Mathematics of Image and Data Analysis Math 5467

Lecture 1: Introduction

Instructor: Jeff Calder
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467S21

Course Information

- Main course website: http://www-users.math.umn.edu/~ jwcalder/5467S21
- Canvas for Zoom links, grades: https://canvas.umn.edu/courses/218893
- Piazza for Q/A: https://piazza.com/umn/spring2021/math5467
- Sign up for Piazza and make a post in the first week (see HW1).
- Zoom links available on Canvas and sent by email.
- Office hours will be on https://gather.town (link on Canvas)
- 4 homework assignments and 3 projects.
- Please collaborate with other students!
- Take home exam over 2 days.

Expectations for Zoom classes

- Attend class and keep your video on.
- Lectures will be interactive, and involve working together in groups within Zoom breakout rooms.
- Lectures will not be recorded, since students are expected to attend and engage.
- Ask questions and interact with your peers in breakout rooms.

Audio signals

Figure 1: Example of a stereo audio signal from a piece of classical music. The left figure shows both channels over the whole song, while the right figure shows a short clip.

Audio signals

- CD audio has 44,100 samples per second (Hz), with 2 channels and 16 bits per sample

$$
\underbrace{2}_{\text {Channels }} \times \underbrace{44,100}_{\text {Samples per Second }} \times \underbrace{16}_{\text {Bits per Sample }}=1,411,200 \text { bits/second. }
$$

- In terms of kilobits (kbit), $1,411 \mathrm{kbit} / \mathrm{sec}$.
- In terms of megabits (Mbit), 1.4 Mbit/sec.
- How many Mbits or MB of space would a 4 minute song take up?
$-1 \mathrm{MB}=8 \mathrm{Mbit}$

Audio signals

Questions:

- How to compress audio without destroying sound quality?
- How to determine what is said in an audio sample? (or determine which song is playing)
- How to demix or remove noise?

Images

Figure 2: Example of a grayscale digital image.

Images

- Modern smartphone can have 12 million pixels (MP).
- For a color image this means storing 36 million numbers.
- With 8-bits per sample, this takes 36 MB of space.
- How much space would a color image from a 46 MP camera take up?

Images

Problems in image analysis:

- Compression
- Segmentation
- Inpainting
- Denoising, deblurring
- Classification
- Recognition

Data analysis

	2	8		9	4		9	1	1	2			
	8		9			6	0						
	8	5	9	,	3	0			49		0		
	4		0	4		6		-	0		7		
	2		1			0	2						
			6	8	0	7							
	6		0			3							
	0					6			6				

MNIST dataset

Data analysis

Problems in data analysis:

- Classification
- Clustering
- Ranking
- Dimension reduction...

Overview of course

- Data analysis
- Principal component analysis (PCA)
- k-means clustering
- Spectral clustering
- Google's PageRank
- Fourier Analysis
- Wavelet Analysis
- Variational methods
- Machine learning
- Basic algorithms
- Graph-based learning
- Neural networks
- Convolutional neural networks

Python

- We will use Python for computational examples during class, and students will use Python on homework assignments and for projects.
- Course website has information for how to get access to Python.
- We will cover an introduction to Python in the first 2 weeks.
- To start today: Introduction to Python

Linear algebra review

- Capital letters A, B, C for matrices (entries are $A(i, j))$
- Lower case letteers $x, y, z, x_{1}, x_{2}, x_{3}, x_{4}, \ldots$ for (column) vectors.
- $e_{1}, e_{2}, \ldots, e_{n}$ are the standard basis vectors in \mathbb{R}^{n}.
- Matrix multiplication: A is $m \times n$ and B is $n \times p$ then $C=A B$ is the $m \times p$ matrix with entries

$$
C(i, j)=\sum_{k=1}^{n} A(i, k) B(k, j)
$$

- A^{T} denotes the transpose of A.
- Dot product $x^{T} y=\sum_{i=1}^{n} x(i) y(i)$.
- Norm: $\|x\|=\sqrt{x^{T} x}=\sqrt{x(1)^{2}+x(2)^{2}+\cdots+x(n)^{2}}$.
- Algebra: $\|x \pm y\|^{2}=\|x\|^{2} \pm 2 x^{T} y+\|y\|^{2}$.

Rank-one matrix

For vectors x, y of length n, the rank-one matrix $A=x y^{T}$ is the $n \times n$ matrix with entries

$$
A(i, j)=x(i) y(j)
$$

It is called rank-one since the range of A is one dimensional and spanned by the vector x. Indeed,

$$
A z=x y^{T} z=\left(y^{T} z\right) x
$$

for any vector z.

Exercise

Let $x_{1}, x_{2}, x_{3}, \ldots, x_{m}$ be a collection of vectors of length n. Define the $m \times n$ matrix

$$
X=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{m}
\end{array}\right]^{T}=\left[\begin{array}{c}
x_{1}^{T} \\
x_{2}^{T} \\
\vdots \\
x_{m}^{T}
\end{array}\right]
$$

Show that

$$
\sum_{i=1}^{m} x_{i} x_{i}^{T}=X^{T} X
$$

