# Mathematics of Image and Data Analysis Math 5467 

## Lecture 11: Parseval's identities and Convolution

Instructor: Jeff Calder<br>Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467S21

## Last time

- The Fast Fourier Transform (FFT)


## Today

- Parseval's identities
- Convolution and the DFT


## Recall

Definition 1. The Discrete Fourier Transform (DFT) is the mapping $\mathcal{D}: L^{2}\left(\mathbb{Z}_{n}\right) \rightarrow$ $L^{2}\left(\mathbb{Z}_{n}\right)$ defined by

$$
\mathcal{D} f(\ell)=\sum_{k=0}^{n-1} f(k) \omega^{-k \ell}=\sum_{k=0}^{n-1} f(k) e^{-2 \pi i k \ell / n}
$$

where $\omega=e^{2 \pi i / n}$ and $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ is the cyclic group $\mathbb{Z}_{n}=\mathbb{Z} / n$.

The DFT can be viewed as a change of basis into the orthogonal basis functions

$$
u_{\ell}(k)=\omega^{k \ell}=e^{2 \pi i k \ell / n}
$$

for $\ell=0,1, \ldots, n-1$.

## Inverse Fourier Transform

Theorem 2 (Fourier Inversion Theorem). For any $f \in L^{2}\left(\mathbb{Z}_{n}\right)$ we have

$$
\begin{equation*}
f(k)=\frac{1}{n} \sum_{\ell=0}^{n-1} \mathcal{D} f(\ell) \omega^{k \ell}=\frac{1}{n} \sum_{\ell=0}^{n-1} \mathcal{D} f(\ell) e^{2 \pi i k \ell / n} \tag{1}
\end{equation*}
$$

Definition 3 (Inverse Discrete Fourier Transform). The Inverse Discrete Fourier Transform (IDFT) is the mapping $\mathcal{D}^{-1}: L^{2}\left(\mathbb{Z}_{n}\right) \rightarrow L^{2}\left(\mathbb{Z}_{n}\right)$ defined by

$$
\mathcal{D}^{-1} f(\ell)=\frac{1}{n} \sum_{k=0}^{n-1} f(k) \omega^{k \ell}=\frac{1}{n} \sum_{k=0}^{n-1} f(k) e^{2 \pi i k \ell / n} .
$$

Adjoint of $\mathcal{D}$

$$
\langle f, g\rangle=\sum_{k=0}^{n=1} f(k) \overline{s(k)}
$$

We first show that $\mathcal{D}^{-1}$ is the adjoint of $\mathcal{D}$, up to the factor $1 / n$.
Hermetian
Lemma 4. For each $f, g \in L^{2}\left(\mathbb{Z}_{n}\right)$ we have inner porduot

$$
\frac{1}{n}\langle\mathcal{D} f, g\rangle=\left\langle f, \mathcal{D}^{-1} g\right\rangle .
$$

Proof:

$$
\bar{\omega}=\omega_{2 \pi i}^{-1}
$$

$$
\begin{aligned}
& w=\omega \\
& \omega=e^{2 \pi i / n}
\end{aligned}
$$

$$
\begin{aligned}
\left(f, D^{-1} g\right) & =\sum_{k=0}^{n-1} f(k) \overline{D^{-1} g(k)} \\
& =\sum_{k=0}^{n-1} f(k) \overline{\frac{1}{n} \sum_{l=0}^{n-1} g(l) \omega^{k l}} \\
& =\frac{1}{n} \sum_{k=0}^{n-1} f(k) \sum_{l=0}^{n-1} \overline{g(l)} \omega^{-k l} \\
& =\frac{1}{n} \sum_{l=0}^{n-1} \overline{g(l)} \sum_{k=0}^{n-1} f(k) w^{-k l}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{n} \sum_{l=0}^{n-1} \overline{g(l)} D f(l) \\
& =\frac{1}{n}\langle D f, g\rangle
\end{aligned}
$$

Parseval's identities Recall $\frac{1}{n}\langle D f, g\rangle=\left\langle f, D^{-1} s\right\rangle$
An immediate consequence of the adjoint lemma is Parseval's identities.
Theorem 5 (Parseval's Identities). Let $f, g \in L^{2}\left(\mathbb{Z}_{n}\right)$. Then it holds that
(i) $\langle f, g\rangle=\frac{1}{n}\langle\mathcal{D} f, \mathcal{D} g\rangle$, and
(ii) $\|f\|^{2}=\frac{1}{n}\|\mathcal{D} f\|^{2}$.

Plot of (i)

$$
\begin{aligned}
\langle f, g\rangle & =\left\langle f, D^{-1} D g\right\rangle \\
& =\frac{1}{n}\langle D f, D g\rangle .
\end{aligned}
$$

Prot at (ii)

$$
\begin{aligned}
\|f\|^{2} & =\langle f, f\rangle \\
(i) & =\frac{1}{n}\langle D f, D f\rangle=\frac{1}{n}\|D f\|_{\text {牭 }}^{2}
\end{aligned}
$$

$$
\cos \theta=\frac{x \cdot y}{\|x\|\|y\|}, x, y \in \mathbb{R}
$$

(i) Angle btw fails unchanged by $D$ up to $\frac{1}{n}$
(ii) length at $f$ preserved b, $D$ $u_{p} t \rightarrow \frac{1}{n}$.

Same as rotation of coordinate system.

Parseval's identities
Remark 6. Of course, a similar statement holds for the inverse transform $\mathcal{D}^{-1}$. Indeed, Lemma 4 and Theorem 2 imply

$$
\frac{1}{n}\langle f, g\rangle=\frac{1}{n}\left\langle\mathcal{D} \mathcal{D}^{-1} f, g\right\rangle=\left\langle\mathcal{D}^{-1} f, \mathcal{D}^{-1} g\right\rangle
$$

Setting $f=g$ yields $\frac{1}{n}\|f\|^{2}=\left\|\mathcal{D}^{-1} f\right\|^{2}$.

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \quad \text { (via Parseval) }
$$

## Convolution

Definition 7. The discrete cyclic convolution of $f, g \in L^{2}\left(\mathbb{Z}_{n}\right)$, denoted $f * g$, is the function in $L^{2}\left(\mathbb{Z}_{n}\right)$ defined for each $k$ by

$$
(f * g)(k)=\sum_{j=0}^{n-1} f(j) g(k-j)
$$

We note that the definition of the convolution makes use of the fact that $\mathbb{Z}_{n}$ is a cyclic group when $k-j$ falls outside of $0,1, \ldots, n-1$ (i.e., the values wrap around). We leave some basic properties of the convolution to an exercise.

Exercise 8. Let $f, g, h \in L^{2}\left(\mathbb{Z}_{n}\right)$. Show that the following hold.
(i) $f * g=g * f$;
(ii) $f *(g * h)=(f * g) * h$;
(iii) $f *(g+h)=f * g+f * h$.

## Convolution and the DFT

Lemma 9 (Convolution and the DFT). For $f, g \in L^{2}\left(\mathbb{Z}_{n}\right)$ we have

$$
\begin{equation*}
\mathcal{D}(f * g)=\mathcal{D} f \cdot \mathcal{D} g \tag{2}
\end{equation*}
$$

Remark 10. Lemma 9 is the most important property of the DFT, that it turns convolution into multiplication. It allows us to compute convolutions with the FFT in $O(n \log n)$ operations as

$$
f * g=\mathcal{D}^{-1}(\mathcal{D} f \cdot \mathcal{D} g)
$$

Computing convolution the ordinary way takes $O\left(n^{2}\right)$ operations:

$$
(f * g)(k)=\sum_{j=0}^{n-1} f(j) g(k-j)
$$

The convolution property is also what allows the FFT to be used for solving PDEs numerically (all discrete derivatives are convolutions).

$$
D(f \neq g)=D f \cdot D s .
$$

Prot: $D(f \neq g)(l)=\sum_{k=2}^{n-1}(f \neq g)(k) w^{-k l}$

$$
\begin{aligned}
C_{s} & =\sum_{k=0}^{n-1} \sum_{j=0}^{n-1} f(j) g(k-j) \omega^{-k l} \\
& =\sum_{j=0}^{n-1} f(j) \omega^{-j l} \sum_{k=0}^{n-1} g(k-j) w^{j l-k l} \\
(\not d) & =\sum_{j=0}^{n-1} f(j) \omega^{-j l \sum_{k=0}^{n-1} g(k-j) w^{-l(k-j)}} \underbrace{\text { have fer av }}_{\text {Dg }(l)}
\end{aligned}
$$

Since $\mathrm{Rn}_{n}$ is cyclic, we have for any

$$
h \in L^{2}\left(\mathbb{R}_{n}\right) ;(\notin) \sum_{k=0}^{n-1} h(k)=\sum_{k=0}^{n-1} h(k-j), \forall j
$$

$$
\begin{aligned}
& (k)=\operatorname{Dg}(l) \sum_{j=0}^{n-1} f(j) \omega^{-j l} \\
& =D S(\ell) D f(\ell) \\
& \text { ( } \\
& \sum_{k=0}^{n-1} h(k-j)=\underbrace{\sum_{k=j}^{n-1} h(k-j)}_{l=k-j}+\sum_{k=0}^{j-1} h(k-j) \quad \begin{array}{l}
j=1 \\
\begin{array}{l}
\text { is } \\
\text { is } \\
n-p e r i d i c \\
n=2
\end{array}
\end{array} \\
& =\sum_{l=0}^{\substack{l=k-j \\
n-j-1}} h(l)+\underbrace{\sum_{k=0}^{j-1} h(n+k-j)} \\
& l=n+k-j \\
& k=0 \leftrightarrow l=n-j
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{l=0}^{n-j-1} h(l)+\sum_{l=n-j}^{n-1} h(l) \\
= & \sum_{l=0}^{n-1} h(l)
\end{aligned}
$$

## Exercise on discrete derivatives

Exercise 11. Discrete derivatives (difference quotients) can be interpreted as convolutions. Complete the following exercises.
(i) For $f \in L^{2}\left(\mathbb{Z}_{n}\right)$ define the backward difference

$$
\nabla^{-} f(k)=f(k)-f(k-1)
$$

Find $g \in L^{2}\left(\mathbb{Z}_{n}\right)$ so that $\nabla^{-} f=f * g$ and use this with Lemma 9 to show that $\mathcal{D}\left(\nabla^{-} f\right)(k)=\left(1-\omega^{-k}\right) \mathcal{D} f(k)$, where $\omega=e^{2 \pi i / n}$.
(ii) For $f \in L^{2}\left(\mathbb{Z}_{n}\right)$ define the forward difference

$$
\nabla^{+} f(k)=f(k+1)-f(k)
$$

Find $g \in L^{2}\left(\mathbb{Z}_{n}\right)$ so that $\nabla^{+} f=f * g$ and use this with Lemma 9 to show that $\mathcal{D}\left(\nabla^{+} f\right)(k)=\left(\omega^{k}-1\right) \mathcal{D} f(k)$.
(iii) For $f \in L^{2}\left(\mathbb{Z}_{n}\right)$ define the centered difference by

$$
\nabla f(k)=\frac{1}{2}\left(\nabla^{-} f(k)+\nabla^{+} f(k)\right)=\frac{1}{2}(f(k+1)-f(k-1)) .
$$

Use parts (i) and (ii) to show that

$$
\mathcal{D}(\nabla f)(k)=\frac{1}{2}\left(\omega^{k}-\omega^{-k}\right) \mathcal{D} f(k)=i \sin (2 \pi k / n) \mathcal{D} f(k) .
$$

(iv) For $f \in L^{2}\left(\mathbb{Z}_{n}\right)$, define the discrete Laplacian as

$$
\Delta f(k)=\nabla^{+} f(k)-\nabla^{-} f(k)=f(k+1)-2 f(k)+f(k-1) .
$$

Use parts (i) and (ii) to show that

$$
\mathcal{D}(\Delta f)(k)=\left(\omega^{k}+\omega^{-k}-2\right) \mathcal{D} f(k)=2(\cos (2 \pi k / n)-1) \mathcal{D} f(k) .
$$

