Garcia Trillos, Lewicka, 2020)
Let $\Lambda>0$ and $\varepsilon \ll 1$, and suppose that $\varepsilon \leq \frac{c}{\Lambda+1}$. Then, with probability at least $1-C \varepsilon^{-6 m} \exp \left(-c n \varepsilon^{m+4}\right)-2 n \exp \left(-c n(\Lambda+1)^{-m}\right)$ we have

$$
\left|u\left(x_{i}\right)-u\left(x_{j}\right)\right| \leq C(\Lambda+1)^{m+1}\|u\|_{L^{1}\left(\mathcal{X}_{n}\right)}\left(d_{\mathcal{M}}\left(x_{i}, x_{j}\right)+\varepsilon\right)
$$

valid for all non-identically zero $u \in L^{2}\left(\mathcal{X}_{n}\right)$ with $\lambda_{u} \leq \Lambda$ and all $x_{i}, x_{j} \in \mathcal{X}_{n}$. Here,

$$
\lambda_{u}=\frac{\left\|\Delta_{\varepsilon, \mathcal{X}_{n}} u\right\|_{L^{\infty}\left(\mathcal{X}_{n}\right)}}{\|u\|_{L^{\infty}\left(\mathcal{X}_{n}\right)}}
$$

Main results: Lipschitz regularity of eigenvectors

Theorem (C., Garcia Trillos, Lewicka, 2020)

Let $\Lambda>0$ and $\varepsilon \ll 1$, and suppose that $\varepsilon \leq \frac{c}{\Lambda+1}$. Then, with probability at least $1-C \varepsilon^{-6 m} \exp \left(-c n \varepsilon^{m+4}\right)-2 n \exp \left(-c n(\Lambda+1)^{-m}\right)$ we have

$$
\left|u\left(x_{i}\right)-u\left(x_{j}\right)\right| \leq C(\Lambda+1)^{m+1}\|u\|_{L^{1}\left(\mathcal{X}_{n}\right)}\left(d_{\mathcal{M}}\left(x_{i}, x_{j}\right)+\varepsilon\right)
$$

valid for all non-identically zero $u \in L^{2}\left(\mathcal{X}_{n}\right)$ with $\lambda_{u} \leq \Lambda$ and all $x_{i}, x_{j} \in \mathcal{X}_{n}$. Here,

$$
\lambda_{u}=\frac{\left\|\Delta_{\varepsilon, \mathcal{X}_{n}} u\right\|_{L^{\infty}\left(\mathcal{X}_{n}\right)}}{\|u\|_{L^{\infty}\left(\mathcal{X}_{n}\right)}}
$$

Corollary (C., Garcia Trillos, Lewicka, 2020)

Under the same conditions as above

$$
\|u\|_{L^{\infty}\left(\mathcal{X}_{n}\right)} \leq C(\Lambda+1)^{m+1}\|u\|_{L^{1}\left(\mathcal{X}_{n}\right)}
$$

for all u non-identically zero with $\lambda_{u} \leq \Lambda$.

Outline

(1) Introduction

- Graph-based learning
- Spectral clustering
- The manifold assumption
(2) Main results
- Lipschitz regularity
- Spectral convergence
(3) Sketch of the proof
- Outline
- Lifting to the manifold
- Lipschitz estimate
(4) Future work
- Homogenization at small length scales

Main results: Spectral convergence

Recall the continuum weighted Laplace-Beltrami operator.

$$
\Delta_{\mathcal{M}} u(x)=-\rho^{-1} \operatorname{div}_{\mathcal{M}}\left(\rho^{2} \nabla_{\mathcal{M}} u\right)
$$

We also define

$$
[u]_{\varepsilon, \mathcal{X}_{n}}=\max _{x, y \in \mathcal{X}_{n}} \frac{|u(x)-u(y)|}{d_{\mathcal{M}}(x, y)+\varepsilon} .
$$

Theorem (C., Garcia Trillos, Lewicka, 2020)

Let $\varepsilon \ll 1$ and suppose that $u_{n, \varepsilon}$ is a normalized eigenvector of $\Delta_{\varepsilon, \mathcal{X}_{n}}$. Then, with probability at least $1-C\left(n+\varepsilon^{-6 m}\right) \exp \left(-c n \varepsilon^{m+4}\right)$ there exists a normalized eigenfunction u of $\Delta_{\mathcal{M}}$ for which

$$
\left\|u_{n, \varepsilon}-u\right\|_{L^{\infty}\left(\mathcal{X}_{n}\right)}+\left[u_{n, \varepsilon}-u\right]_{\varepsilon, \mathcal{X}_{n}} \leq C \varepsilon
$$

where the constant C depends on u, \mathcal{M}, ρ.

Main results: Spectral convergence

Recall the continuum weighted Laplace-Beltrami operator.

$$
\Delta_{\mathcal{M}} u(x)=-\rho^{-1} \operatorname{div}_{\mathcal{M}}\left(\rho^{2} \nabla_{\mathcal{M}} u\right)
$$

We also define

$$
[u]_{\varepsilon, \mathcal{X}_{n}}=\max _{x, y \in \mathcal{X}_{n}} \frac{|u(x)-u(y)|}{d_{\mathcal{M}}(x, y)+\varepsilon} .
$$

Theorem (C., Garcia Trillos, Lewicka, 2020)

Let $\varepsilon \ll 1$ and suppose that $u_{n, \varepsilon}$ is a normalized eigenvector of $\Delta_{\varepsilon, \mathcal{X}_{n}}$. Then, with probability at least $1-C\left(n+\varepsilon^{-6 m}\right) \exp \left(-c n \varepsilon^{m+4}\right)$ there exists a normalized eigenfunction u of $\Delta_{\mathcal{M}}$ for which

$$
\left\|u_{n, \varepsilon}-u\right\|_{L^{\infty}\left(\mathcal{X}_{n}\right)}+\left[u_{n, \varepsilon}-u\right]_{\varepsilon, \mathcal{X}_{n}} \leq C \varepsilon
$$

where the constant C depends on u, \mathcal{M}, ρ.

Optimal choice for ε satisfies $n \varepsilon^{m+4}=C \log (n)$, which gives rates $O\left(n^{-1 /(m+4)}\right)$.

Outline

(1) Introduction

- Graph-based learning
- Spectral clustering
- The manifold assumption
(2) Main results
- Lipschitz regularity
- Spectral convergence
(3) Sketch of the proof
- Outline
- Lifting to the manifold
- Lipschitz estimate

4) Future work

- Homogenization at small length scales

Outline

(1) Introduction

- Graph-based learning
- Spectral clustering
- The manifold assumption
(2) Main results
- Lipschitz regularity
- Spectral convergence
(3) Sketch of the proof
- Outline
- Lifting to the manifold
- Lipschitz estimate
(4) Future work
- Homogenization at small length scales

Outline of proof

Main ideas:

(1) We lift the problem from the graph to the manifold \mathcal{M} obtaining a related nonlocal Laplacian

$$
\Delta_{\varepsilon} u(x)=\frac{1}{\varepsilon^{m+2}} \int_{\mathcal{M}} \eta\left(\frac{d_{\mathcal{M}}(x, y)}{\varepsilon}\right)(u(x)-u(y)) \rho(y) d \operatorname{Vol}(y)
$$

Outline of proof

Main ideas:

(1) We lift the problem from the graph to the manifold \mathcal{M} obtaining a related nonlocal Laplacian

$$
\Delta_{\varepsilon} u(x)=\frac{1}{\varepsilon^{m+2}} \int_{\mathcal{M}} \eta\left(\frac{d_{\mathcal{M}}(x, y)}{\varepsilon}\right)(u(x)-u(y)) \rho(y) d \operatorname{Vol}(y)
$$

(2) We prove the Lipschitz estimate for Δ_{ε} using a specific coupling of suitable random walks.

- The coupling is based on the reflection coupling of [Lindvall \& Rogers, 1986], with additional ingredients to handle a drift term.

Outline

(1) Introduction

- Graph-based learning
- Spectral clustering
- The manifold assumption
(2) Main results
- Lipschitz regularity
- Spectral convergence
(3) Sketch of the proof
- Outline
- Lifting to the manifold
- Lipschitz estimate
(4) Future work
- Homogenization at small length scales

Lifting to the manifold

Recall the graph Laplacian

$$
\Delta_{\varepsilon, \mathcal{X}_{n}} u(x)=\frac{1}{n \varepsilon^{m+2}} \sum_{j=1}^{n} \eta\left(\frac{\left|x-x_{j}\right|}{\varepsilon}\right)\left(u(x)-u\left(x_{j}\right)\right) .
$$

If $u: \mathcal{M} \rightarrow \mathbb{R}$ is a smooth function, then we can compute for any $x \in \mathcal{M}$

$$
\mathbb{E}\left[\Delta_{\varepsilon, \mathcal{X}_{n}} u(x)\right]=\frac{1}{\varepsilon^{m+2}} \int_{\mathcal{M}} \eta\left(\frac{|x-y|}{\varepsilon}\right)(u(x)-u(y)) \rho(y) d \operatorname{Vol}(y)
$$

Lifting to the manifold

Recall the graph Laplacian

$$
\Delta_{\varepsilon, \mathcal{X}_{n}} u(x)=\frac{1}{n \varepsilon^{m+2}} \sum_{j=1}^{n} \eta\left(\frac{\left|x-x_{j}\right|}{\varepsilon}\right)\left(u(x)-u\left(x_{j}\right)\right) .
$$

If $u: \mathcal{M} \rightarrow \mathbb{R}$ is a smooth function, then we can compute for any $x \in \mathcal{M}$

$$
\mathbb{E}\left[\Delta_{\varepsilon, \mathcal{X}_{n}} u(x)\right]=\frac{1}{\varepsilon^{m+2}} \int_{\mathcal{M}} \eta\left(\frac{|x-y|}{\varepsilon}\right)(u(x)-u(y)) \rho(y) d \operatorname{Vol}(y)
$$

An application of Bernstein's inequality yields

$$
\mathbb{P}\left(\left|\Delta_{\varepsilon, \mathcal{X}_{n}} u(x)-\mathbb{E}\left[\Delta_{\varepsilon, \mathcal{X}_{n}} u(x)\right]\right| \geq C \operatorname{Lip}(u) t\right) \leq 2 \exp \left(-C n \varepsilon^{m+2} t^{2}\right) \quad \text { for } 0<t \leq 1
$$

Theorem (Bernstein's inequality)

Let Y_{1}, \ldots, Y_{n} be i.i.d. with mean $\mu=\mathbb{E}\left[Y_{i}\right]$ and variance $\sigma^{2}=\mathbb{E}\left[\left(Y_{i}-\mathbb{E}\left[Y_{i}\right]\right)^{2}\right]$, and assume $\left|Y_{i}\right| \leq M$ almost surely for all i. Then for any $t>0$

$$
\mathbb{P}\left(\left|\sum_{i=1}^{n} Y_{i}-n \mu\right|>n t\right) \leq 2 \exp \left(-\frac{n t^{2}}{2 \sigma^{2}+4 M t / 3}\right) .
$$

Lifting to the manifold

Recall the graph Laplacian

$$
\Delta_{\varepsilon, \mathcal{X}_{n}} u\left(x_{i}\right)=\frac{1}{n \varepsilon^{m+2}} \sum_{j=1}^{n} \eta\left(\frac{\left|x_{i}-x_{j}\right|}{\varepsilon}\right)\left(u\left(x_{i}\right)-u\left(x_{j}\right)\right)
$$

If $u: \mathcal{M} \rightarrow \mathbb{R}$ is a smooth function, then we can compute for any $x \in \mathcal{M}$

$$
\mathbb{E}\left[\Delta_{\varepsilon, \mathcal{X}_{n}} u(x)\right]=\frac{1}{\varepsilon^{m+2}} \int_{\mathcal{M}} \eta\left(\frac{|x-y|}{\varepsilon}\right)(u(x)-u(y)) \rho(y) d \operatorname{Vol}(y)
$$

An application of Bernstein's inequality yields

$$
\mathbb{P}\left(\left|\Delta_{\varepsilon, \mathcal{X}_{n}} u(x)-\mathbb{E}\left[\Delta_{\varepsilon, \mathcal{X}_{n}} u(x)\right]\right| \geq C \operatorname{Lip}(u) t\right) \leq 2 \exp \left(-C n \varepsilon^{m+2} t^{2}\right) \quad \text { for } 0<t \leq 1
$$

For $\varepsilon \ll 1$ and $|x-y| \leq \varepsilon$ we have

$$
|x-y| \leq d_{\mathcal{M}}(x, y) \leq|x-y|+O\left(\varepsilon^{3}\right)
$$

Therefore

$$
\mathbb{P}\left(\left|\Delta_{\varepsilon, \mathcal{X}_{n}} u(x)-\Delta_{\varepsilon} u(x)\right| \geq C \operatorname{Lip}(u) t+C \varepsilon\right) \leq 2 \exp \left(-C n \varepsilon^{m+2} t^{2}\right) \quad \text { for } 0<t \leq 1
$$

Pointwise consistency

As an aside, for smooth functions u, the nonlocal Laplacian

$$
\Delta_{\varepsilon} u(x)=\frac{1}{\varepsilon^{m+2}} \int_{\mathcal{M}} \eta\left(\frac{d_{\mathcal{M}}(x, y)}{\varepsilon}\right)(u(x)-u(y)) \rho(y) d \operatorname{Vol}(y)
$$

is consistent with a weighted Laplace-Beltrami operator

$$
\Delta_{\mathcal{M}} u(x)=-\rho^{-1} \operatorname{div}_{\mathcal{M}}\left(\rho^{2} \nabla_{\mathcal{M}} u\right)
$$

Pointwise consistency

As an aside, for smooth functions u, the nonlocal Laplacian

$$
\Delta_{\varepsilon} u(x)=\frac{1}{\varepsilon^{m+2}} \int_{\mathcal{M}} \eta\left(\frac{d_{\mathcal{M}}(x, y)}{\varepsilon}\right)(u(x)-u(y)) \rho(y) d \operatorname{Vol}(y)
$$

is consistent with a weighted Laplace-Beltrami operator

$$
\Delta_{\mathcal{M}} u(x)=-\rho^{-1} \operatorname{div}_{\mathcal{M}}\left(\rho^{2} \nabla_{\mathcal{M}} u\right)
$$

Indeed, by Taylor expanding u we can show that

$$
\Delta_{\varepsilon} u(x)=\sigma_{\eta} \Delta_{\mathcal{M}} u(x)+O\left(\varepsilon\|u\|_{C^{3}}\right)
$$

Pointwise consistency

As an aside, for smooth functions u, the nonlocal Laplacian

$$
\Delta_{\varepsilon} u(x)=\frac{1}{\varepsilon^{m+2}} \int_{\mathcal{M}} \eta\left(\frac{d_{\mathcal{M}}(x, y)}{\varepsilon}\right)(u(x)-u(y)) \rho(y) d \operatorname{Vol}(y)
$$

is consistent with a weighted Laplace-Beltrami operator

$$
\Delta_{\mathcal{M}} u(x)=-\rho^{-1} \operatorname{div}_{\mathcal{M}}\left(\rho^{2} \nabla_{\mathcal{M}} u\right)
$$

Indeed, by Taylor expanding u we can show that

$$
\Delta_{\varepsilon} u(x)=\sigma_{\eta} \Delta_{\mathcal{M}} u(x)+O\left(\varepsilon\|u\|_{C^{3}}\right)
$$

This gives pointwise consistency of graph Laplacians [Hein 2007]

$$
\mathbb{P}\left(\left|\Delta_{\varepsilon, \mathcal{X}_{n}} u(x)-\sigma_{\eta} \Delta_{\mathcal{M}} u(x)\right| \geq C \operatorname{Lip}(u) t+C \varepsilon\|u\|_{C^{3}}\right) \leq 2 \exp \left(-C n \varepsilon^{m+2} t^{2}\right)
$$

Note this requires $n \varepsilon^{m+2} \gg 1$, and for $t=\varepsilon$ we need $n \varepsilon^{m+4} \gg 1$.

Interpolation

We define the interpolation operator $\mathcal{I}_{\varepsilon, \mathcal{X}_{n}}: L^{2}\left(\mathcal{X}_{n}\right) \rightarrow L^{2}(\mathcal{M})$ and the degree

$$
\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(x)=\frac{1}{d_{\varepsilon, \mathcal{X}_{n}}(x)} \sum_{i=1}^{n} \eta\left(\frac{\left|x-x_{i}\right|}{\varepsilon}\right) u\left(x_{i}\right)
$$

where $d_{\varepsilon, \mathcal{X}_{n}}(x)$ is the degree of x, given by

$$
d_{\varepsilon, \mathcal{X}_{n}}(x)=\sum_{i=1}^{n} \eta\left(\frac{\left|x-x_{i}\right|}{\varepsilon}\right) .
$$

Interpolation

We define the interpolation operator $\mathcal{I}_{\varepsilon, \mathcal{X}_{n}}: L^{2}\left(\mathcal{X}_{n}\right) \rightarrow L^{2}(\mathcal{M})$ and the degree

$$
\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(x)=\frac{1}{d_{\varepsilon, \mathcal{X}_{n}}(x)} \sum_{i=1}^{n} \eta\left(\frac{\left|x-x_{i}\right|}{\varepsilon}\right) u\left(x_{i}\right)
$$

where $d_{\varepsilon, \mathcal{X}_{n}}(x)$ is the degree of x, given by

$$
d_{\varepsilon, \mathcal{X}_{n}}(x)=\sum_{i=1}^{n} \eta\left(\frac{\left|x-x_{i}\right|}{\varepsilon}\right) .
$$

Theorem (C., Garcia Trillos, Lewicka, 2020)

Let $\varepsilon \ll 1$. Then, with probability at least $1-C \varepsilon^{-6 m} \exp \left(-c n \varepsilon^{m+4}\right)$ we have

$$
\left|\Delta_{\varepsilon}\left(\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u\right)(x)\right| \leq C\left(\left\|\Delta_{\varepsilon, \mathcal{X}_{n}} u\right\|_{L^{\infty}\left(\mathcal{X}_{n} \cap B(x, \varepsilon)\right)}+\underset{\mathcal{X}_{n} \cap B(x, 2 \varepsilon)}{\operatorname{OsC}} u\right)
$$

for all $u \in L^{2}\left(\mathcal{X}_{n}\right)$ and all $x \in \mathcal{M}$.

$$
\Delta_{\varepsilon} u(x)=\frac{1}{\varepsilon^{m+2}} \int_{\mathcal{M}} \eta\left(\frac{d_{\mathcal{M}}(x, y)}{\varepsilon}\right)(u(x)-u(y)) \rho(y) d \operatorname{Vol}(y)
$$

Interpolation

We define the interpolation operator $\mathcal{I}_{\varepsilon, \mathcal{X}_{n}}: L^{2}\left(\mathcal{X}_{n}\right) \rightarrow L^{2}(\mathcal{M})$ and the degree

$$
\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(x)=\frac{1}{d_{\varepsilon, \mathcal{X}_{n}}(x)} \sum_{i=1}^{n} \eta\left(\frac{\left|x-x_{i}\right|}{\varepsilon}\right) u\left(x_{i}\right)
$$

where $d_{\varepsilon, \mathcal{X}_{n}}(x)$ is the degree of x, given by

$$
d_{\varepsilon, \mathcal{X}_{n}}(x)=\sum_{i=1}^{n} \eta\left(\frac{\left|x-x_{i}\right|}{\varepsilon}\right)
$$

Corollary (C., Garcia Trillos, Lewicka, 2020)

Let $\varepsilon \ll 1$. With probability at least $1-C \varepsilon^{-6 m} \exp \left(-c n \varepsilon^{m+4}\right)$ we have

$$
\left\|\Delta_{\varepsilon}\left(\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u\right)\right\|_{L^{\infty}(\mathcal{M})} \leq C\left(\left\|\Delta_{\varepsilon, \mathcal{X}_{n}} u\right\|_{L^{\infty}\left(\mathcal{X}_{n}\right)}+\varepsilon\|u\|_{L^{\infty}\left(\mathcal{X}_{n}\right)}\right)
$$

for all $u \in L^{2}\left(\mathcal{X}_{n}\right)$.

$$
\Delta_{\varepsilon} u(x)=\frac{1}{\varepsilon^{m+2}} \int_{\mathcal{M}} \eta\left(\frac{d_{\mathcal{M}}(x, y)}{\varepsilon}\right)(u(x)-u(y)) \rho(y) d \operatorname{Vol}(y)
$$

Interpolation: Proof sketch

Let $u: \mathcal{X}_{n} \rightarrow \mathbb{R}$ and denote $f(x)=u(x)-\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(x)$ and $\eta_{\varepsilon}(t)=\varepsilon^{-d} \eta(t / \varepsilon)$. Then

$$
\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(x)=\frac{\varepsilon^{d}}{d_{\varepsilon, \mathcal{X}_{n}}(x)} \sum_{j=1}^{n} \eta_{\varepsilon}\left(\left|x-x_{j}\right|\right) u\left(x_{j}\right)
$$

Interpolation: Proof sketch

Let $u: \mathcal{X}_{n} \rightarrow \mathbb{R}$ and denote $f(x)=u(x)-\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(x)$ and $\eta_{\varepsilon}(t)=\varepsilon^{-d} \eta(t / \varepsilon)$. Then

$$
\begin{aligned}
\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(x) & =\frac{\varepsilon^{d}}{d_{\varepsilon, \mathcal{X}_{n}}(x)} \sum_{j=1}^{n} \eta_{\varepsilon}\left(\left|x-x_{j}\right|\right) u\left(x_{j}\right) \\
& =\frac{\varepsilon^{d}}{d_{\varepsilon, \mathcal{X}_{n}}(x)} \sum_{j=1}^{n} \eta_{\varepsilon}\left(\left|x-x_{j}\right|\right)\left(\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u\left(x_{j}\right)+f\left(x_{j}\right)\right)
\end{aligned}
$$

Interpolation: Proof sketch

Let $u: \mathcal{X}_{n} \rightarrow \mathbb{R}$ and denote $f(x)=u(x)-\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(x)$ and $\eta_{\varepsilon}(t)=\varepsilon^{-d} \eta(t / \varepsilon)$. Then

$$
\begin{aligned}
\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(x) & =\frac{\varepsilon^{d}}{d_{\varepsilon, \mathcal{X}_{n}}(x)} \sum_{j=1}^{n} \eta_{\varepsilon}\left(\left|x-x_{j}\right|\right) u\left(x_{j}\right) \\
& =\frac{\varepsilon^{d}}{d_{\varepsilon, \mathcal{X}_{n}}(x)} \sum_{j=1}^{n} \eta_{\varepsilon}\left(\left|x-x_{j}\right|\right)\left(\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u\left(x_{j}\right)+f\left(x_{j}\right)\right) \\
& =\varepsilon^{2 d} \sum_{k=1}^{n}\left[\sum_{j=1}^{n} \frac{\eta_{\varepsilon}\left(\left|x-x_{j}\right|\right) \eta_{\varepsilon}\left(\left|x_{j}-x_{k}\right|\right)}{d_{\varepsilon, \mathcal{X}_{n}}(x) d_{\varepsilon, \mathcal{X}_{n}}\left(x_{j}\right)}\right] u\left(x_{k}\right)+\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} f(x)
\end{aligned}
$$

Interpolation: Proof sketch

Let $u: \mathcal{X}_{n} \rightarrow \mathbb{R}$ and denote $f(x)=u(x)-\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(x)$ and $\eta_{\varepsilon}(t)=\varepsilon^{-d} \eta(t / \varepsilon)$. Then

$$
\begin{aligned}
\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(x) & =\frac{\varepsilon^{d}}{d_{\varepsilon, \mathcal{X}_{n}}(x)} \sum_{j=1}^{n} \eta_{\varepsilon}\left(\left|x-x_{j}\right|\right) u\left(x_{j}\right) \\
& =\frac{\varepsilon^{d}}{d_{\varepsilon, \mathcal{X}_{n}}(x)} \sum_{j=1}^{n} \eta_{\varepsilon}\left(\left|x-x_{j}\right|\right)\left(\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u\left(x_{j}\right)+f\left(x_{j}\right)\right) \\
& =\varepsilon^{2 d} \sum_{k=1}^{n}\left[\sum_{j=1}^{n} \frac{\eta_{\varepsilon}\left(\left|x-x_{j}\right|\right) \eta_{\varepsilon}\left(\left|x_{j}-x_{k}\right|\right)}{d_{\varepsilon, \mathcal{X}_{n}}(x) d_{\varepsilon, \mathcal{X}_{n}}\left(x_{j}\right)}\right] u\left(x_{k}\right)+\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} f(x) \\
& \approx \frac{1}{n \rho(x)} \sum_{k=1}^{n}\left[\int_{\mathcal{M}} \eta_{\varepsilon}(|x-y|) \eta_{\varepsilon}\left(\left|y-x_{k}\right|\right) d \operatorname{Vol}_{\mathcal{M}}(y)\right] u\left(x_{k}\right)+\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} f(x)
\end{aligned}
$$

Interpolation: Proof sketch

Let $u: \mathcal{X}_{n} \rightarrow \mathbb{R}$ and denote $f(x)=u(x)-\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(x)$ and $\eta_{\varepsilon}(t)=\varepsilon^{-d} \eta(t / \varepsilon)$. Then

$$
\begin{aligned}
\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(x) & =\frac{\varepsilon^{d}}{d_{\varepsilon, \mathcal{X}_{n}}(x)} \sum_{j=1}^{n} \eta_{\varepsilon}\left(\left|x-x_{j}\right|\right) u\left(x_{j}\right) \\
& =\frac{\varepsilon^{d}}{d_{\varepsilon, \mathcal{X}_{n}}(x)} \sum_{j=1}^{n} \eta_{\varepsilon}\left(\left|x-x_{j}\right|\right)\left(\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u\left(x_{j}\right)+f\left(x_{j}\right)\right) \\
& =\varepsilon^{2 d} \sum_{k=1}^{n}\left[\sum_{j=1}^{n} \frac{\eta_{\varepsilon}\left(\left|x-x_{j}\right|\right) \eta_{\varepsilon}\left(\left|x_{j}-x_{k}\right|\right)}{d_{\varepsilon, \mathcal{X}_{n}}(x) d_{\varepsilon, \mathcal{X}_{n}}\left(x_{j}\right)}\right] u\left(x_{k}\right)+\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} f(x) \\
& \approx \frac{1}{n \rho(x)} \sum_{k=1}^{n}\left[\int_{\mathcal{M}} \eta_{\varepsilon}(|x-y|) \eta_{\varepsilon}\left(\left|y-x_{k}\right|\right) d \operatorname{Vol}_{\mathcal{M}}(y)\right] u\left(x_{k}\right)+\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} f(x) \\
& =\frac{1}{n \rho(x)} \int_{\mathcal{M}} \eta_{\varepsilon}(|x-y|)\left[\sum_{k=1}^{n} \eta_{\varepsilon}\left(\left|y-x_{k}\right|\right) u\left(x_{k}\right)\right] d \operatorname{Vol}_{\mathcal{M}}(y)+\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} f(x)
\end{aligned}
$$

Interpolation: Proof sketch

Let $u: \mathcal{X}_{n} \rightarrow \mathbb{R}$ and denote $f(x)=u(x)-\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(x)$ and $\eta_{\varepsilon}(t)=\varepsilon^{-d} \eta(t / \varepsilon)$. Then

$$
\begin{aligned}
\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(x) & =\frac{\varepsilon^{d}}{d_{\varepsilon, \mathcal{X}_{n}}(x)} \sum_{j=1}^{n} \eta_{\varepsilon}\left(\left|x-x_{j}\right|\right) u\left(x_{j}\right) \\
& =\frac{\varepsilon^{d}}{d_{\varepsilon, \mathcal{X}_{n}}(x)} \sum_{j=1}^{n} \eta_{\varepsilon}\left(\left|x-x_{j}\right|\right)\left(\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u\left(x_{j}\right)+f\left(x_{j}\right)\right) \\
& =\varepsilon^{2 d} \sum_{k=1}^{n}\left[\sum_{j=1}^{n} \frac{\eta_{\varepsilon}\left(\left|x-x_{j}\right|\right) \eta_{\varepsilon}\left(\left|x_{j}-x_{k}\right|\right)}{d_{\varepsilon, \mathcal{X}_{n}}(x) d_{\varepsilon, \mathcal{X}_{n}}\left(x_{j}\right)}\right] u\left(x_{k}\right)+\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} f(x) \\
& \approx \frac{1}{n \rho(x)} \sum_{k=1}^{n}\left[\int_{\mathcal{M}} \eta_{\varepsilon}(|x-y|) \eta_{\varepsilon}\left(\left|y-x_{k}\right|\right) d \operatorname{Vol} l_{\mathcal{M}}(y)\right] u\left(x_{k}\right)+\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} f(x) \\
& =\frac{1}{n \rho(x)} \int_{\mathcal{M}} \eta_{\varepsilon}(|x-y|)\left[\sum_{k=1}^{n} \eta_{\varepsilon}\left(\left|y-x_{k}\right|\right) u\left(x_{k}\right)\right] d \operatorname{Vol}_{\mathcal{M}}(y)+\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} f(x) \\
& \approx \frac{1}{\rho(x)} \int_{\mathcal{M}} \eta_{\varepsilon}(|x-y|) \rho(y) \mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(y) d \operatorname{Vol}_{\mathcal{M}}(y)+\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} f(x)
\end{aligned}
$$

Interpolation: Proof sketch

Let $u: \mathcal{X}_{n} \rightarrow \mathbb{R}$ and denote $f(x)=u(x)-\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(x)$ and $\eta_{\varepsilon}(t)=\varepsilon^{-d} \eta(t / \varepsilon)$. Then

$$
\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(x)-\frac{1}{\rho(x)} \int_{\mathcal{M}} \eta_{\varepsilon}(|x-y|) \rho(y) \mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(y) d \operatorname{Vol}_{\mathcal{M}}(y) \approx \mathcal{I}_{\varepsilon, \mathcal{X}_{n}} f(x)
$$

Interpolation: Proof sketch

Let $u: \mathcal{X}_{n} \rightarrow \mathbb{R}$ and denote $f(x)=u(x)-\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(x)$ and $\eta_{\varepsilon}(t)=\varepsilon^{-d} \eta(t / \varepsilon)$. Then

$$
\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(x)-\frac{1}{\rho(x)} \int_{\mathcal{M}} \eta_{\varepsilon}(|x-y|) \rho(y) \mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u(y) d \operatorname{Vol}_{\mathcal{M}}(y) \approx \mathcal{I}_{\varepsilon, \mathcal{X}_{n}} f(x)
$$

Then we check that

$$
f\left(x_{i}\right)=u\left(x_{i}\right)-\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u\left(x_{i}\right)=\frac{n \varepsilon^{m+2}}{d_{\varepsilon, \mathcal{X}_{n}}\left(x_{i}\right)} \Delta_{\varepsilon, \mathcal{X}_{n}} u\left(x_{i}\right)
$$

and

$$
u(x)-\frac{1}{\rho(x)} \int_{\mathcal{M}} \eta_{\varepsilon}(|x-y|) \rho(y) u(y) d \operatorname{Vol}_{\mathcal{M}}(y)=\frac{\varepsilon^{2}}{\rho(x)} \Delta_{\varepsilon} u(x)+O\left(\varepsilon^{2}\|u\|_{\infty}\right)
$$

Interpolation

Theorem (C., Garcia Trillos, Lewicka, 2020)
Let $\varepsilon \ll 1$. Then, with probability at least $1-C \varepsilon^{-6 m} \exp \left(-c n \varepsilon^{m+4}\right)$ we have

$$
\left|\Delta_{\varepsilon}\left(\mathcal{I}_{\varepsilon, \mathcal{X}_{n}} u\right)(x)\right| \leq C\left(\left\|\Delta_{\varepsilon, \mathcal{X}_{n}} u\right\|_{L^{\infty}\left(\mathcal{X}_{n} \cap B(x, \varepsilon)\right)}+\underset{\mathcal{X}_{n} \cap B(x, 2 \varepsilon)}{\operatorname{osc}} u\right)
$$

for all $u \in L^{2}\left(\mathcal{X}_{n}\right)$ and all $x \in \mathcal{M}$.

Outline

(1) Introduction

- Graph-based learning
- Spectral clustering
- The manifold assumption
(2) Main results
- Lipschitz regularity
- Spectral convergence
(3) Sketch of the proof
- Outline
- Lifting to the manifold
- Lipschitz estimate

4) Future work

- Homogenization at small length scales

Nonlocal operator

We have now lifted the problem to the manifold, and can assume u satisfies the mean-value type property

$$
u(x)=\frac{1}{\rho(x)} \int_{B_{\mathcal{M}}(x, \varepsilon)} \eta_{\varepsilon}(|x-y|) \rho(y) u(y) d \operatorname{Vol}_{\mathcal{M}}(y)+\varepsilon^{2} f(x)
$$

for all $x \in \mathcal{M}$. The length scale $\varepsilon>0$ is fixed and small.

Nonlocal operator

We have now lifted the problem to the manifold, and can assume u satisfies the mean-value type property

$$
u(x)=\frac{1}{\rho(x)} \int_{B_{\mathcal{M}}(x, \varepsilon)} \eta_{\varepsilon}(|x-y|) \rho(y) u(y) d \operatorname{Vol}_{\mathcal{M}}(y)+\varepsilon^{2} f(x)
$$

for all $x \in \mathcal{M}$. The length scale $\varepsilon>0$ is fixed and small.

We prove an approximate Lipschitz estimate for u depending on $\|u\|_{\infty}$ and $\|f\|_{\infty}$:

$$
|u(x)-u(y)| \leq C\left(\|u\|_{\infty}+\|f\|_{\infty}\right)\left(d_{\mathcal{M}}(x, y)+\varepsilon\right)
$$

- The proof uses the method of coupled random walks, similar to [Lindvall \& Rogers, 1986].

Nonlocal operator

We have now lifted the problem to the manifold, and can assume u satisfies the mean-value type property

$$
u(x)=\frac{1}{\rho(x)} \int_{B_{\mathcal{M}}(x, \varepsilon)} \eta_{\varepsilon}(|x-y|) \rho(y) u(y) d \operatorname{Vol}_{\mathcal{M}}(y)+\varepsilon^{2} f(x)
$$

for all $x \in \mathcal{M}$. The length scale $\varepsilon>0$ is fixed and small.

We prove an approximate Lipschitz estimate for u depending on $\|u\|_{\infty}$ and $\|f\|_{\infty}$:

$$
|u(x)-u(y)| \leq C\left(\|u\|_{\infty}+\|f\|_{\infty}\right)\left(d_{\mathcal{M}}(x, y)+\varepsilon\right)
$$

- The proof uses the method of coupled random walks, similar to [Lindvall \& Rogers, 1986].
- At a high level, this is equivalent to doubling the variables and using comparison to bound $u(x)-u(y) \leq \varphi(x, y)$ for a suitable supersolution φ.

Sketch of proof: Simple random walk

Assume u satisfies the mean-value property

$$
u(x)=f_{B(x, \varepsilon)} u(y) d y
$$

for fixed $\varepsilon>0$ and all $B(x, \varepsilon)$.

Sketch of proof: Simple random walk

Assume u satisfies the mean-value property

$$
u(x)=f_{B(x, \varepsilon)} u(y) d y
$$

for fixed $\varepsilon>0$ and all $B(x, \varepsilon)$. Let $x, y \in \mathbb{R}^{d}$ and assume we wish to estimate

$$
|u(x)-u(y)| \leq C|x-y|+\ldots
$$

Sketch of proof: Simple random walk

Assume u satisfies the mean-value property

$$
u(x)=f_{B(x, \varepsilon)} u(y) d y
$$

for fixed $\varepsilon>0$ and all $B(x, \varepsilon)$. Let $x, y \in \mathbb{R}^{d}$ and assume we wish to estimate

$$
|u(x)-u(y)| \leq C|x-y|+\ldots
$$

WLOG assume $x=t e_{d}$ and $y=-t e_{d}, t \geq \varepsilon$.

Sketch of proof: Simple random walk

Assume u satisfies the mean-value property

$$
u(x)=f_{B(x, \varepsilon)} u(y) d y
$$

for fixed $\varepsilon>0$ and all $B(x, \varepsilon)$. Let $x, y \in \mathbb{R}^{d}$ and assume we wish to estimate

$$
|u(x)-u(y)| \leq C|x-y|+\ldots
$$

WLOG assume $x=t e_{d}$ and $y=-t e_{d}, t \geq \varepsilon$. Let X_{k}, Y_{k} be coupled simple random walks with $X_{0}=x, Y_{0}=y$ and

$$
\begin{aligned}
X_{k} & =X_{k-1}+\varepsilon U_{k} \\
Y_{k} & =Y_{k-1}+\varepsilon\left(U_{k}-2\left(U_{k} \cdot e_{d}\right) e_{d}\right)
\end{aligned}
$$

where U_{1}, U_{2}, \ldots, are i.i.d. random variables uniformly distributed on $B(0,1)$.

Sketch of proof: Simple random walk

Assume u satisfies the mean-value property

$$
u(x)=f_{B(x, \varepsilon)} u(y) d y
$$

for fixed $\varepsilon>0$ and all $B(x, \varepsilon)$. Let $x, y \in \mathbb{R}^{d}$ and assume we wish to estimate

$$
|u(x)-u(y)| \leq C|x-y|+\ldots
$$

WLOG assume $x=t e_{d}$ and $y=-t e_{d}, t \geq \varepsilon$. Let X_{k}, Y_{k} be coupled simple random walks with $X_{0}=x, Y_{0}=y$ and

$$
\begin{aligned}
X_{k} & =X_{k-1}+\varepsilon U_{k} \\
Y_{k} & =Y_{k-1}+\varepsilon\left(U_{k}-2\left(U_{k} \cdot e_{d}\right) e_{d}\right)
\end{aligned}
$$

where U_{1}, U_{2}, \ldots, are i.i.d. random variables uniformly distributed on $B(0,1)$. For $r \gg t$, define the stopping time

$$
\tau=\inf \left\{k>0: X_{k} \leq \frac{\varepsilon}{2} \text { or }\left|X_{k}\right|>r\right\}
$$

Stopping time

Stopping time

Since $u\left(X_{k}\right)$ and $u\left(Y_{k}\right)$ are martingales, Doob's optional stopping yields

$$
u(x)-u(y)=\mathbb{E}\left[u\left(X_{\tau}\right)-u\left(Y_{\tau}\right)\right]
$$

Exiting on $\partial B(0, r)$

If we have $\left|X_{\tau}\right|>r$ then we estimate

$$
\mathbb{E}\left[u\left(X_{\tau}\right)-u\left(Y_{\tau}\right)| | X_{\tau} \mid>r\right] \leq 2\|u\|_{L^{\infty}(B(0, r+\varepsilon))} .
$$

Exiting on $\partial B(0, r)$

If we have $\left|X_{\tau}\right|>r$ then we estimate

$$
\begin{aligned}
& \mathbb{H}\left[u\left(X_{\tau}\right)-u\left(Y_{\tau}\right)| | X_{\tau} \mid>r\right]<2\|u\| \infty \infty(B(0, r+\varepsilon)) \\
& \mathbb{P}\left(\left|X_{\tau}\right|>r\right)<\frac{C_{t}}{r}=C \frac{|x-y|}{r}
\end{aligned}
$$

Exiting on plane $x_{d}=0$

If $\left|X_{\tau}\right| \leq r$, then $\left|X_{\tau}-Y_{\tau}\right|<\varepsilon$ and so

$$
\mathbb{E}\left[u\left(X_{\tau}\right)-u\left(Y_{\tau}\right)| | X_{\tau} \mid \leq r\right] \leq \underbrace{\sup \left\{\left|u\left(x^{\prime}\right)-u\left(y^{\prime}\right)\right|: x^{\prime}, y^{\prime} \in B(0, r) \text { and }\left|x^{\prime}-y^{\prime}\right| \leq \varepsilon\right\}}_{\ominus(r, \varepsilon)} .
$$

Basic Lipschitz estimate

Conditioning on $\left|X_{\tau}\right|>r$ yields

$$
\begin{aligned}
u(x)-u(y) & =\mathbb{E}\left[u\left(X_{\tau}\right)-u\left(Y_{\tau}\right)\right] \\
& \leq 2\|u\|_{L^{\infty}(B(0, r+\varepsilon))} \mathbb{P}\left(\left|X_{\tau}\right|>r\right)+\Theta(r, \varepsilon) \mathbb{P}\left(\left|X_{\tau}\right| \leq r\right)
\end{aligned}
$$

Basic Lipschitz estimate

Conditioning on $\left|X_{\tau}\right|>r$ yields

$$
\begin{aligned}
u(x)-u(y) & =\mathbb{E}\left[u\left(X_{\tau}\right)-u\left(Y_{\tau}\right)\right] \\
& \leq 2\|u\|_{L^{\infty}(B(0, r+\varepsilon))} \mathbb{P}\left(\left|X_{\tau}\right|>r\right)+\Theta(r, \varepsilon) \mathbb{P}\left(\left|X_{\tau}\right| \leq r\right) \\
& \leq C\|u\|_{L^{\infty}(B(0, r+\varepsilon))} \frac{|x-y|}{r}+\Theta(r, \varepsilon)
\end{aligned}
$$

where

$$
\Theta(r, \varepsilon):=\sup \left\{\left|u\left(x^{\prime}\right)-u\left(y^{\prime}\right)\right|: x^{\prime}, y^{\prime} \in B(0, r) \text { and }\left|x^{\prime}-y^{\prime}\right| \leq \varepsilon\right\}
$$

Local estimate

For x, y with $|x-y| \leq \varepsilon$ (and $x=-y$) we use the mean value property:

$$
u(x)-u(y)=\frac{1}{|B(0, \varepsilon)|}\left(\int_{B(x, \varepsilon)} u(z) d z-\int_{B(y, \varepsilon)} u(z) d z\right)
$$

Local estimate

For x, y with $|x-y| \leq \varepsilon$ (and $x=-y$) we use the mean value property:

$$
\begin{aligned}
u(x)-u(y) & =\frac{1}{|B(0, \varepsilon)|}\left(\int_{B(x, \varepsilon)} u(z) d z-\int_{B(y, \varepsilon)} u(z) d z\right) \\
& =\frac{1}{|B(0, \varepsilon)|} \int_{B(x, \varepsilon) \backslash B(y, \varepsilon)}(u(x)-u(-x)) d x
\end{aligned}
$$

Local estimate

For x, y with $|x-y| \leq \varepsilon$ (and $x=-y$) we use the mean value property:

$$
\begin{aligned}
u(x)-u(y) & =\frac{1}{|B(0, \varepsilon)|}\left(\int_{B(x, \varepsilon)} u(z) d z-\int_{B(y, \varepsilon)} u(z) d z\right) \\
& =\frac{1}{|B(0, \varepsilon)|} \int_{B(x, \varepsilon) \backslash B(y, \varepsilon)}(u(x)-u(-x)) d x \\
& \leq \eta \cdot \sup \left\{\left|u\left(x^{\prime}\right)-u\left(y^{\prime}\right)\right|: x^{\prime}, y^{\prime} \in B(0, r+\varepsilon) \text { and }\left|x^{\prime}-y^{\prime}\right| \leq 3 \varepsilon\right\}
\end{aligned}
$$

where $\eta=\frac{|B(x, \varepsilon) \backslash B(y, \varepsilon)|}{|B(0, \varepsilon)|}<1$.

Global estimate

It follows that

$$
\Theta(r, \varepsilon):=\sup \{|u(x)-u(y)|: x, y \in B(0, r) \text { and }|x-y| \leq \varepsilon\}
$$

satisfies $\Theta(r, \varepsilon) \leq \eta \cdot \Theta(r+\varepsilon, 3 \varepsilon)$ for $\eta<1$.

Global estimate

It follows that

$$
\Theta(r, \varepsilon):=\sup \{|u(x)-u(y)|: x, y \in B(0, r) \text { and }|x-y| \leq \varepsilon\}
$$

satisfies $\Theta(r, \varepsilon) \leq \eta \cdot \Theta(r+\varepsilon, 3 \varepsilon)$ for $\eta<1$. Thus, for $|x-y| \leq r$ we have

$$
|u(x)-u(y)| \leq C\|u\|_{L^{\infty}(B(0, r+\varepsilon))} \frac{|x-y|}{r}+\eta \cdot \Theta(r+\varepsilon, 3 \varepsilon)
$$

Global estimate

It follows that

$$
\Theta(r, \varepsilon):=\sup \{|u(x)-u(y)|: x, y \in B(0, r) \text { and }|x-y| \leq \varepsilon\}
$$

satisfies $\Theta(r, \varepsilon) \leq \eta \cdot \Theta(r+\varepsilon, 3 \varepsilon)$ for $\eta<1$. Thus, for $|x-y| \leq r$ we have

$$
|u(x)-u(y)| \leq C\|u\|_{L^{\infty}(B(0, r+\varepsilon))} \frac{|x-y|}{r}+\eta \cdot \Theta(r+\varepsilon, 3 \varepsilon)
$$

On a periodic domain with no boundary (e.g., a closed manifold)

$$
\Theta(r+\varepsilon, 3 \varepsilon) \leq C\|u\|_{L^{\infty}} \varepsilon+\eta \cdot \Theta(r+\varepsilon, 3 \varepsilon)
$$

and so

$$
\Theta(r+\varepsilon, 3 \varepsilon) \leq C(1-\eta)^{-1}\|u\|_{L^{\infty}} \varepsilon
$$

Global estimate

It follows that

$$
\Theta(r, \varepsilon):=\sup \{|u(x)-u(y)|: x, y \in B(0, r) \text { and }|x-y| \leq \varepsilon\}
$$

satisfies $\Theta(r, \varepsilon) \leq \eta \cdot \Theta(r+\varepsilon, 3 \varepsilon)$ for $\eta<1$. Thus, for $|x-y| \leq r$ we have

$$
|u(x)-u(y)| \leq C\|u\|_{L^{\infty}(B(0, r+\varepsilon))} \frac{|x-y|}{r}+\eta \cdot \Theta(r+\varepsilon, 3 \varepsilon)
$$

On a periodic domain with no boundary (e.g., a closed manifold)

$$
\Theta(r+\varepsilon, 3 \varepsilon) \leq C\|u\|_{L^{\infty}} \varepsilon+\eta \cdot \Theta(r+\varepsilon, 3 \varepsilon)
$$

and so

$$
\Theta(r+\varepsilon, 3 \varepsilon) \leq C(1-\eta)^{-1}\|u\|_{L^{\infty} \varepsilon}
$$

This yields the global estimate

$$
|u(x)-u(y)| \leq C\|u\|_{L^{\infty}}(|x-y|+\varepsilon)
$$

Source terms

The argument extends directly to the inclusion of a source term

$$
u(x)=f_{B(x, \varepsilon)} u(y) d y+\varepsilon^{2} f(x) .
$$

Source terms

The argument extends directly to the inclusion of a source term

$$
u(x)=f_{B(x, \varepsilon)} u(y) d y+\varepsilon^{2} f(x)
$$

In this case

$$
Z_{k}=u\left(X_{k}\right)-u\left(Y_{k}\right)+\varepsilon^{2}\|f\|_{L^{\infty}} k
$$

is a submartingale, and Doob's optional stopping yields $Z_{0} \leq \mathbb{E}\left[Z_{\tau}\right]$ or

$$
u(x)-u(y) \leq \mathbb{E}\left[u\left(X_{\tau}\right)-u\left(Y_{\tau}\right)\right]+\varepsilon^{2}\|f\|_{L^{\infty}} \mathbb{E}[\tau]
$$

The proof proceeds similarly to obtain

$$
|u(x)-u(y)| \leq C\left(\|u\|_{L^{\infty}}+\|f\|_{L^{\infty}}\right)(|x-y|+\varepsilon)
$$

Source terms

The argument extends directly to the inclusion of a source term

$$
u(x)=f_{B(x, \varepsilon)} u(y) d y+\varepsilon^{2} f(x)
$$

In this case

$$
Z_{k}=u\left(X_{k}\right)-u\left(Y_{k}\right)+\varepsilon^{2}\|f\|_{L^{\infty}} k
$$

is a submartingale, and Doob's optional stopping yields $Z_{0} \leq \mathbb{E}\left[Z_{\tau}\right]$ or

$$
u(x)-u(y) \leq \mathbb{E}\left[u\left(X_{\tau}\right)-u\left(Y_{\tau}\right)\right]+\varepsilon^{2}\|f\|_{L^{\infty}} \mathbb{E}[\tau]
$$

The proof proceeds similarly to obtain

$$
|u(x)-u(y)| \leq C\left(\|u\|_{L^{\infty}}+\|f\|_{L^{\infty}}\right)(|x-y|+\varepsilon)
$$

Reference for simple random walk case: [Lewicka \& Peres, 2019].

Coupled walks with drift

In the flat setting, our mean value property is

$$
u(x)=\frac{1}{\rho(x)} \int_{B(x, \varepsilon)} \eta_{\varepsilon}(|x-y|) \rho(y) u(y) d y+\varepsilon^{2} f(x)
$$

Coupled walks with drift

In the flat setting, our mean value property is

$$
u(x)=\frac{1}{\rho(x)} \int_{B(x, \varepsilon)} \eta_{\varepsilon}(|x-y|) \rho(y) u(y) d y+\varepsilon^{2} f(x)
$$

We Taylor expand $\rho(y)=\rho(x)+\nabla \rho(x) \cdot(y-x)+O\left(\varepsilon^{2}\right)$ to obtain

$$
u(x)=\int_{B(x, \varepsilon)} \eta_{\varepsilon}(|x-y|) u(y)(1+b(x) \cdot(y-x)) d y+O\left(\varepsilon^{2}\right)
$$

where $b(x)=\nabla \log \rho(x)$.

Coupled walks with drift

In the flat setting, our mean value property is

$$
u(x)=\frac{1}{\rho(x)} \int_{B(x, \varepsilon)} \eta_{\varepsilon}(|x-y|) \rho(y) u(y) d y+\varepsilon^{2} f(x)
$$

We Taylor expand $\rho(y)=\rho(x)+\nabla \rho(x) \cdot(y-x)+O\left(\varepsilon^{2}\right)$ to obtain

$$
u(x)=\int_{B(x, \varepsilon)} \eta_{\varepsilon}(|x-y|) u(y)(1+b(x) \cdot(y-x)) d y+O\left(\varepsilon^{2}\right)
$$

where $b(x)=\nabla \log \rho(x)$. Assuming $\varepsilon|b(x)| \leq 1$ we can write

$$
\begin{aligned}
u(x)= & (1-\varepsilon|b(x)|) \int_{B(x, \varepsilon)} \eta_{\varepsilon}(|x-y|) u(y) d y \\
& +\varepsilon|b(x)| \int_{B(x, \varepsilon)} \eta_{\varepsilon}(|x-y|)\left(1-\frac{b(x) \cdot(y-x)}{\varepsilon|b(x)|}\right) u(y) d y+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

Coupled walks with drift

Write $v(x)=\frac{b(x)}{|b(x)|}$ and $z=\frac{y-x}{\varepsilon}$ to simplify:

$$
\begin{aligned}
u(x)= & (1-\varepsilon|b(x)|) \int_{B(0,1)} \eta(z) u(x+\varepsilon z) d z \\
& +\varepsilon|b(x)| \int_{B(0,1)} \eta(z)(1-v(x) \cdot z) u(x+\varepsilon z) d y+O\left(\varepsilon^{2}\right) .
\end{aligned}
$$

Coupled walks with drift

Write $v(x)=\frac{b(x)}{|b(x)|}$ and $z=\frac{y-x}{\varepsilon}$ to simplify:

$$
\begin{aligned}
u(x)= & (1-\varepsilon|b(x)|) \int_{B(0,1)} \eta(z) u(x+\varepsilon z) d z \\
& +\varepsilon|b(x)| \int_{B(0,1)} \eta(z)(1-v(x) \cdot z) u(x+\varepsilon z) d y+O\left(\varepsilon^{2}\right) .
\end{aligned}
$$

Construction of coupled walks:

- Let $U_{0}, U_{1}, U_{2}, \ldots$ be i.i.d. with density $\eta(z)$.
- Let $V_{0}, V_{1}, V_{2}, \ldots$ be i.i.d. with density $\eta(z)\left(1-e_{1} \cdot z\right)$.
- Let $Q_{0}, Q_{1}, Q_{2}, \ldots$ be i.i.d. uniform on $[0,1]$.

Define $X_{0}=x$ and

$$
X_{k+1}=X_{k}+\varepsilon \begin{cases}U_{k}, & \text { if } Q_{k}>\varepsilon\left|b\left(X_{k}\right)\right| \\ O\left(e_{1}, v\left(X_{k}\right)\right) V_{k}, & \text { otherwise }\end{cases}
$$

where $O(w, v)$ is an orthogonal matrix satisfying $O(w, v) w=v$.

Coupled walks with drift

Construction of coupled walks:

- Let $U_{0}, U_{1}, U_{2}, \ldots$ be i.i.d. with density $\eta(z)$.
- Let $V_{0}, V_{1}, V_{2}, \ldots$ be i.i.d. with density $\eta(z)\left(1-e_{1} \cdot z\right)$.
- Let $Q_{0}, Q_{1}, Q_{2}, \ldots$ be i.i.d. uniform on $[0,1]$.

Define $X_{0}=x$ and

$$
X_{k+1}=X_{k}+\varepsilon \begin{cases}U_{k}, & \text { if } Q_{k}>\varepsilon\left|b\left(X_{k}\right)\right| \\ O\left(e_{1}, v\left(X_{k}\right)\right) V_{k}, & \text { otherwise }\end{cases}
$$

where $O(w, v)$ is an orthogonal matrix satisfying $O(w, v) w=v$.
The coupled walk Y_{k} is constructed by setting $Y_{0}=y$ and

$$
Y_{k+1}=Y_{k}+\varepsilon \begin{cases}R\left(Y_{k}-X_{k}\right) U_{k}, & \text { if } Q_{k}>\varepsilon\left|b\left(Y_{k}\right)\right| \\ O\left(e_{1}, v\left(Y_{k}\right)\right) V_{k}, & \text { otherwise }\end{cases}
$$

where $R(v)$ is a reflection matrix about the vector v.

Martingale property

Let \mathcal{F}_{k} denote the σ-algebra induced by $U_{0}, \ldots, U_{k}, V_{0}, \ldots, V_{k}$, and Q_{0}, \ldots, Q_{k}. The coupled walks are constructed to have the approximate martingale property

$$
\begin{aligned}
& \mathbb{E}\left[u\left(X_{k+1}\right) \mid \mathcal{F}_{k}\right]=\frac{1}{\rho\left(X_{k}\right)} \int_{B\left(X_{k}, \varepsilon\right)} \eta_{\varepsilon}\left(\left|X_{k}-y\right|\right) \rho(y) u(y) d y+O\left(\varepsilon^{2}\right) . \\
& \mathbb{E}\left[u\left(Y_{k+1}\right) \mid \mathcal{F}_{k}\right]=\frac{1}{\rho\left(Y_{k}\right)} \int_{B\left(Y_{k}, \varepsilon\right)} \eta_{\varepsilon}\left(\left|Y_{k}-y\right|\right) \rho(y) u(y) d y+O\left(\varepsilon^{2}\right) .
\end{aligned}
$$

Martingale property

Let \mathcal{F}_{k} denote the σ-algebra induced by $U_{0}, \ldots, U_{k}, V_{0}, \ldots, V_{k}$, and Q_{0}, \ldots, Q_{k}. The coupled walks are constructed to have the approximate martingale property

$$
\begin{aligned}
& \mathbb{E}\left[u\left(X_{k+1}\right) \mid \mathcal{F}_{k}\right]=\frac{1}{\rho\left(X_{k}\right)} \int_{B\left(X_{k}, \varepsilon\right)} \eta_{\varepsilon}\left(\left|X_{k}-y\right|\right) \rho(y) u(y) d y+O\left(\varepsilon^{2}\right) . \\
& \mathbb{E}\left[u\left(Y_{k+1}\right) \mid \mathcal{F}_{k}\right]=\frac{1}{\rho\left(Y_{k}\right)} \int_{B\left(Y_{k}, \varepsilon\right)} \eta_{\varepsilon}\left(\left|Y_{k}-y\right|\right) \rho(y) u(y) d y+O\left(\varepsilon^{2}\right) .
\end{aligned}
$$

The rest of the argument from the simple random walk setting goes through roughly the same.

Lifting to the manifold

Our main result is in the (embedded) manifold setting $\mathcal{M} \subset \mathbb{R}^{d}$. In this case

$$
u(x)=\frac{1}{\rho(x)} \int_{B_{\mathcal{M}}(x, \varepsilon)} \eta_{\varepsilon}\left(d_{\mathcal{M}}(x, y)\right) \rho(y) u(y) d \operatorname{Vol}_{\mathcal{M}}(y)+\varepsilon^{2} f(x)
$$

Lifting to the manifold

Our main result is in the (embedded) manifold setting $\mathcal{M} \subset \mathbb{R}^{d}$. In this case

$$
u(x)=\frac{1}{\rho(x)} \int_{B_{\mathcal{M}}(x, \varepsilon)} \eta_{\varepsilon}\left(d_{\mathcal{M}}(x, y)\right) \rho(y) u(y) d \operatorname{Vol}_{\mathcal{M}}(y)+\varepsilon^{2} f(x)
$$

Lifting to the manifold

Our main result is in the (embedded) manifold setting $\mathcal{M} \subset \mathbb{R}^{d}$. In this case

$$
u(x)=\frac{1}{\rho(x)} \int_{B_{\mathcal{M}}(x, \varepsilon)} \eta_{\varepsilon}\left(d_{\mathcal{M}}(x, y)\right) \rho(y) u(y) d \operatorname{Vol}_{\mathcal{M}}(y)+\varepsilon^{2} f(x)
$$

Lifting to the manifold

Our main result is in the (embedded) manifold setting $\mathcal{M} \subset \mathbb{R}^{d}$. In this case

$$
u(x)=\frac{1}{\rho(x)} \int_{B_{\mathcal{M}}(x, \varepsilon)} \eta_{\varepsilon}\left(d_{\mathcal{M}}(x, y)\right) \rho(y) u(y) d \operatorname{Vol}_{\mathcal{M}}(y)+\varepsilon^{2} f(x)
$$

Lifting to the manifold

Our main result is in the (embedded) manifold setting $\mathcal{M} \subset \mathbb{R}^{d}$. In this case

$$
u(x)=\frac{1}{\rho(x)} \int_{B_{\mathcal{M}}(x, \varepsilon)} \eta_{\varepsilon}\left(d_{\mathcal{M}}(x, y)\right) \rho(y) u(y) d \operatorname{Vol}_{\mathcal{M}}(y)+\varepsilon^{2} f(x)
$$

- $\gamma_{x y}=$ geodesic from x to y.
- Define $\mathbf{t}_{x y} \in T_{y} \mathcal{M}$ by

$$
\mathbf{t}_{x y}=\frac{d \gamma_{x y}}{d s}\left(d_{\mathcal{M}}(x, y)\right)
$$

- Let us denote by

$$
P_{x y}: T_{x} \mathcal{M} \rightarrow T_{y} \mathcal{M}
$$

parallel transport along $\gamma_{x y}$.

Lifting to the manifold

Our main result is in the (embedded) manifold setting $\mathcal{M} \subset \mathbb{R}^{d}$. In this case

$$
u(x)=\frac{1}{\rho(x)} \int_{B_{\mathcal{M}}(x, \varepsilon)} \eta_{\varepsilon}\left(d_{\mathcal{M}}(x, y)\right) \rho(y) u(y) d \operatorname{Vol}_{\mathcal{M}}(y)+\varepsilon^{2} f(x)
$$

- $\gamma_{x y}=$ geodesic from x to y.
- Define $\mathbf{t}_{x y} \in T_{y} \mathcal{M}$ by

$$
\mathbf{t}_{x y}=\frac{d \gamma_{x y}}{d s}\left(d_{\mathcal{M}}(x, y)\right)
$$

- Let us denote by

$$
P_{x y}: T_{x} \mathcal{M} \rightarrow T_{y} \mathcal{M}
$$

parallel transport along $\gamma_{x y}$.

- Note that

$$
\mathbf{t}_{x y}=P_{x y}\left(-\mathbf{t}_{y x}\right)
$$

Coupled walks with drift on \mathcal{M}

Construction of coupled walks:

- Let $U_{0}, U_{1}, U_{2}, \ldots$ be i.i.d. with density $\eta(z)$.
- Let $V_{0}, V_{1}, V_{2}, \ldots$ be i.i.d. with density $\eta(z)\left(1-e_{1} \cdot z\right)$.
- Let $Q_{0}, Q_{1}, Q_{2}, \ldots$ be i.i.d. uniform on $[0,1]$.

Define $X_{0}=x$ and

$$
X_{k+1}= \begin{cases}\exp _{X_{k}}\left(\varepsilon U_{k}\right), & \text { if } Q_{k}>\varepsilon\left|b\left(X_{k}\right)\right| \\ \exp _{X_{k}}\left(\varepsilon O\left(e_{1}, v\left(X_{k}\right)\right) V_{k}\right), & \text { otherwise }\end{cases}
$$

where $O(w, v)$ is an orthogonal matrix satisfying $O(w, v) w=v$.
The coupled walk Y_{k} is constructed by setting $Y_{0}=y$ and

$$
Y_{k+1}= \begin{cases}\exp _{Y_{k}}\left(\varepsilon R\left(\mathbf{t}_{X_{k} Y_{k}}\right) P_{X_{k} Y_{k}} U_{k}\right), & \text { if } Q_{k}>\varepsilon\left|b\left(Y_{k}\right)\right| \\ \exp _{Y_{k}}\left(\varepsilon O\left(e_{1}, v\left(Y_{k}\right)\right) P_{X_{k} Y_{k}} V_{k}\right), & \text { otherwise }\end{cases}
$$

where $R(v)$ is a reflection matrix about the vector v.

Outline

(1) Introduction

- Graph-based learning
- Spectral clustering
- The manifold assumption
(2) Main results
- Lipschitz regularity
- Spectral convergence
(3) Sketch of the proof
- Outline
- Lifting to the manifold
- Lipschitz estimate
(4) Future work
- Homogenization at small length scales

Future work

(1) Similar estimates for other normalizations of the graph Laplacian

- Random walk Laplacian

$$
\Delta_{r w} u(x)=u(x)-\frac{1}{d_{x}} \sum_{y \in \mathcal{X}} w_{x y} u(y), \quad d_{x}=\sum_{y \in \mathcal{X}} w_{x y}
$$

- Normalized Laplacian

$$
\Delta_{n o r m} u(x)=u(x)-\sum_{y \in \mathcal{X}} \frac{w_{x y}}{\sqrt{d_{x} d_{y}}} u(y)
$$

Future work

(1) Similar estimates for other normalizations of the graph Laplacian

- Random walk Laplacian

$$
\Delta_{r w} u(x)=u(x)-\frac{1}{d_{x}} \sum_{y \in \mathcal{X}} w_{x y} u(y), \quad d_{x}=\sum_{y \in \mathcal{X}} w_{x y}
$$

- Normalized Laplacian

$$
\Delta_{n o r m} u(x)=u(x)-\sum_{y \in \mathcal{X}} \frac{w_{x y}}{\sqrt{d_{x} d_{y}}} u(y)
$$

(2) Other elliptic regularity results ($C^{1, \alpha}$, etc.).

Future work

(1) Similar estimates for other normalizations of the graph Laplacian

- Random walk Laplacian

$$
\Delta_{r w} u(x)=u(x)-\frac{1}{d_{x}} \sum_{y \in \mathcal{X}} w_{x y} u(y), \quad d_{x}=\sum_{y \in \mathcal{X}} w_{x y}
$$

- Normalized Laplacian

$$
\Delta_{n o r m} u(x)=u(x)-\sum_{y \in \mathcal{X}} \frac{w_{x y}}{\sqrt{d_{x} d_{y}}} u(y)
$$

(2) Other elliptic regularity results ($C^{1, \alpha}$, etc.).
(3) Applications to other graph-based learning algorithms

- Laplacian regularized semi-supervised learning.

Future work

(1) Similar estimates for other normalizations of the graph Laplacian

- Random walk Laplacian

$$
\Delta_{r w} u(x)=u(x)-\frac{1}{d_{x}} \sum_{y \in \mathcal{X}} w_{x y} u(y), \quad d_{x}=\sum_{y \in \mathcal{X}} w_{x y}
$$

- Normalized Laplacian

$$
\Delta_{n o r m} u(x)=u(x)-\sum_{y \in \mathcal{X}} \frac{w_{x y}}{\sqrt{d_{x} d_{y}}} u(y)
$$

(2) Other elliptic regularity results ($C^{1, \alpha}$, etc.).
(3) Applications to other graph-based learning algorithms

- Laplacian regularized semi-supervised learning.
(4) Extending these results to smaller length scales using homogenization/percolation theory.

Outline

(1) Introduction

- Graph-based learning
- Spectral clustering
- The manifold assumption
(2) Main results
- Lipschitz regularity
- Spectral convergence
(3) Sketch of the proof
- Outline
- Lifting to the manifold
- Lipschitz estimate
(4) Future work
- Homogenization at small length scales

Length scale regimes

- Pointwise consistency of graph Laplacians requires

$$
n \varepsilon^{m+2} \gg \log (n) \quad \Longleftrightarrow \quad \varepsilon \gg\left(\frac{\log (n)}{n}\right)^{\frac{1}{m+2}}
$$

Length scale regimes

- Pointwise consistency of graph Laplacians requires

$$
n \varepsilon^{m+2} \gg \log (n) \quad \Longleftrightarrow \quad \varepsilon \gg\left(\frac{\log (n)}{n}\right)^{\frac{1}{m+2}}
$$

- Our Lipschitz regularity and $O(\varepsilon)$ spectral rates require

$$
n \varepsilon^{m+4} \gg \log (n) \quad \Longleftrightarrow \quad \varepsilon \gg\left(\frac{\log (n)}{n}\right)^{\frac{1}{m+4}}
$$

Length scale regimes

- Pointwise consistency of graph Laplacians requires

$$
n \varepsilon^{m+2} \gg \log (n) \quad \Longleftrightarrow \quad \varepsilon \gg\left(\frac{\log (n)}{n}\right)^{\frac{1}{m+2}}
$$

- Our Lipschitz regularity and $O(\varepsilon)$ spectral rates require

$$
n \varepsilon^{m+4} \gg \log (n) \quad \Longleftrightarrow \quad \varepsilon \gg\left(\frac{\log (n)}{n}\right)^{\frac{1}{m+4}}
$$

- On the other hand, the graph is connected with high probability when

$$
n \varepsilon^{m} \geq C \log (n) \quad \Longleftrightarrow \quad \varepsilon \geq\left(\frac{C \log (n)}{n}\right)^{\frac{1}{m}}
$$

Some natural questions

Question 1: What can we say in the length scale regime

$$
\left(\frac{\log (n)}{n}\right)^{\frac{1}{m}} \ll \varepsilon \ll\left(\frac{\log (n)}{n}\right)^{\frac{1}{m+4}} ?
$$

Some natural questions

Question 1: What can we say in the length scale regime

$$
\left(\frac{\log (n)}{n}\right)^{\frac{1}{m}} \ll \varepsilon \ll\left(\frac{\log (n)}{n}\right)^{\frac{1}{m+4}} ?
$$

Question 2: What about smaller length scales

$$
\varepsilon \sim\left(\frac{\log (n)}{n}\right)^{\frac{1}{m}}
$$

where the graph is disconnected but has a giant component (supercritical percolation cluster)?

Some natural questions

Question 1: What can we say in the length scale regime

$$
\left(\frac{\log (n)}{n}\right)^{\frac{1}{m}} \ll \varepsilon \ll\left(\frac{\log (n)}{n}\right)^{\frac{1}{m+4}} ?
$$

Question 2: What about smaller length scales

$$
\varepsilon \sim\left(\frac{\log (n)}{n}\right)^{\frac{1}{m}}
$$

where the graph is disconnected but has a giant component (supercritical percolation cluster)?

For Question 1, the 「-convergence framework of Slepcev \& Trillos establishes spectral convergence for $\varepsilon \gg\left(\frac{\log (n)}{n}\right)^{\frac{1}{m}}$, but the rates $O(\sqrt{\varepsilon})$ are far from sharp.

Some natural questions

Question 1: What can we say in the length scale regime

$$
\left(\frac{\log (n)}{n}\right)^{\frac{1}{m}} \ll \varepsilon \ll\left(\frac{\log (n)}{n}\right)^{\frac{1}{m+4}} ?
$$

Question 2: What about smaller length scales

$$
\varepsilon \sim\left(\frac{\log (n)}{n}\right)^{\frac{1}{m}}
$$

where the graph is disconnected but has a giant component (supercritical percolation cluster)?

For Question 1, the 「-convergence framework of Slepcev \& Trillos establishes spectral convergence for $\varepsilon \gg\left(\frac{\log (n)}{n}\right)^{\frac{1}{m}}$, but the rates $O(\sqrt{\varepsilon})$ are far from sharp.

Do we expect, and can we prove, shaper rates?

Numerical experiments

Eigenmode	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Eigenvalue	2	2	2	6	6	6	6	6	12	12	12	12	12	12	12
E.value rate	2.4	2.6	3.1	2.3	2.3	2.5	2.6	3	2.1	2.1	2.2	2.3	2.4	2.8	3.3
E.vector rate	2.3	2.3	2.3	2.2	2.2	2.2	2.3	2.7	2.2	2.1	2.1	2.2	2.2	2.3	2.5

Table: Rates of convergence of the form $O\left(\varepsilon^{b}\right)$ (value of b is shown) for eigenvalues and eigenvectors of the graph Laplacian on the 2 -sphere. Errors are averaged over 100 trials with n ranging from $n=500$ to $n=10^{5}$.

Rates of convergence for

$$
\varepsilon=\left(\frac{\log n}{n}\right)^{\frac{1}{m+2}}
$$

At this length scale, our results give no convergence rate. For $O\left(\varepsilon^{b}\right)$ rate we require

$$
\varepsilon \geq\left(\frac{\log n}{n}\right)^{\frac{1}{m+2+2 b}}
$$

Homogenization at smaller length scales

The graph Laplacian

$$
\Delta_{\varepsilon, \mathcal{X}_{n}} u(x)=\frac{1}{n \varepsilon^{m+2}} \sum_{j=1}^{n} \eta\left(\frac{\left|x-x_{j}\right|}{\varepsilon}\right)\left(u(x)-u\left(x_{j}\right)\right)
$$

is not consistent with a continuum Laplacian when

$$
\varepsilon \leq\left(\frac{\log (n)}{n}\right)^{\frac{1}{m+2}}
$$

Homogenization at smaller length scales

The graph Laplacian

$$
\Delta_{\varepsilon, \mathcal{X}_{n}} u(x)=\frac{1}{n \varepsilon^{m+2}} \sum_{j=1}^{n} \eta\left(\frac{\left|x-x_{j}\right|}{\varepsilon}\right)\left(u(x)-u\left(x_{j}\right)\right)
$$

is not consistent with a continuum Laplacian when

$$
\varepsilon \leq\left(\frac{\log (n)}{n}\right)^{\frac{1}{m+2}}
$$

However, we can construct other (homogenized) Laplacians that are consistent.

Homogenization at smaller length scales

Suppose $\Delta_{\varepsilon, \mathcal{X}_{n}} u \equiv 0$. Let $X_{0}, X_{1}, X_{2}, \ldots$, be a random walk on the graph. Then $u\left(X_{k}\right)$ is a martingale and so for any k

$$
u(x)=\mathbb{E}\left[u\left(X_{k}\right) \mid X_{0}=x\right]
$$

Homogenization at smaller length scales

Suppose $\Delta_{\varepsilon, \mathcal{X}_{n}} u \equiv 0$. Let $X_{0}, X_{1}, X_{2}, \ldots$, be a random walk on the graph. Then $u\left(X_{k}\right)$ is a martingale and so for any k

$$
u(x)=\mathbb{E}\left[u\left(X_{k}\right) \mid X_{0}=x\right]
$$

If we define

$$
L_{k} u(x):=\mathbb{E}\left[u(x)-u\left(X_{k}\right) \mid X_{0}=x\right] .
$$

Then $L_{k} u \equiv 0$.

Homogenization at smaller length scales

Suppose $\Delta_{\varepsilon, \mathcal{X}_{n}} u \equiv 0$. Let $X_{0}, X_{1}, X_{2}, \ldots$, be a random walk on the graph. Then $u\left(X_{k}\right)$ is a martingale and so for any k

$$
u(x)=\mathbb{E}\left[u\left(X_{k}\right) \mid X_{0}=x\right]
$$

If we define

$$
L_{k} u(x):=\mathbb{E}\left[u(x)-u\left(X_{k}\right) \mid X_{0}=x\right]
$$

Then $L_{k} u \equiv 0 . L_{k}$ is a graph Laplacian; indeed, we can write

$$
L_{k} u(x)=\sum_{i=1}^{n} \mathbb{P}\left(X_{k}=x_{i} \mid X_{0}=x\right)\left(u(x)-u\left(x_{i}\right)\right)
$$

Homogenization at smaller length scales

Suppose $\Delta_{\varepsilon, \mathcal{X}_{n}} u \equiv 0$. Let $X_{0}, X_{1}, X_{2}, \ldots$, be a random walk on the graph. Then $u\left(X_{k}\right)$ is a martingale and so for any k

$$
u(x)=\mathbb{E}\left[u\left(X_{k}\right) \mid X_{0}=x\right]
$$

If we define

$$
L_{k} u(x):=\mathbb{E}\left[u(x)-u\left(X_{k}\right) \mid X_{0}=x\right]
$$

Then $L_{k} u \equiv 0 . L_{k}$ is a graph Laplacian; indeed, we can write

$$
L_{k} u(x)=\sum_{i=1}^{n} \mathbb{P}\left(X_{k}=x_{i} \mid X_{0}=x\right)\left(u(x)-u\left(x_{i}\right)\right)
$$

The graph Laplacian L_{k} has effective length scale $\varepsilon_{k}=\varepsilon \sqrt{k}$. Hence, for $O\left(\varepsilon_{k}\right)$ pointwise consistency, we should only need

$$
\varepsilon \sqrt{k}=\varepsilon_{k} \geq\left(\frac{\log (n)}{n}\right)^{\frac{1}{m+4}}
$$

Homogenization at smaller length scales

We can write this condition as

$$
n \varepsilon^{m}\left(\varepsilon^{4} k^{\frac{m+4}{m}}\right) \gg \log (n)
$$

Homogenization at smaller length scales

We can write this condition as

$$
n \varepsilon^{m}\left(\varepsilon^{4} k^{\frac{m+4}{m}}\right) \gg \log (n)
$$

If we assume $n \varepsilon^{m+p} \gg \log (n)$ for $p \geq 0$, then the smallest choice for k yields the effective length scale

$$
\bar{\varepsilon}=\varepsilon_{k}=\varepsilon^{\frac{m+p}{m+4}}
$$

Homogenization at smaller length scales

We can write this condition as

$$
n \varepsilon^{m}\left(\varepsilon^{4} k^{\frac{m+4}{m}}\right) \gg \log (n)
$$

If we assume $n \varepsilon^{m+p} \gg \log (n)$ for $p \geq 0$, then the smallest choice for k yields the effective length scale

$$
\bar{\varepsilon}=\varepsilon_{k}=\varepsilon^{\frac{m+p}{m+4}}
$$

If we take $p=0$, we are at graph connectivity, and

$$
\bar{\varepsilon}=\varepsilon_{k}=\varepsilon^{\frac{m}{m+4}}
$$

So we expect nearly linear rates even at the smallest length scales.

Homogenization at smaller length scales

We can write this condition as

$$
n \varepsilon^{m}\left(\varepsilon^{4} k^{\frac{m+4}{m}}\right) \gg \log (n)
$$

If we assume $n \varepsilon^{m+p} \gg \log (n)$ for $p \geq 0$, then the smallest choice for k yields the effective length scale

$$
\bar{\varepsilon}=\varepsilon_{k}=\varepsilon^{\frac{m+p}{m+4}} .
$$

If we take $p=0$, we are at graph connectivity, and

$$
\bar{\varepsilon}=\varepsilon_{k}=\varepsilon^{\frac{m}{m+4}} .
$$

So we expect nearly linear rates even at the smallest length scales.

All of this requires proving Gaussian estimates on the heat kernel

$$
p_{k}\left(x, x_{i}\right)=\mathbb{P}\left(X_{k}=x_{i} \mid X_{0}=x\right)
$$

when ε is small.

