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Motivating example: Google Goggles

Figure: Query image

Figure: Retrieved images
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Multi-query image retrieval

Problem: Find images in a dataset S that
are similar to multiple query images.

Pareto method: “Solve” the multi-objective
optimization problem

argmin
I∈S

(dist(I ,Q1), . . . , dist(I ,Qd)).

Query 1 Query 2

Pareto points:
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Multi-objective optimization
How do we solve the multi-objective optimization problem

argmin
I∈S

(f1(I ), . . . , fd(I ))?

Basic approach:

1 Choose some weights αi ∈ [0, 1] with
∑d

i=1 αi = 1 and define

fα(I ) = α1f1(I ) + α2f2(I ) + · · ·+ αd fd(I ).

2 Solve the scalarized optimization problem

argmin
I∈S

fα(I ).

Problems:

1 Difficult to choose weights

2 Ignores relevant solutions
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Basic approach
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Nondominated solutions
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Multi-query image retrieval

First Pareto front:

Query 1

Query 2

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Hsiao, K.-J., Calder, J., and Hero III, A. O. (2015). Pareto-depth for multiple-query
image retrieval. IEEE Transactions on Image Processing, 24(2):583–594.
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Nondominated sorting

Let X1, . . . ,Xn be points in Rd and set S = {X1, . . . ,Xn}.

Define the partial order

x 5 y ⇐⇒ xi ≤ yi for all i ∈ {1, . . . , d}.

Definition
Nondominated sorting is the process of arranging S into layers F1,F2,F3, . . . , defined by

F1 = Minimal elements of S ,

Fk = Minimal elements of S \ (F1 ∪ · · · ∪ Fk−1).
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Applications

Multi-objective optimization

Genetic algorithms [Deb et al., 2002]

Gene selection and ranking [Hero, 2003]

Database systems [Papadias et al., 2005]

Anomaly detection [Hsiao et al., 2012]

Image retrieval [Hsiao et al., 2015]

Combinatorics and probability

Longest monotone subsequences [Ulam, 1961]

Longest chain in Euclidean space [Hammersley, 1972]

Patience sorting [Aldous and Diaconis, 1999]

Young Tableaux [Viennot, 1984]

Graph theory [Lou and Sarrafzadeh, 1993]

Polynuclear growth (crystals) [Prähofer and Spohn, 2000]

Other applications

Molecular biology [Pevzner, 2000]

Integrated circuit design [Adhar, 2007]
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Demo: 50 Random samples
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Demo: Uniform distribution
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Demo: Gaussian distribution
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Demo: Uniform distribution on [0, 1]2 \ [0, 0.5]2
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A PDE continuum limit for nondominated sorting

Let X1, . . . ,Xn be i.i.d. random variables in [0,∞)d with continuous density f .

Let Un : Rd → N0 be the function that ‘counts’ the layers F1,F2, . . .
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Theorem (Calder, Esedoḡlu, Hero, 2014)

There exists a universal constant cd > 0 such that with probability one

n−
1
d Un −→ cdu locally uniformly as n →∞

where u ∈ C 0, 1
d ([0,∞)d) is the unique nondecreasing (uxi ≥ 0) viscosity solution of

(P)

{
ux1 · · · uxd = f in Rd

+ := (0,∞)d

u = 0 on ∂Rd
+.

Calder, J., Esedoḡlu, S., and Hero, A. O. (2014). A Hamilton-Jacobi equation for the
continuum limit of non-dominated sorting. SIAM Journal on Mathematical Analysis,
46(1):603–638.

Calder, J. (2016). A direct verification argument for the Hamilton-Jacobi equation
continuum limit of nondominated sorting. Nonlinear Analysis Series A: Methods, Theory
& Applications, 141:88–108

Current work: Rate of convergence (Brendan Cook)
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There exists a universal constant cd > 0 such that with probability one

n−
1
d Un −→ cdu locally uniformly as n →∞

where u ∈ C 0, 1
d ([0,∞)d) is the unique nondecreasing (uxi ≥ 0) viscosity solution of

(P)

{
ux1 · · · uxd = f in Rd

+ := (0,∞)d

u = 0 on ∂Rd
+.
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Demo: f = 1− χ[0,0.5]2
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Demo: Multimodal f
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Quick “proof”

Let X1, . . . ,Xn be i.i.d. random variables in [0,∞)d with continuous density f .

Let Un : Rd → N0 be the function that ‘counts’ the layers F1,F2, . . .
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Quick “proof”

Let’s suppose that n−αUn −→ u ∈ C 1 as n →∞ for some α ∈ [0, 1].

〈Du, v〉 ≈ u(x + v)− u(x)

≈ (# fronts in A)n−α

≈ (# samples in A)αn−α

≈ (n|A|f (x))αn−α

≈ |A|αf (x)α.

Use |A| ≈ 〈Du,v〉d
ux1 ···uxd

to find

〈Du, v〉 ≈
(

f (x)

ux1 · · · uxd

)α
〈Du, v〉αd

If αd = 1, or α = 1/d , then

ux1 · · · uxd = f
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f (x)

ux1 · · · uxd

)α
〈Du, v〉αd

If αd = 1, or α = 1/d , then

ux1 · · · uxd = f

Calder (UofM) PDE continuum limits Wisconsin PDE&GA 21 / 83



Quick “proof”

Let’s suppose that n−αUn −→ u ∈ C 1 as n →∞ for some α ∈ [0, 1].

〈Du, v〉 ≈ u(x + v)− u(x)

≈ (# fronts in A)n−α

≈ (# samples in A)αn−α

≈ (n|A|f (x))αn−α

≈ |A|αf (x)α.

Use |A| ≈ 〈Du,v〉d
ux1 ···uxd

to find

〈Du, v〉 ≈
(

f (x)

ux1 · · · uxd

)α
〈Du, v〉αd

If αd = 1, or α = 1/d , then

ux1 · · · uxd = f

Calder (UofM) PDE continuum limits Wisconsin PDE&GA 21 / 83



Ordering within each front

Let X1, . . . ,Xn be i.i.d. random variables with density f on [0, 1]2. Define

Vn(Xi) = Index of Xi within its Pareto front.
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Demo: Uniform distribution on [0, 1]2

(T)

{
〈Dv ,D⊥u〉 = f in (0, 1)2,

v = 0 on (0, 1)× {x2 = 1}.

(T’)

{
〈Dw , vD⊥u〉 = wf in (0, 1)2,

w = 1 on {x1 = 1} × (0, 1).
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Fast approximate sorting

Algorithm (PDE-based Ranking)
1 Select k points from X1, . . . ,Xn at random. Call them Y1, . . . ,Yk . (k � n)

2 Estimate f with a histogram

f̂ (x) =
1

khd
·#
{
Yi : Yi ∈ [x , x + h1]

}
.

3 Compute the numerical solution Ûh of the PDE.

4 Evaluate Ûh(Xi) for i = 1, . . . ,n via interpolation.

Notes:

Total complexity is O(k + h−d + n).

If we fix k and h, independent of n, then Steps 1-3 have O(1) complexity.

Calder, J., Esedoḡlu, S., and Hero, A. O. (2015). A PDE-based approach to
nondominated sorting. SIAM Journal on Numerical Analysis, 53(1):82–104.
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CPU Time (C/C++)
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CPU time (s) vs Number of samples

Non-dominated sorting
Solve PDE

Solve PDE & rank all points

# Subsamples = k = 107, Grid for solving PDE = 250× 250.

O(n log n) non-dominated sorting of [Felsner and Wernisch, 1999].
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Application in anomaly detection

(a) Example trajectories
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(b) 5× 105 Pareto points

Abbasi, B., Calder, J., and Oberman, A.M. Anomaly detection and classification for
streaming data using PDEs SIAM Journal on Applied Mathematics, 78(2), 921–941,
2018.
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Results
Anomaly detection with PDE-based ranking: Reduces complexity from O(n2) to O(n).

Abbasi, B., Calder, J., and Oberman, A.M. Anomaly detection and classification for
streaming data using PDEs SIAM Journal on Applied Mathematics, 78(2), 921–941,
2018.
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Results
Anomaly detection for streaming data:

Abbasi, B., Calder, J., and Oberman, A.M. Anomaly detection and classification for
streaming data using PDEs SIAM Journal on Applied Mathematics, 78(2), 921–941,
2018.
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Examples of detected anomalies. . .
with classifications using the new transport equations.

Shape anomaly 1, µ = 0.4156

Shape anomaly 2, µ = 0.4615

Speed anomaly 1, µ = 0.7016

Speed anomaly 2, µ = 0.7401

Both anomalies 1, µ = 0.5180

Both anomalies 2, µ = 0.5207

Abbasi, B., Calder, J., and Oberman, A.M. Anomaly detection and classification for
streaming data using PDEs SIAM Journal on Applied Mathematics, 78(2), 921–941,
2018.
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Outline

1 Nondominated sorting

2 Convex hull peeling

3 Semi-supervised learning

4 References
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Convex hull peeling

Question: How to define ‘median’ in dimensions d ≥ 2?

Barnett [Barnett, 1976]: Convex hull peeling
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Convex hull peeling

Question: How to define ‘median’ in dimensions d ≥ 2?

Barnett [Barnett, 1976]: Convex hull peeling

Convex hull peeling median := Centroid of final layer

Calder (UofM) PDE continuum limits Wisconsin PDE&GA 31 / 83



MNIST handwritten digit dataset
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Convex hull peeling

Let X1, . . . ,Xn be points in Rd and set S = {X1, . . . ,Xn}.

Definition
Convex hull peeling is the process of arranging S into convex layers C1, C2, C3, . . . ,
defined by

C1 = Vertices of convex hull of S ,

Ck = Vertices of convex hull of S \ (C1 ∪ · · · ∪ Ck−1).
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Convex hull peeling

Applications:

Robust statistics, machine learning, etc.

I [Rousseeuw and Struyf, 2004],[Donoho and Gasko, 1992],
[Hodge and Austin, 2004].

Matching of deformed pointclouds [Suk and Flusser, 1999].

Fingerprint matching [Poulos et al., 2005].
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Convex hull peeling: Demo - Uniform distribution
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Convex hull peeling: Demo - Triangle distribution
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Convex hull peeling: Demo - Triangle distribution
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Convex hull peeling: Demo - Gaussian distribution

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

n = 102 points

Calder (UofM) PDE continuum limits Wisconsin PDE&GA 37 / 83



Convex hull peeling: Demo - Gaussian distribution
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Convex hull peeling: Demo - Gaussian distribution
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Convex hull peeling: Demo - Gaussian distribution
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A two player game for convex hull peeling

Players: Paul and Carol
State space: X := {X1, . . . ,Xn}

Paul’s goal: Reach vertex of convex hull
Carol’s goal: Obstruct Paul

Rules of the game: Token starts at
x0 ∈ X and is moved according to:

1 Paul picks v ∈ Sd−1

2 Carol moves token to any
x k+1 ∈ X satisfying

(x k+1 − x k ) · v > 0.
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A two player game for convex hull peeling

Paul’s optimal choice: Any halfspace supporting current convex layer

Carol’s optimal choice: Any point on the previous convex layer
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A two player game for convex hull peeling

Paul’s optimal choice: Any halfspace supporting current convex layer

Carol’s optimal choice: Any point on the previous convex layer

Value function = Un(x0) = Convex depth function.

Calder (UofM) PDE continuum limits Wisconsin PDE&GA 39 / 83



A two player game for convex hull peeling
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A two player game for convex hull peeling
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A two player game for convex hull peeling
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A PDE continuum limit for convex hull peeling

Let X1, . . . ,Xn be i.i.d. with a continuous density f on a convex set Ω ⊂ Rd .

Let Un be the function that ‘counts’ the associated convex layers C1, C2, . . .
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Partial differential equation (PDE) continuum limit

Theorem (Joint with C. Smart)

There exists a universal constant αd such that with probability one

n−
2

d+1Un −→ αdu uniformly on Ω,

where u ∈ C (Ω) is the unique viscosity solution of{
∇u · cof(−∇2u)∇u = f 2 in Ω

u = 0 on ∂Ω.
(1)

This is just motion by a power of Gauss curvature

dS

dt
= f −2/(d+1)κ

1/(d+1)
G n.
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A PDE continuum limit for convex hull peeling
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Figure: Convex layers vs continuum limit for n = 5× 103.
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A nonconvex example
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(b) Convex layers

Figure: Convex layers corresponding to disjoint clusters.
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Figure: Two different solutions continuum PDE.
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The halfmoon
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(b) Convex layers

Figure: Convex layers corresponding to the halfmoon distribution.
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The halfmoon
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Figure: Solution of PDE for the halfmoon example.
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Outline

1 Nondominated sorting

2 Convex hull peeling

3 Semi-supervised learning

4 References
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Quick intro to learning
Fully supervised: In fully supervised learning, we are given training data (xi , yi) for
i = 1, . . . ,n, where xi ∈ X are the data points and yi ∈ Y are the known labels.

The
goal is to learn a function

u : X → Y for which u(xi) ≈ yi for i = 1, . . . ,n. (2)

Semi-supervised learning: In semi-supervised learning, we are additionally given a
(usually large) amount of unlabeled data xn+1, . . . , xn+m for m ≥ 1. Goal is to use the
unlabeled data to aid the learning.

1 Inductive learning: Learn a function

u : X → Y for which u(xi) ≈ yi for i = 1, . . . ,n.

2 Transductive learning: Learn a function

u : {x1, x2, . . . , xn+m} → Y for which u(xi) ≈ yi for i = 1, . . . ,n

Classification when Y finite – Regression when Y = Rd .
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Example: Automated image captioning

[Yann LeCun, Yoshua Bengio, Geoffrey Hinton. Deep learning. Nature, 2015.]
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Example: Automated image captioning fail

[Andrej Karpathy’s NeuralTalk]
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Applications

Why is semi-supervised learning useful?

It is expensive to label data, and we have an abundance of unlabeled data.

Brief list of example applications:

1 Speech recognition

2 Webpage classification

3 Inferring protein structure from sequencing

A great introductory book [Chapelle et al., 2006].
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Graph-based semi-supervised learning

Model:

1 Data (labeled and unlabeled) is a graph (X ,W).

I X ⊂ Rd are the vertices and
I W = (wxy)x ,y∈X are the nonnegative edge weights.
I wxy ≈ 1 if x , y similar, and wxy ≈ 0 when dissimilar.

2 Labeled (or observed) vertices are a subset O ⊂ X .

3 We given a labelling function g : O → R.

Task: Extend the labels from O to the entire graph X .

Semi-supervised smoothness assumption
Similar points x , y ∈ X in high density regions of the graph should have similar labels.
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Laplacian regularization

min
u:X→R

∑
x ,y∈X

w2
xy(u(x)− u(y))2 subject to u(x) = g(x) for all x ∈ O.

The minimizer u : X → R satisfies the linear system∑
y∈X

w2
xy(u(x)− u(y)) = 0 for all x ∈ X \ O.

References:

Original work [Zhu et al., 2003]

Learning [Zhou et al., 2005][Ando and Zhang, 2007]

Manifold ranking [He et al., 2006] [Wang et al., 2013] [Yang et al., 2013]
[Zhou et al., 2011] [Xu et al., 2011]
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Ill-posed with small amount of labeled data
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Graph is n = 105 i.i.d. random variables uniformly drawn from [0, 1]2.

wxy = 1 if |x − y | < 0.01 and wxy = 0 otherwise.

Over 95% of labels in [0.4975, 0.5025].

[Nadler et al., 2009][El Alaoui et al., 2016]
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`p-based Laplacian regularization

For any p <∞:

min
u:X→R

∑
x ,y∈X

wp
xy |u(x)− u(y)|p subject to u(x) = g(x) for all x ∈ O. (3)

We can send p →∞ :

min
u:X→R

max
x ,y∈X

{wxy |u(x)− u(y)|} subject to u(x) = g(x) for all x ∈ O. (4)

References:

Finite p: [Bridle and Zhu, 2013][Alamgir and Luxburg, 2011]

p =∞: [Kyng et al., 2015] [Luxburg and Bousquet, 2004]

Absolutely minimal Lipschitz extensions: [Aronsson et al., 2004]
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p-Laplacian learning: n = 105 points, h = 10−2
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p = 2
Simulations are the work of Mauricio Flores (co-supervised by Gilad Lerman).
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Simulations are the work of Mauricio Flores (co-supervised by Gilad Lerman).
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p-Laplacian learning: n = 105 points, h = 10−2
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Simulations are the work of Mauricio Flores (co-supervised by Gilad Lerman).
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p-Laplacian learning: n = 105 points, h = 10−2
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Simulations are the work of Mauricio Flores (co-supervised by Gilad Lerman).
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p-Laplacian learning: n = 105 points, h = 10−2
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Simulations are the work of Mauricio Flores (co-supervised by Gilad Lerman).
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p-Laplacian learning: n = 105 points, h = 10−2
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Simulations are the work of Mauricio Flores (co-supervised by Gilad Lerman).
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p-Laplacian learning: Varying density
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Simulations are the work of Mauricio Flores (co-supervised by Gilad Lerman).
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1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

1

1

p = 2

Simulations are the work of Mauricio Flores (co-supervised by Gilad Lerman).

Calder (UofM) PDE continuum limits Wisconsin PDE&GA 58 / 83



p-Laplacian learning: Varying density

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.9

0

0.1

0.2

0.3

0.4

0.5

1

0.6

0.7

0.8

1

p = 2.5

Simulations are the work of Mauricio Flores (co-supervised by Gilad Lerman).

Calder (UofM) PDE continuum limits Wisconsin PDE&GA 58 / 83



p-Laplacian learning: Varying density

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.3

0.4

0

0.1

0.2

0.5

0.6

0.7

0.8

0.9

1

1

p = 3

Simulations are the work of Mauricio Flores (co-supervised by Gilad Lerman).

Calder (UofM) PDE continuum limits Wisconsin PDE&GA 58 / 83



p-Laplacian learning: Varying density

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

p = 5

Simulations are the work of Mauricio Flores (co-supervised by Gilad Lerman).

Calder (UofM) PDE continuum limits Wisconsin PDE&GA 58 / 83



Random model
Labeled data: The labeled data is a fixed finite collection of N points

O = {y1, . . . , yN} ⊂ U ⊂ Td := Rd/Zd .

Unlabeled data: The unlabeled data is a sequence x1, x2, . . . , xn of i.i.d. random
variables with probability density f : Td → R

Xnf := {x1, x2, . . . , xn}.

Vertices of graph: The vertices of the graph are

Xn = Xnf ∪ O.

Edge weights: The edge weights are

wxy = Φ

(
|x − y |

h

)
,

where h > 0, and Φ : [0,∞)→ [0,∞).
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Random model

For p <∞ we write

Jp(u) :=
∑

x ,y∈Xn

wp
xy |u(x)− u(y)|p ,

and for p =∞ we write

J∞(u) := max
x ,y∈Xn

{wxy |u(x)− u(y)|}.

For n ≥ 1, let un : Xn → R be the solution of

min
u:Xn→R

Jp(u) subject to u(x) = g(x) for all x ∈ O.

Question: What can we say about un as n →∞?

Calder (UofM) PDE continuum limits Wisconsin PDE&GA 60 / 83



Random model

For p <∞ we write

Jp(u) :=
∑

x ,y∈Xn

wp
xy |u(x)− u(y)|p ,

and for p =∞ we write

J∞(u) := max
x ,y∈Xn

{wxy |u(x)− u(y)|}.

For n ≥ 1, let un : Xn → R be the solution of

min
u:Xn→R

Jp(u) subject to u(x) = g(x) for all x ∈ O.

Question: What can we say about un as n →∞?

Calder (UofM) PDE continuum limits Wisconsin PDE&GA 60 / 83



Random model

For p <∞ we write

Jp(u) :=
∑

x ,y∈Xn

wp
xy |u(x)− u(y)|p ,

and for p =∞ we write

J∞(u) := max
x ,y∈Xn

{wxy |u(x)− u(y)|}.

For n ≥ 1, let un : Xn → R be the solution of

min
u:Xn→R

Jp(u) subject to u(x) = g(x) for all x ∈ O.

Question: What can we say about un as n →∞?

Calder (UofM) PDE continuum limits Wisconsin PDE&GA 60 / 83



Let
rn = sup {s > 0 |B(x , s) ∩ Xn = ∅ for some x ∈ U } . (5)

Theorem (p =∞ [Calder, 2017a] )

Suppose that hn → 0 such that

lim
n→∞

r2n
h3
n

= 0. (6)

Then un −→ u uniformly as n →∞, (7)

where u ∈ C (Td) is the unique viscosity solution of the ∞-Laplace equation{
∆∞u = 0 in Td \ O

u = g on O
(8)

Note that (6) holds almost surely when

lim
n→∞

nh
3d/2
n

log(n)
=∞. (9)
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Theorem (Finite p [Calder, 2017b])

Let d < p <∞, and suppose that hn → 0 such that

lim
n→∞

nhp
n = 0 and lim

n→∞

nhd+4
n

log(n)
=∞. (10)

Then with probability one

un −→ u uniformly as n →∞, (11)

where u ∈ C (Td) is the unique viscosity solution of the weighted p-Laplace equation{
div
(
f 2|∇u|p−2∇u

)
= 0 in Td \ O

u = g on O
(12)

A very similar result appeared recently in [Slepčev and Thorpe, 2017].

Calder (UofM) PDE continuum limits Wisconsin PDE&GA 62 / 83



Regularity in semi-supervised learning

The PDE-limit can be used to prove Hölder regularity.

Theorem

Assume p > d . For every α < p−d
p−1

there exists C , δ such that

P
[
∀x , y ∈ Xn , |un(x)− un(y)| ≤ C (|x − y |α + n

1
p h)
]
≥ 1−exp

(
−δnhd+4 + C log(n)

)
.
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Graph Laplacians

min
u:Xn→R

Jp(u) =
∑

x ,y∈Xn

wp
xy |u(x)− u(y)|p subject to u(x) = g(x) for x ∈ O ⊂ Xn

The minimizer u : Xn → R satisfies{
∆Xn

p u = 0 in Xn \ O,
u = g on O,

where ∆Xn
p u : X → R is the graph p-Laplacian defined by

∆Xn
p u(x) =

∑
y∈Xn

wp
xy |u(y)− u(x)|p−2(u(y)− u(x)).

References on graph p-Laplacian:

[Manfredi et al., 2015] [Zhou and Schölkopf, 2005] [Amghibech, 2003]
[Bühler and Hein, 2009] [Luo et al., 2010]
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Graph Laplacian as p →∞
Note that solutions of

∆Xn
p u(x) =

∑
y∈Xn

wp
xy |u(y)− u(x)|p−2(u(y)− u(x)) = 0

satisfy ∑
y∈Xn

u(y)≥u(x)

wp
xy |u(y)− u(x)|p−1


1/p

=

 ∑
y∈Xn

u(y)<u(x)

wp
xy |u(y)− u(x)|p−1


1/p

.

Send p →∞ to get

max
y∈Xn

wxy(u(y)− u(x)) = max
y∈Xn

wxy(u(x)− u(y)).

or
∆Xn
∞ u(x) := max

y∈Xn

wxy(u(y)− u(x)) + min
y∈Xn

wxy(u(y)− u(x)) = 0.
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Graph Laplacians

min
u:Xn→R

J∞(u) = max
x ,y∈Xn

wxy |u(x)− u(y)| subject to u(x) = g(x) for x ∈ O ⊂ Xn

The minimizer u : Xn → R satisfies{
∆Xn
∞ u = 0 in Xn \ O

u = g in O,

where ∆Xn
∞ u : Xn → R is the graph ∞-Laplacian defined by

∆Xn
∞ u(x) = max

y∈Xn

wxy(u(y)− u(x)) + min
y∈Xn

wxy(u(y)− u(x))

Reference:

1 [Kyng et al., 2015]
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Game theoretic p-Lapacian

We can also consider the game theoretic p-Laplacian for semi-supervised learning:
1

dn
∆Xn

2 un + λ(p − 2)∆Xn
∞ un = 0 in Xn \ O

u = g in O,

where dn(x) =
∑

y∈Xn
w2

xy and λ = λ(Φ).

This is likely better conditioned numerically when p is large.

Calder (UofM) PDE continuum limits Wisconsin PDE&GA 67 / 83



Game theoretic p-Lapacian

We can also consider the game theoretic p-Laplacian for semi-supervised learning:
1

dn
∆Xn

2 un + λ(p − 2)∆Xn
∞ un = 0 in Xn \ O

u = g in O,

where dn(x) =
∑

y∈Xn
w2

xy and λ = λ(Φ).

This is likely better conditioned numerically when p is large.

Calder (UofM) PDE continuum limits Wisconsin PDE&GA 67 / 83



Game theoretic p-Laplacian

Theorem (Finite p [Calder, 2017b])

Let d < p <∞, and suppose that h → 0 such that

lim
n→∞

nhq

log(n)
=∞, (13)

where q = max{d + 4, 3d/2}. Then with probability one

un −→ u uniformly as n →∞, (14)

where u ∈ C (Td) is the unique viscosity solution of the weighted p-Laplace equation{
div
(
f 2|∇u|p−2∇u

)
= 0 in Td \ O

u = g on O
(15)

Notice no upper bound on h (i.e., we don’t require nhp → 0).
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Ideas in proof

All graph Laplacians are monotone schemes. We just need consistency and stability.

Consistency is straightforward, using concentration of measure and Taylor expansions.
For example, for the Graph p-Laplacian

∆Xn
p u(x) =

∑
y∈Xn

wp
xy |u(y)− u(x)|p−2(u(y)− u(x)).

we have

E[∆Xn
p ϕ(x)] = nhd

∫
Rd

Φ(|z |)|ϕ(x + zh)− ϕ(x)|p−2(ϕ(x + zh)− ϕ(x))f (x + zh) dz .

Plug in Taylor expansions and plug away. . .

E[∆Xn
p ϕ(x)] =

1

2
Cp f

−1div(f 2|∇ϕ|p−2∇ϕ)nhd+p + R(x)nhd+p+1,

where
|R(x)| ≤ C‖ϕ‖p−1

C3(Rd )
.
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Hölder continuity for p-Laplace equation

The maximum principle can be used to prove Hölder continuity when p > d :{
∆pu := div(|∇u|p−2∇u) = 0 in U

u = g on ∂U ,

Let us define

v(x) = u(x0) + C |x − x0|α for α =
p − d

p − 1
.

If B(x0, r) ⊂ U then for C = (max g −min g)r−α we have

v(x) ≥ u(x) for |x − x0| = r .

Since ∆pv(x) = 0 for x 6= x0, we can use the maximum principle to show that

u(x) ≤ v(x) for all x ∈ B(x0, r).

It follows that
u(x)− u(x0) ≤ C |x − x0|α.
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∆pu := div(|∇u|p−2∇u) = 0 in U

u = g on ∂U ,

Let us define

v(x) = u(x0) + C |x − x0|α for α =
p − d

p − 1
.

If B(x0, r) ⊂ U then for C = (max g −min g)r−α we have

v(x) ≥ u(x) for |x − x0| = r .

Since ∆pv(x) = 0 for x 6= x0, we can use the maximum principle to show that

u(x) ≤ v(x) for all x ∈ B(x0, r).

It follows that
u(x)− u(x0) ≤ C |x − x0|α.

Calder (UofM) PDE continuum limits Wisconsin PDE&GA 70 / 83



It is generally not the case that

∆Xn
p |x |

p−d
p−1 = 0.

Outline of regularity proof:

1 Choose 0 < α < (p − d)/(p − 1) and set v(x) = |x − y |α

2 Show that ∆Xn
p v(x) ≤ 0 for |x − y | ≥ ch with high probability.

3 Fill in the gap |x − y | ≤ ch.

1 For the variational graph p-Laplacian

|un(x )− un(y)| ≤ Cn1/ph for |x − y | ≤ h.

2 For the game theoretic p-Laplacian, we use a different local barrier

v(x) = |x − y |α + Mhαn

∞∑
k=1

βk1{2|x−y|>(k−1)hn}, where β < 1.
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The local barrier

v(x) = |x − y |α + Mhαn

∞∑
k=1

βk1{2|x−y|>(k−1)hn}

exploits the form of the graph ∞-Laplacian

∆Xn
∞ u(x) = max

y∈Xn

wxy(u(y)− u(x)) + min
y∈Xn

wxy(u(y)− u(x)).
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Current/Future work

1 Fast algorithms: Primal dual/Nesterov acceleration for pLaplacian learning
(Mauricio Flores)

2 Rates of convergence:

1 PageRank algorithm (Amber Yuan)
2 Nondominated Sorting (Brendan Cook)

3 Infinite labled data: Suppose the set of labeled data O grows with n.

I How fast should O grow to ensure p ≤ d is well-posed?
I What types of models can we take for O?

4 Soft constraint: Extend the results to the soft constraint

min
u:Xn→R

Jp(u) + λ
∑
y∈O

|u(x)− g(x)|q .
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Outline

1 Nondominated sorting

2 Convex hull peeling

3 Semi-supervised learning
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